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Abstract 
On the base of designed computational technologies, several comparative experiments and 

numerical analysis of the weighted finite element method based on the notion of R -

generalized solution and a classical finite element method are carried out. 
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1. Introduction 

Boundary value problems for elliptic equations with singularity are divided into two classes: with 

consistent and inconsistent degeneracy of the input data. In boundary value problems with a 

consistent degeneration of input data, all components in differential equations have the same 

asymptotic behaviour in the neighbourhoods of singularity points. It means that the increasing 

order/degree of singularity arising in the equation terms when the derivative order grows is balanced 

out by the appropriate behaviour of coefficients. For computational solution of such problems, the 

concept of R -generalized solution is introduced and the finite element method (FEM) is developed. 

It allows the authors to find an approximate answer with a rate of ( )O h  with respect to the norm of a 

Sobolev weight space [1]. 

For boundary value problems with inconsistent degeneracy of the original data, all the coefficients 

of the equation have the same asymptotic order in the neighbourhoods of singularity points, and, it 

implies that all the terms of the equation have singularities of different order in these neighbourhoods. 

The simplest example of this problem class is the boundary value problems for differential equations 

and systems of equations in domains with a boundary containing reentrant angles. In [2], a special 

weighted set was allocated for such problems, in which it is possible to establish an existence and 

uniqueness of R -generalized solution. The weighted FEM designed by the authors [3] allowed them 

to define an approximate R -generalized solution without loss of accuracy and independent of the 

singularity size. The suggested computational technologies have been modified and developed for the 

issues of electromagnetism and hydrodynamics. For the system of Maxwell’s equations, Stokes and 

Oseen’s laws in domains with reentrant angles on the boundary, the weighted FEM exceeds in 

accuracy and utilization efficiency both the classical FEM and the FEM with mesh refinement to the 

singularity points [4-7]. In [8-11], this approach was developed for the problem of the theory of 

elasticity with singularity. Comparative analysis of many test problems found out that the values of 

absolute errors in the entire domain and in the neighbourhood of singularity points for the solution 
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found by the weighted FEM are in two orders smaller than for the approximate solutions found by 

both classical FEM and FEM with mesh refinement. 

This paper deals with several comparative experiments and numerical analysis of the accurate 

finding of approximate solution by the weighted FEM and classical FEM for test problems with 

different types of singularities. They are carried out for boundary value problems with inconsistent 

degeneracy of input data. Some conclusions are made about the efficient usage of the weighted FEM 

for finding solutions to boundary value problems with singularity. 

2. Principal symbols. Problem statement 

Assume that 2R  is a bounded domain with a piecewise-smooth boundary   and closure .  

Denote by i , 1,i n= , the cross points of the continuously differentiable boundary   and

 :i iO x x  = −  , and also i jO O  = , .i j  Assume, 
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Let ( )x  be a weight function defined as follows: 
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where k  is a nonnegative integer,   is a real nonnegative integer, 1 2| |

1 2 ,
m mm mD x x=    1 2( , ),m m m=

1 2| |m m m= + , , 1,2jm j =  are nonnegative integers. If 0k = , we will represent 0

2, 2,( ) ( ).W L  =   

By 2, 1( , ) ( 1,2, 0)k

kW k  + −  =   denote a set of functions for which
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Let 
2, ( , )
kW    be a subset of functions from the set 2, ( , )

kW    which are going to zero almost 

everywhere on ,  and let , 3( , )kH c −  ( 0,1)k =  be a set of functions with a norm 
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If 0,k =  then 0

, 3 , 3( , ) ( , ).H c L c  −  − =   

The properties of the introduced weighted spaces and sets were studied in [9]. 

In the domain  , we consider the boundary value problem 
2

1
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( ) 0, .u x x=   (3) 

Definition 1. The boundary value problem (2), (3) will be called a Dirichlet problem with 

inconsistent degeneracy of input data, if the coefficients of the equation for some real number   

satisfy the requirements 
1

, 4 , 5( ) ( , ), ( ) ( , )kka x H c a x L c  −  −     (4) 
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7( ) ( )a x c x  (6) 

almost everywhere on  , and the right hand side of the equation for some real nonnegative number 

  meets the condition 

2,( ) ( , ),f x L     (7) 

where ( 4,5,6,7)ic i =  are positive constants that do not depend on ;x  
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1 2 1 2, , 0.R    +   

Introduce the bilinear and linear forms, respectively: 
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Definition 2. A function u  from the set 
1

2, /2 ( , )W   +   is called R -generalized solution of the 

problem (2), (3), if the identity 0u =  holds almost everywhere on   and for all v  from 

1

2, /2 ( , )W   +   the identity 

( , ) ( )a u v l v =  

is valid for any fixed value   satisfying the inequality 

/ 2.   +  (8) 

The membership of R -generalized solution to the weighted set 2

2, /2 1( , )
k

kW   +

+ + +   was studied in 

[12, 14]. 

Remark 1. For boundary value problems with singularity caused by the degeneracy of input data 

(coefficients of a differential equation, right-hand sides of equation and boundary conditions), it is not 

always possible to determine a generalized solution. To suppress the singularity, a weight function 

( )x is introduced into the bilinear and linear forms. The degree of it depends on the properties of the 

problem. The term of R -generalized solution is defined. This allows us to suppress singularity of the 

solution and provide convergence of integrals in the integral identity. 

Remark 2. In [1] a Dirichlet problem with consistent degeneracy of input data is considered. For 

such a problem, all terms in bilinear form have the same order in neighbourhood of each singularity 

point. The difference of the problem inconsistent degeneracy of input data investigated in this paper is 

that the coefficients of equation (2) in the neighbourhood of singularity points , 1,i i n =  have the 

same asymptotic behaviour. That is why the additive components in a bilinear form have different 

order. Such feature of boundary value problems with inconsistent degeneracy of input data 

necessitates introducing of weighted set 
1

2, /2 ( , )W   +  , since there is a cluster of R -generalized 

solutions in a weighted space. The selection of a single R -generalized solution in the weighted set 

can be carried out by adjustment of parameters   and   ([14]). 

3. Numerical experiments for a Dirichlet problem with inconsistent 
degeneracy of input data 

In [3], a scheme of the weighted FEM is constructed, based on the definition of R -generalized 

solution of the problem (2), (3), the rate of convergence of the approximate solution of the suggested 

finite element method to the exact R -generalized solution in the weight set 
1

2, /2 1( , )W   + +   is 

investigated, and estimation of the finite-element approximation is assessed.  

In this section, we provide numerical experiments and analysis of the obtained results for two test 

problems. A differential equation (2) is considered in test boundary value problems. The exact 

solution ( )u x  is chosen so that the boundary condition (3) are satisfied. Moreover, the coefficients 

( ), 1,2, ( )kka x k a x=  of the differential equation are chosen to satisfy conditions (4) to (7), and then 

the right hand side of the differential equation (2) is determined. 



Numerical experiments implementing the weight FEM described above are carried out using 

computer program Proba-II and the GMRES method [15]. The optimal values of the parameters   

and   are determined using the software package [16].  

Calculations for each test problem are performed on grids with a different step h . The iteration 

process of solution of linear algebraic equations stops as soon as the norm of the difference between 

the approximate solutions on the last two iterations became smaller than 910− . For each test problem, 

both the approximate R -generalized solution and the approximate generalized solution hu  ( 0) =  

were calculated. For the found approximate R -generalized solution, the error   was determined in 

the norm of the set 
1

2, /2 1( , )W   + +   

( )
1/2

2
2( /2 1)

| | 1

.m h

m

D u u dx 

  + +

 

 
= − 
 
  

In each of the grid nodes iP , 1, hi N= , the absolute errors were determined for the approximate R -

generalized and generalized solutions 

( ) ( ) ( ) , ( ) ( ) ( ) , 1, ,h h

i i i i i i hP u P u P P u P u P i N  = −  = − =  

respectively, and then the values of the largest absolute errors were calculated 
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We introduce the following notation: 

1n  – is the number of several sub-sections along the axes 1Ox  and 2Ox ; 

, 1,2i i =  – is the specified limiting error; 

2n  – is the number of grid nodes where the absolute difference between the values of the exact and 

approximate generalized or R -generalized solutions exceeds the limiting error 1 ; 

3n  – is the number of grid nodes where the absolute difference between the values of the exact and 

approximate generalized or R -generalized solutions exceeds the limiting error 2  and is less than 

1 ; 

4n  – is the number of grid nodes from the  -neighbourhood of the singularity point; 

itN  – is the number of iterations required to achieve requires accuracy; 

d  – is the parameter used to calculate the radius of  -neighbourhood of the singularity point; 

1x
h  – is the length of the partition segment along 1Ox  axis; 

1
(1 0,01d) xh = +  – is a radius of the neighbourhood of the singularity point; 

  – is the degree of the weight function in R -generalized solution. 

Test problem 1. Suppose that 

1 2 1 2{ : ( , ), 1 1, 1 0}.x x x x x = −   −    

We choose the following function as an exact solution to test problem 1:  

( ) ( )( )
2/3

2 2 2

1 2 1 2( ) sin cos 1 1 .u x x x x x = + − −  

The equation coefficients are: 

11 22
2 2

1 2

1
( ) ( ) ( ) .a x a x a x

x x
= = =
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Then the right-hand side of equation (2) takes the form: 

( 4 4 4 2 2 2 2 2 4 2

1 1 2 1 2 1 2 1 2 1 2 1

1
( ) 18 9 9 41 56 9 18

9
f x x x x x x x x x x x x x= − − + − + + + −  

) ( )
13/6

2 3 4 3 2 2 2

1 2 2 2 2 2 1 1 29 63 63 38 53 / .x x x x x x x x x− − + + − +  

The exact solution ( )u x  of test problem 1 belongs to the sets 1

2,0 ( , )W   and 2

2,1/3( , )W  ; the 

coefficients ( ), 1,2kka x k = , and ( )a x  of the differential equation (2) belong to the sets 1

, 1 8( , )H c − 



and 
, 1 9( , )L c −  , respectively; the right-hand side ( )f x  of equation (2) belongs to 

2,4/3( , )L  . A 

weak singularity of the solution of this test problem is due to the degeneracy property of the 

coefficients ( ), 1,2kka x k = , and ( )a x  at the origin. 

Numerical results for test problem 1 are presented in Tables 1-4 and on Figures 1-4. 

Figure 1 shows distribution of the absolute errors of the approximate generalized and R -

generalized solutions, respectively. 
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−    

Figure 1: Distribution of absolute errors: a) for approximate generalized solution ( 0 = ); b) for 

approximate R -generalized solution ( 2.2 = , 21.71875 10 −=  ) in the domain Ω for test problem 1, 

1 128n = . 

 
Table 1 and Figure 2 present the dependence of the accuracy of finding an approximate R -

generalized solution on the grid size. The calculations are performed for test problem 1 with the 

following values 2,2 = , 1 = , 21,71875 10 −=   ( 10d = ), 
3

1 2 10 −=  , 
4

2 6 10 −=  .  

 
Table 1 
Dependence of accuracy of the approximate R -generalized solution on the grid size, test problem 1. 

1n  32 48 64 80 128 

  4,47·10-1 3,32·10-2 1,34·10-2 1,18·10-2 8,86·10-3 

  7,7·10-2 2,9·10-2 8,63·10-3 7,59·10-3 5,71·10-3 

2n  62 161 6 6 6 

3n  8 383 22 18 16 

itN  20 59 87 156 524 

 

Reviewing the results presented in Table 1, we can conclude that the value   decreases if the 

parameter decreases h  (the parameter 1n  increases).  

Table 2 shows dependence of accuracy of the approximate generalized solution on the grid size. 

Calculations are performed for the test problem 1 with the following values of parameters: 0 = , 

1 = , 
3

1 2 10 −=  , 
4

2 6 10 −=  .  

 
 



Table 2 
Dependence of accuracy of the approximate generalized solution on the grid size, test problem 1. 

1n  32 48 64 80 128 

  1,79·10-2 4,03·10-2 1,15·10-2 9,99·10-2 7,35·10-3 

2n  440 274 38 26 18 

3n  158 392 196 178 120 

itN  22 65 127 234 839 
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3,32·10
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Figure 2: Dependence of accuracy   on the grid size, test problem 1. 

 
As Table 1 and Figure 2 show, in case of a uniform grid, the error value   decreases as the 

parameter h  decreases. 

Table 1 and 2 also show dependencies of the number of grid nodes 2n  and 3n , as well as the 

number itN  of iterations on the grid size. 

Table 3 and Figure 3 present results of influence of parameter   on the accuracy of the 

approximate R -generalized solution. Calculations are performed for test problem 1 with the 

following data: grid 128×64, 2,2 = , 1 = , 
3

1 2 10 −=  , 
4

2 6 10 −=  . 

 
Table 3 
Influence of parameter   on accuracy of the approximate R -generalized solution, test problem 1. 

d        2n  3n  
4n  

itN  

-10 1,40625·10-2 2,53·10-3 9,84·10-4 0 4 0 618 
0 1,5625·10-2 2,53·10-3 9,84·10-4 0 4 1 831 

10 1,71875·10-2 8,86·10-3 5,71·10-3 6 16 1 524 
20 1,875·10-2 1,73·10-2 1,11·10-2 12 448 1 65 
30 2,03125·10-2 2,39·10-2 1,53·10-2 18 60 1 639 
50 2,34375·10-2 2,58·10-2 1,69·10-2 26 122 1 582 

 

Table 4 and Figure 4 present influence of parameter   on accuracy of the approximate R -

generalized solution. Calculations are performed for test problem 1 with the following data: grid 

128×64, 1 = , 21,71875 10 −=   ( 10d = ), 
3

1 2 10 −=  , 
4

2 6 10 −=  . 
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Figure 3: Influence of parameter   on accuracy of the approximate R -generalized solution, test 

problem 1. 
 

Table 4 
Influence of parameter   on accuracy of the approximate R -generalized solution, test problem 1. 

      2n  3n  itN  

2 7,96·10-3 5,13·10-3 6 12 556 
2,1 8,41·10-3 5,42·10-3 6 14 593 
2,2 8,86·10-3 5,71·10-3 6 16 524 

2,25 9,09·10-3 5,85·10-3 6 18 591 
2,7 1,11·10-2 7,13·10-3 6 20 660 
3 1,24·10-2 7,95·10-3 8 24 677 

 

σ

ν2 2,1 2,2 2,25 2,7 3

1,24·10
-2

1,11·10
-2

8,86·10
-3

7,96·10
-3

 
Figure 4: Influence of parameter   on accuracy of the approximate R -generalized solution, test 

problem 1. 
 

Test problem 2. Suppose that 

1 2 1 2{ : ( , ), 1 1, 1 0}.x x x x x = −   −    

For test problem 2, 

( ) ( )( )
1/2

2 2 2

1 2 1 2( ) sin cos 1 1 ,u x x x x x 
−

= + − −  

11 22 2 22 2
1 21 2

1 1
( ) ( ) , ( ) ,a x a x a x

x xx x
= = =

++
 

( 4 2 2 2 2 2 2 2 2 2 2

1 1 2 1 2 1 2 1 1 2 1 2

1
( ) 8 4 53 8 4

4
f x x x x x x x x x x x x x= − − + − − + + +  



) ( )
11/4

2 4 2 2 2 3 2 2 2 2 2

1 2 2 2 2 1 2 2 2 2 1 2 1 1 237 13 24 4 24 29 4 / .x x x x x x x x x x x x x x x+ − + + + − + − + +  

The exact solution ( )u x  of the test problem 2 belongs to the sets 1

2,1/2 ( , )W   and 2

2,3/2 ( , )W  ; the 

coefficients ( ), 1,2kka x k = , and ( )a x  of the differential equation (2) belong to the sets 1

, 1 10( , )H c −   

and 
, 2 11( , )L c −  , respectively; the right-hand side ( )f x  of equation (2) belongs to 

2,5/2( , )L  . The 

strong singularity of the solution of this test problem is due to degeneracy of coefficients 

( ), 1,2kka x k = , and ( )a x  at the origin. A generalized solution to this problem does not exist, but R -

generalized solution can be defined. 

Numerical results for test problem 2 are presented in Tables 5-7 and on Figures 5-8. 

Figure 5 shows distribution of the absolute error of the approximate R -generalized solution in the 

domain. 
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3 21 10 ( ) 1 10iP
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Figure 5: Distribution of absolute error of the approximate R -generalized solution ( 6,5 = , 
22,1875 10 −=  ) in domain   for 1 128n = , test problem 2. 

 

Table 5 and Figure 6 show dependence of accuracy of the approximate R -generalized solution on 

the grid size. Calculations were performed for test problem 2 with the following values: 6,5 = , 

2 = , 22,1875 10 −=   ( 10d = ), 
2

1 7 10 −=  , 
2

2 3 10 −=  . In test problem 2, an approximate 

generalized solution was not possible to find because of program failure. 

 

Table 5 
Dependence of accuracy of the approximate R -generalized solution on the grid size, test 

problemп2. 

1n  32 64 80 128 

  1,01·10-4 1,38·10-5 7,62·10-6 2,26·10-6 

  7,12·10-2 8,02·10-2 8,5·10-2 9,87·10-2 

2n  2 2 2 0 

3n  10 12 12 18 

itN  15 66 104 232 

 

Remark 3. Numerical results (Table 5) for test problem 2 show that the approximate R -

generalized solution can be found with high precision even when the generalized solution cannot be 

calculated. 



1,01·10
-4

1,38·10
-5

2,26·10
-6

32 64 80 128

σ

1n  
Figure 6: Dependence of accuracy   on the grid size, test problem 2. 
 

Table 6 and Figure 7 present the results of the radius-neighbourhood   of the singularity point 

effect on the accuracy of finding an approximate R -generalized solution. The calculations are 

performed for test problem 2 with the following data: grid 128×64, 6,5 = , 2 = , 2

1 7 10 −=  , 
2

2 3 10 −=  . 

 

Table 6 
Influence of parameter   on accuracy of the approximate R -generalized solution, test problem 2. 

d        2n  3n  
4n  

itN  

-10 1,40625·10-2 5,9·10-6 1,3 98 208 0 132 
10 1,71875·10-2 5,93·10-6 7,6·10-1 54 114 1 176 
20 1,875·10-2 4,03·10-6 3,78·10-1 24 62 1 178 
35 2,109375·10-2 2,34·10-6 1,2·10-1 4 26 1 207 
40 2,1875·10-2 2,26·10-6 9,87·10-2 0 18 1 232 

 

 

4,03·10
-6

1,41·10
-2
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-6

δ
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-6

2,18·10
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-2

 
Figure 7: Influence of parameter   on accuracy of the approximate R -generalized solution, test 

problem 2. 
 

Table 7 and Figure 8 show influence of parameter   on the accuracy of the approximate R -

generalized solution. The calculations were performed for test problem 2 with the following data: grid 

128×64, 2 = , 22,1875 10 −=   ( 40d = ), 
2

1 7 10 −=  , 
2

2 3 10 −=  . 

Tables 3, 4, 6 and 7 show that there are ranges for parameters   and   within which the 

convergence rate of the approximate R -generalized solution to the exact one is not less than the 

theoretical one. For the best values of parameters   and   from the discovered ranges, the error 

values   and   are the smallest ones. 



Table 7 
Influence of parameter   on accuracy of the approximate R -generalized solution, test problem 2. 

      2n  3n  itN  

5,5 3,94·10-6 1,92·10-1 14 42 167 
6 2,78·10-6 1,27·10-1 10 24 228 

6,45 2,29·10-6 1,01·10-1 2 18 232 
6,5 2,26·10-6 9,87·10-2 0 18 232 

6,55 2,24·10-6 9,63·10-2 0 16 232 
6,6 2,23·10-6 9,39·10-2 0 16 230 

6,75 2,21·10-6 8,72·10-2 2 18 230 
6,85 2,21·10-6 8,3·10-2 2 20 200 

7 2,24·10-6 8,02·10-2 4 20 234 

 
σ

ν5,5 6 6,45 6,6 6,85 7

2,78·10
-6

2,29·10
-6

2,21·10
-6

3,94·10-6

 
Figure 8: Influence of parameter   on accuracy of the approximate R -generalized solution, test 

problem 2. 
 

Reviewing results of the numerical experiment, we can make the following conclusions about 

approximation properties of the weighted finite element method for boundary value problems with 

singularity of the solution and inconsistent degeneracy of input data: 

1) The approximate R -generalized solution of the problem (2), (3) converges to the exact solution 

in the norm of the weighted set 
1

2, /2 1( , )W   + +   at a rate not less than ( )O h  (Table 1 and 5), which 

verifies the theoretical results obtained ([2]). 

2) The introduction of the notion of R -generalized solution and application of the weighted finite 

element method allows us to deal with singularity caused by input data degeneracy (Table 5) and if 

there is no generalized solution. Although, an approximate R -generalized solution is highly precise 

even in the neighbourhood of the point of singularity. 

3) For the best parameters   and   convergence rate of the approximate R -generalized solution 

to the exact one is the highest. 
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