
Named Entity Recognition from Synthesis Procedural Text in Materials Science
Domain with Attention-Based Approach

Huichen Yang, William Hsu
Computer Science of Kansas State University

Manhattan, Kansas 66502
huichen@ksu.edu, bhsu@ksu.edu

Abstract

We applied attention-based deep learning to the task of
Named Entity Recognition (NER) from synthesis proce-
dural text of scientific literature in materials science do-
main. Unlike conventional machine learning approaches that
need hand-crafted features or training with massive data, our
attention-based deep learning method enhances contextual-
ized word representations by using a Bidirectional Encoder
Representations from Transformers (BERT) pre-trained lan-
guage model and then associating with Bidirectional Long
Short-term Memory (BiLSTM) and Conditional Random
Fields (CRF) layer; this is then BERT-BiLSTM-CRF. Our
method shows it is feasible to use a limited annotated cor-
pus with a pre-trained language model to extract entities from
synthesis procedures in materials science. The experimental
result shows that our approach outperforms other baseline
models with significant improvements based on three cor-
pora.

Introduction
The number of published materials science articles has
grown rapidly over the past few decades. Much potentially
useful information in these published articles could help the
materials design group explore and study new material syn-
thesis. Conventionally, new materials are discovered mainly
through published experiments in literature, which, however,
are usually stored as unstructured text format. This requires
great effort to sort and organize. Furthermore, researchers
and scientists in materials science cannot access much more
than a fraction of such information because their research
time is limited. The inevitable result is, therefore, the need
to enhance their ability to identify new technologies and find
the appropriate literature (Weston et al., 2019).

Natural Language Processing (NLP) with machine learn-
ing technology can accelerate the rate of materials science
discoveries. Many materials science areas, thermoelectrics,
photovoltaics, batteries, and pharmaceuticals, could use
these techniques (Kalidindi and Marc, 2015). The funda-
mental task, then, of NER in NLP is to recognize named
entities in the text of published experimental research and
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group them into pre-defined categories through classifica-
tion (Nadeau and Satoshi, 2007). In this paper, we focus on
NER in the synthesis of procedural text in materials science.
The synthesis procedures are defined as the order of the steps
based on ”participating tagged entities and ultimately roles
and operations” that should be in methods sections of ma-
terials science research literature. (Yang et al., 2019). Those
tagged entities could be material names, operations, and de-
vices, among others. They are essential to extracting proce-
dural information from materials science literature. Figure 1
shows an example of named entities from synthesis proce-
dure text in a materials science article.

Figure 1: Example of named entities from synthesizing pro-
cedural text in materials science literature (Mysore et al.,
2019). The highlighted words and phrases indicate entities
involved in synthesis procedures.

In materials science, the particular challenge is insuffi-
cient annotated corpora; domain experts find labeling very
expensive and time-consuming. To address the challenge
in materials science, we used word embedding (Mikolov
et al., 2013) with a BiLSTM (bidirectional LSTM) and a
CRF (Conditional Random Fields) layer (Huang, Xu, and
Yu, 2015) as our base line model. We used BERT (Devlin et
al., 2019) pre-trained language model to compare contextual
embedding to word embedding and then fit the output form
BERT into a BiLSTM CRF model to learn the appropriate
context information that would predict named entities. Our
experiment results were based on three corpora of materials
science and show the BERT-BiLSTM-CRF model improves
significantly on other models.

Related Work
Named entity extraction from published experimental re-
search is an emerging field, attracting attention from many



researchers. The most recently used approaches can be sum-
marized into two types:

The first approach is entity extraction from materi-
als science literature. This approach uses NER for extract-
ing summary-level information from materials science doc-
uments. These named entities are broadly pre-defined in ma-
terials science as material name, sample descriptors, and ma-
terial properties, among others (Weston et al., 2019). The
common extraction method collects relevant literature, uses
unsupervised learning methods like K-means and Word2Vec
(Mikolov et al., 2013), extracts word representation features
from large unlabeled corpora, and then fits these word repre-
sentation vectors along with small annotated corpora to ma-
chine learning models like CRF, decision tree with a linear
classifier, and hierarchical neural networks for named entity
extraction (Munkhdalai et al., 2015; Kim et al., 2017; Kim et
al., 2017). The extraction results can be stored in a database
as structured data for queries.

The second approach is named entity extraction from
synthesis procedural text of materials science literature.
This approach uses NER to synthesize procedural text (or
experimental methods) in the methodology sections of ma-
terials science publications. Compared with summary-level
NER in materials science, this approach centered on de-
tails of entities involved in the experiment itself, includ-
ing material names and operations in the experiment steps.
Some previous research focused on this approach. Mysore
et al. (2017) extracted procedural information with action
graphs, and Huo et al. (2019) used semi-supervised learning
methods with latent Dirichlet allocation (LDA), and random
forests to classify inorganic materials from methodology in-
formation. We chose to use NER to synthesize procedural
text as our main methodology.

Methodology
We treated NER as a sequence labeling problem. BERT-
BiLSTM-CRF, the attention-based, deep learning, end-to-
end model, was used to solve this problem. Figure 2
shows the structure of BERT-BiLSTM-CRF model. The pre-
trained BERT model (Devlin et al., 2019), as the embed-
ding layer, received the raw input sentences. Then the BERT
model output the contextual embedding vectors for each
word as input to the BiLSTM layer for syntactic and seman-
tic feature representation learning. The final CRF layer out-
put possible tag sequences based on their conditional proba-
bility.

BERT Pre-trained language model
BERT (Devlin et al., 2019) is a pre-trained language

model based on a deep transformer encoder (Vaswani et al.,
2017). It introduced a masked language model (MLM) and
next sentence prediction (NSP) to optimize the training pro-
cess. These mechanisms allowed BERT to use an attention-
based, multi-layer, bidirectional transformer mechanism and
a normal nonlinear layer to learn contextual information
from large unlabeled corpora. Moreover, the pre-trained
BERT language model can be easily fine-tuned for a par-
ticular downstream task. It is precise because BERT can
use contextual information learnability and transferabil-
ity instead of context-independent word embedding like

Figure 2: The architecture of the BERT-BiLSTM-CRF
model.

Word2Vec (Mikolov et al., 2013). This meant we could use
BERT as the embedding layer. After fine-tuning, BERT per-
formed well, even though it was pre-trained with corpora
irrelevant to materials science; our NER task demonstrated
this ability in our experimental results.

Bidirectional LSTM layer
The bidirectional LSTM is an extension of LSTM that ap-

plies a forward and backward LSTM network to sequence
processing and links the network to the output layer (Huang
et al., 2015). The BiLSTM structure enables the output layer
to gather contextual information simultaneously from past
(backward) and future (forward). In addition, the BiLSTM
has LSTM characteristics that avoid gradient vanishing and
exploding that occur in RNN. Both forward and backward
LSTM networks use the same equations in LSTM.

The BiLSTM takes the embedding result from BERT as
an input vector for extracting sentence features. The output
of the hidden state of BiLSTM will concatenate the forward
LSTM Hf and backward LSTM Hb networks as final output
[Hl, Hr].

CRF layer
CRF is discriminative probabilistic method subject to a

certain correlation constraint among tags. Using CRF as the
last layer can help models learn the joint relationship be-
tween tags, as well as learn the constraints that ensure the
sequences are valid. For instance, in BOI tagging format,
the label of the first word in a sentence should start with the
tag of ”B” or ”O”, but not ”I”. These constraints are learned
automatically using the training dataset created by the CRF
layer during the training process.

Label prediction of the CRF layer combines the output P



from the BiLSTM layer, which represents the score of the ith
word in the sentence where yi is the tag of the ith word, and
the transition matrix T represents the transition probability
from tag yi to tag yi+1. We used the following equation to
calculate the score of the labels sequence:

Score(X,Y ) =

n∑
i=1

P i, yi +

n∑
i=0

T y, yi+1 (1)

Our goal is to minimize the loss function by maximizing
the total score of the probability of sequence s(X, yi). The log
loss function is given as follows:

L = Score(X,Y )− log
∑
yi∈Y

es(X, yi) (2)

Experiment and Results
In this section, we describe the experiment and the results
from three corpora.

Corpora
We used three corpora grouped into two categories to

evaluate the model.

• Corpus 1 is a materials synthesis procedural (MSP) an-
notated corpus that was published in 2019 (Mysore et al.,
2019). This corpus is annotated by domain-experts from
230 experiment paragraphs describing synthesis proce-
dures in materials science domain.

– MSP: Contains the operations and their arguments in
synthesis experiments, such as material name, opera-
tion descriptor, synthesis apparatus, which have 21 dif-
ferent named entities.

• Corpus 2 is an annotated corpus in solid oxide fuel cells
(SOFC) that is a sub-area of materials science published
in 2020 (Friedrich et al., 2020). This corpus is annotated
using four annotation schemes based on 45 open-access
scholarly articles by domain-experts. We use two of the
four corpora, both related to the NRE task; the other two
corpora are not related to the NRE task:

– SOFC: Major entity mention types in experiment-
describing sentences that include three different named
entities.

– SOFC Slot: Experiment slot types in experiment-
describing sentences that include 16 different named
entities.

All of the corpora are annotated using the BOI format,
where B is the word beginning entity, I is words inside the
entity, and O is outside of the entity. The BOI labels should
be predicted by the NER model; they were then transformed
to pre-defined named entities.

Implementation details
We chose two different embedding layers for comparison.

The Word2Vec was used as the word embedding layer for
the BiLSTM-CRF model. For the BERT-CRF and BERT-
BiLSTM-CRF models, we considered BERT as the embed-
ding layer. We used a BERT-based-cased language model,

Corpora Model Precision Recall F1
BiLSTM-CRF (Word2Vec) 78.51 74.84 76.63
BERT 78.94 80.76 79.84
BERT-CRF 79.75 80.60 80.60

MSP BERT-BiLSTM-CRF 85.25 83.53 84.38
SciBERT 79.25 82.84 81.01
SciBERT-CRF 80.48 82.96 81.70
SciBERT-BiLSTM-CRF 86.38 85.15 85.62
BiLSTM-CRF (Word2Vec) 75.33 74.35 74.84
BERT 93.01 88.46 90.67
BERT-CRF 93.32 88.54 91.10

SOFC BERT-BiLSTM-CRF 93.38 90.09 91.43
SciBERT 93.98 88.77 91.30
SciBERT-CRF 94.11 89.28 91.62
SciBERT-BiLSTM-CRF 93.14 91.17 91.57
BiLSTM-CRF (Word2Vec) 63.24 56.29 59.56
BERT 78.41 71.85 74.99
BERT-CRF 80.00 72.49 76.06

SOFC Slot BERT-BiLSTM-CRF 89.31 82.08 86.16
SciBERT 77.35 71.80 74.47
SciBERT-CRF 78.45 70.46 74.24
SciBERT-BiLSTM-CRF 90.31 84.25 87.17

Table 1: Evaluation results for three different corpora.

which was pre-trained on cased English text. We chose
SciBERT, a BERT model trained on scientific text (Belt-
agy et al., 2019), for comparison. Both pre-trained models
have 12 attention heads, 12 layers and 768 hidden dimen-
sions. We set maximum sequence length at 512, batch size
at 16, initial learning rate at 0.05, warm up proportion rate
at 0.1, and the dropout rate at 0.2. We used 10 epochs in the
BERT-related fine-tuning models: BERT, SciBERT, BERT-
CRF, and SciBERT-CRF. We used 100 epochs for training
in the BiLSTM related models. In addition, the BERT lan-
guage models were tuned as BERT embedding during the
training process for BiLSTM-related models.

Evaluation methods
We used micro precision, recall, and F1 to evaluate the

models because the corpora have a potential class imbalance
issue. For example, the sample tagged as Material, Opera-
tion, Number, and Amount-Unit dominate the MSP corpus
and reflect most synthesis procedures, but some named enti-
ties are not as important. However, macro precision, recall,
and F1 treat all classes equally, which could have affected
the accuracy of extraction results. The corresponding equa-
tions are presented below:

micro− Precision =

N∑
i=1

setpre ∩ settrue

setpre ∩ settrue + setpre \ settrue
(3)

micro−Recall =

N∑
i=1

setpre ∩ settrue

setpre ∩ settrue + settrue \ setpre
(4)

microF1 =
2 ∗ Precision ∗Recall

Precision+Recall
(5)

In these equations, the setpre represents the prediction set,
and the settrue represents the true labels set.

Results and analysis
We ran three different corpora using the same models. We

used word embedding with BiLSTM-CRF as the baseline



model and connected BERT embedding layer with CRF or
BiLSTM-CRF. The results showed that the BERT-BiLSTM-
CRF model achieved the best performance in most cases.
Table 1 shows the results of our evaluation.

From the results, the pre-trained BERT language model
used as embedding layer instead of Word2Vec showed sig-
nificant improvement over the baseline model. That means
the contextual feature of sentence was very helpful in the
NER task in synthesis procedural text of materials science
literature. In addition, the pre-trained BERT model worked
better in the scientific text than in general English text. The
results also showed that a fine-tuned, pre-trained language
model with small corpora in a domain specific NER task got
decent results in general. In addition, the corpus of SOFC
had the best performance because it had only three different
named entities with more balanced numbers.

To the best of our knowledge, the MSP (Mysore et al.,
2019) corpus has not been evaluated in any other publi-
cation. We compared our results with the evaluations in
Friedrich et al. (2020) based on SOFC and SOFC Slot cor-
pora. Table 2 provides a comparison of evaluation results.

Corpora Model macro F1
SciBERT (Friedrich et al,2020) 81.50

SOFC SciBERT-BiLSTM-CRF (ours) 85.61
BiLSTM SciBERT (Friedrich et al,2020) 62.60

SOFC Slot SciBERT-BiLSTM-CRF (ours) 64.59

Table 2: Comparison of evaluation results with SOFC cor-
pora.

Table 2 shows that our SciBERT-BiLSTM-CRF model
outperforms both SOFC and SOFC Slot corpora. Please
note we chose the macro F1 in our evaluations to remain
consistent with Friedrich et al.’s (2020) evaluation method-
ology.

Conclusion
In this paper, we introduce a promising attention-based deep
learning approach, BERT-BiLSTM-CRF, for the NER task
for synthesis procedural text of materials science. We evalu-
ated our approach using three synthesis procedural text rel-
evant corpora. The results showed that our BERT-BiLSTM-
CRF model improved significantly over the baseline model.
We have presented several models that got better results
with the pre-trained language model BERT as the embed-
ding layer compared than with word embedding models like
Word2Vec. We also compared our model (using the SOFC
corpora) to Friedrich et al.’s (2020) model (using the SOFC-
Slot corpora). Our model was the better one based on the
comparison results. Our work contributes to the community
of materials science by demonstrating success in applying an
attention-based, deep learning approach to NER of synthesis
procedural text. Moreover, our work provides a competitive
benchmark with these three corpora.

A few challenges in using NER in materials science will
be further investigated in future work. For example, material
name acronyms or abbreviations are a source of ambiguity;
named entity detection of mention boundaries is also worth

attention. The other concern is the entity label imbalance.
For instance, there are 4843 named entities of materials in
the MSP corpus, but only 122 named entities of Condition-
Type. Future work should improve the application of our
model in materials science domain.
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