Numerical approach for the one stationary nonlinear problem governing the flow of incompressible viscous fluid in ๐ฟ-shaped domain Alexey V. Rukavishnikova , Viktor A. Rukavishnikovb a Institute of Applied Mathematics of Far-Eastern Branch, Russian Academy of Sciences, Dzerzhinsky Str., 54, Khabarovsk, 680000, Russia b Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, Kim Yu Chen Str., 65, Khabarovsk, 680000, Russia Abstract The steady Navier-Stokes equations governing the flow of an incompressible viscous fluid in the rotation form in ๐ฟ-shaped domain is considered. The weighted finite element method based on the definition of an ๐‘…๐œˆ - generalized solution is constructed. The advantage of the proposed approach over classical approximations is numerically established. The modern elements of computational technologies to find the optimal parameters of the proposed method are used. Keywords corner singularity, weighted finite element method, preconditioning, steady Navier-Stokes equations 1. Introduction Most of the mathematical models representing natural processes are described using boundary value problems for the systems of partial differential equations with a singularity. The peculiarity of the solution is as follows systems in a bounded, connected domain of the Euclidean space ๐‘2 can be attributed to the presence of obtuse corners on its boundary, to the degeneration of initial data, or to internal characteristics of the solution. If the solution of the boundary value problem does not belong to the Sobolev space ๐‘Š21 (ฮฉ), then it is called strong singular. If the solution of the boundary value problem belongs to ๐‘Š21 (ฮฉ), but does not belong to ๐‘Š22 (ฮฉ), then the boundary value problem is called weakly singular. The generalized solution of such problems in ฮฉ with a boundary containing a reentrant corner ๐œŽ โˆˆ (๐œ‹, 2๐œ‹] belongs to the space ๐‘Š21+๐›ผโˆ’๐œ– (ฮฉ), ๐›ผ < 1. Moreover, the approximate finite element or finite difference solution by classical method converges to the exact one with a ๎ˆป(โ„Ž๐›ผ ) rate. In [1], it was proposed to define the solution of elliptic boundary value problems with a singularity as an ๐‘…๐œˆ -generalized one. The approach allows us to introduce a weight space or a set, depending on the geometry of the domain and input data (right-hand sides, equation coefficients, boundary and initial data) to which an ๐‘…๐œˆ -generalized solution belongs. In [2, 3, 4], the existence, uniqueness and differential properties of the elliptic problems solution are proved. In [5], a weighted analogue of the Ladyzhenskaya-Babuska-Brezzi condition for the Stokes problem is established. In [6, 7, 8, 9, 10], a weighted finite element method (FEM) for an approximate solution of elliptic problems with a singularity has been developed. Far Eastern Workshop on Computational Technologies and Intelligent Systems, March 2โ€“3, 2021, Khabarovsk, Russia " 78321a@mail.ru (A.V. Rukavishnikov); vark0102@mail.ru (V.A. Rukavishnikov)  0000-0002-7585-4559 (A.V. Rukavishnikov); 0000-0002-3702-1126 (V.A. Rukavishnikov) ยฉ 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR Workshop Proceedings http://ceur-ws.org ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org) In the paper, an ๐‘…๐œˆ -generalized solution of the steady Navier-Stokes equations governing the flow of an incompressible viscous fluid in the rotation form in ๐ฟ-shaped domain is defined. We use Picardโ€™s iterative procedure [11] to find a solution of a nonlinear problem. Then, we construct a weighted finite element scheme based on the definition of an ๐‘…๐œˆ -generalized solution: 1) the functions of the finite element spaces satisfy the mass conservation law in a strong sense โ€” Scott-Vogelius (SV) pair of 2nd order [12]; 2) basis functions are the product of SV functions and weight functions in some degree. This construction allows us better take into account the behavior of the solution in the ๐›ฟ- neighborhood of the singularity point and increase the convergence rate of the approximate solution to the exact one to the first order with respect to the grid step โ„Ž, i. e. ๎ˆป(โ„Ž) rate in ๐‘Š2,๐œˆ1 (ฮฉ) norm. Thus, we develop the numerical method overcomes the so-called pollution effect (see [13]). The same advantage for other hydrodynamics problems was achieved in [14, 15, 16]. The optimal values ๐œˆ, ๐œˆ โˆ— and ๐›ฟ of the presented weighted FEM using the modern elements of computational technologies were derived numerically. The paper consists of six sections. Section 2 is devoted to the definition of an ๐‘…๐œˆ -generalized solu- tion. In Section 3, we present the weighted FEM. The iterative procedure for solving the systems of linear algebraic equations is constructed in Section 4. In Section 5, we shaw and discuss the results of computational experiments. Necessary conclusions are made in last section. 2. The problem statement Let ฮฉ be a bounded, connected domain in the Euclidean space ๐‘2 . Denote by ฮฉฬ„ and ฮ“ the closure and boundary โˆš of ฮฉ, respectively, ฮฉ = ฮฉ โˆช ฮ“. Let ๐ฑ = (๐‘ฅ1 , ๐‘ฅ2 ) be an element of ๐‘ , where ๐‘‘๐ฑ = ๐‘‘๐‘ฅ1 ๐‘‘๐‘ฅ2 and ฬ„ 2 โ€–๐ฑโ€– = ๐‘ฅ1 + ๐‘ฅ2 are the measure and norm of ๐ฑ, respectively. 2 2 We write the steady Navier-Stokes equations governing the flow of an incompressible viscous fluid in the convection form: find a velocity field ๐ฎ = ๐ฎ(๐ฑ) = (๐‘ข1 (๐ฑ), ๐‘ข2 (๐ฑ)) and a kinematic pressure ๐‘ = ๐‘(๐ฑ) from โˆ’ ๐œˆฬ„ โ–ณ ๐ฎ + (๐ฎ โ‹… โˆ‡)๐ฎ + ๐›ผ๐ฎ + โˆ‡๐‘ = ๐Ÿ, div ๐ฎ = ๐ŸŽ in ฮฉ, (1) ๐ฎ=๐  on ฮ“, (2) where ๐œˆฬ„ > 0 is the kinematic viscosity coefficient (inversely proportional to the Reynolds number), ๐›ผ > 0, ๐Ÿ = ๐Ÿ(๐ฑ) = (๐‘“1 (๐ฑ), ๐‘“2 (๐ฑ)) and ๐  = ๐ (๐ฑ) = (๐‘”1 (๐ฑ), ๐‘”2 (๐ฑ)) are given force field in ฮฉ and boundary data on ฮ“, respectively. Denote by โ–ณ, โˆ‡ and div the Laplace, gradient and divergence operators in ๐‘2 , respectively. Further, we introduce the necessary notation. Let ๐ฐ = (๐‘ค1 , ๐‘ค2 ), ๐ฏ = (๐‘ฃ1 , ๐‘ฃ2 ) and ๐‘ โ€“ scalar, then ๐œ•๐‘ค1 ๐œ•๐‘ค2 ๐ฐ โ‹… ๐ฏ = ๐‘ค1 ๐‘ฃ1 + ๐‘ค2 ๐‘ฃ2 , ๐‘ ร— ๐ฐ = (โˆ’๐‘๐‘ค2 , ๐‘๐‘ค1 )๐‘‡ , curl ๐ฐ = โˆ’ + . ๐œ•๐‘ฅ2 ๐œ•๐‘ฅ1 We have the identity 1 (๐ฎ โ‹… โˆ‡)๐ฎ = ( curl ๐ฎ) ร— ๐ฎ + โˆ‡๐ฎ2 . (3) 2 It follows from the equality (๐ฐ โ‹… โˆ‡)๐ฎ + (๐ฎ โ‹… โˆ‡)๐ฐ = โˆ‡(๐ฐ โ‹… ๐ฎ) + ( curl ๐ฐ) ร— ๐ฎ + ( curl ๐ฎ) ร— ๐ฐ and assumption that ๐ฐ = ๐ฎ. Using (3), with ๐‘ƒ = ๐‘ + 12 ๐ฎ2 for the system (1), (2) we get the rotation form of the steady Navier- Stokes equations: find a velocity field ๐ฎ and a Bernoulli pressure ๐‘ƒ such that โˆ’ ๐œˆฬ„ โ–ณ ๐ฎ + ( curl ๐ฎ) ร— ๐ฎ + ๐›ผ๐ฎ + โˆ‡๐‘ƒ = ๐Ÿ, div ๐ฎ = 0 in ฮฉ, (4) ๐ฎ=๐  on ฮ“. (5) The system (4), (5) as well as (1), (2) is nonlinear due to the presence of the rotation term ( curl ๐ฎ)ร—๐ฎ in the momentum equations. The system on (4), (5) and term in particular we linearized by Picardโ€™s procedure (see [11]). Starting with an initial approximation ๐ฎ(0) for which div ๐ฎ(0) = 0 in ฮฉ and ๐ฎ(0) = ๐  on ฮ“ (6) Picardโ€™s iteration constructs a sequence of solutions (๐ฎ(๐‘˜) , ๐‘ƒ (๐‘˜) ) by solving the linear system: โˆ’ ๐œˆฬ„ โ–ณ ๐ฎ(๐‘˜) + ( curl ๐ฎ(๐‘˜โˆ’1) ) ร— ๐ฎ(๐‘˜) + ๐›ผ๐ฎ(๐‘˜) + โˆ‡๐‘ƒ (๐‘˜) = ๐Ÿ, div ๐ฎ(๐‘˜) = 0 in ฮฉ, (7) ๐ฎ(๐‘˜) = ๐  on ฮ“. (8) Note that the initial Bernoulli pressure in (7) need not be specified. If ๐œˆฬ„ be a not too small and ๐Ÿ be a not too large, the steady Navier-Stokes equations (4), (5) have a unique solution (๐ฎ, ๐‘ƒ) and the iterates (๐ฎ(๐‘˜) , ๐‘ƒ (๐‘˜) ), ๐‘˜ = 1, 2, in (7), (8) converge to it as ๐‘˜ โ†’ โˆž for any choice of the arbitrary ๐ฎ(0) satisfying (6) (see [11]). Note that for a linearized system (7), (8) the conservation laws of the mass and momentum remain in force. In the article, we consider the special case of a bounded polygon domain ฮฉ. Let ฮฉ be a ๐ฟ-shaped domain with one reentrant obtuse corner equals to 3๐œ‹2 on the boundary and its vertex coincides with the origin. We define an ๐‘…๐œˆ -generalized solution in each Picardโ€™s iteration of the problem (7), (8) and construct the effective weighted FEM. Thus, we solve the nonlinear problem (4), (5) governing the flow of a incompressible viscous fluid in the rotation form and show the advantage of our approximate method over the classical approaches in a ๐ฟ-shaped domain by the computational simulations. Let us introduce the notation and define necessary spaces of generalized functions. Denote by โ‰ค ๐›ฟ < 1, ๐›ฟ > 0} a part of a ๐›ฟ-neighborhood of a point (0, 0) contained in ฮฉฬ„ . Let โ€ฒ ฮฉ๐›ฟ = {๐ฑ ฬ„ { โˆˆ ฮฉ โˆถ โ€–๐ฑโ€– โ€ฒ โ€–๐ฑโ€–, ๐ฑ โˆˆ ฮฉ๐›ฟ , ๐œŒ(๐ฑ) = โ€ฒ be a weight function. ๐›ฟ , ๐ฑ โˆˆ ฮฉฬ„ โงต ฮฉ๐›ฟ Denote by ๐ฟ2,๐›ฝ (ฮฉ) and ๐‘Š2,๐›ฝ 1 (ฮฉ) the spaces of functions ๐‘ฃ(๐ฑ) with a bounded norms โˆš โ€–๐‘ฃโ€–๐ฟ2,๐›ฝ (ฮฉ) = 2๐›ฝ 2 โˆซ ๐œŒ (๐ฑ)๐‘ฃ (๐ฑ)๐‘‘๐ฑ ฮฉ and โˆš โ€–๐‘ฃโ€–๐‘Š2,๐›ฝ 1 (ฮฉ) = โ€–๐œŒ ๐›ฝ (๐ฑ)|๐‘ฃ(๐ฑ)|โ€–2๐ฟ2 (ฮฉ) + โ€–๐œŒ ๐›ฝ (๐ฑ)|๐ท 1 ๐‘ฃ(๐ฑ)|โ€–2๐ฟ2 (ฮฉ) , |๐‘š| respectively, where ๐ท ๐‘š ๐‘ฃ(๐ฑ) = ๐œ•๐‘ฅ ๐‘š๐œ• 1 ๐œ•๐‘ฅ๐‘ฃ ๐‘š2 , |๐‘š| = ๐‘š1 + ๐‘š2 , ๐‘š๐‘– โ‰ฅ 0 - integer. 1 2 Let ๐‘Š2,๐›ฝ 1 (ฮฉ, ๐›ฟ) for ๐›ฝ > 0 be a set of functions from the space ๐‘Š 1 (ฮฉ), meets the conditions 2,๐›ฝ ๐›ฟ ๐›ฝ+๐‘š โ€ฒ โˆซ ๐œŒ 2๐›ฝ (๐ฑ)๐‘ฃ 2 (๐ฑ)๐‘‘๐ฑ โ‰ฅ ๐ถ1 > 0, |๐ท ๐‘š ๐‘ฃ(๐ฑ)| โ‰ค ๐ถ2 ( ๐ฑ โˆˆ ฮฉ๐›ฟ , (9) ๐œŒ(๐ฑ) ) โ€ฒ ฮฉฬ„ โงตฮฉ๐›ฟ where ๐‘š = 0, 1 and ๐ถ2 a positive constant which is not depend on ๐‘š, with the norm of a space 1 (ฮฉ). Denote by ๐ฟ (ฮฉ, ๐›ฟ) a set of functions from the space ๐ฟ (ฮฉ) which subject to conditions (9) ๐‘Š2,๐›ฝ 2,๐›ฝ 2,๐›ฝ (only for ๐‘š = 0) with a norm of a space ๐ฟ2,๐›ฝ (ฮฉ). Let ๐ฟ02,๐›ฝ (ฮฉ, ๐›ฟ) = {๐‘ž โˆˆ ๐ฟ2,๐›ฝ (ฮฉ, ๐›ฟ) โˆถ โˆซ ๐œŒ ๐›ฝ ๐‘ž๐‘‘๐ฑ = 0}. ฮฉ ๐‘œ ๐‘œ Let ๐‘Š2,๐›ฝ 1 (ฮฉ, ๐›ฟ) (๐‘Š 1 (ฮฉ, ๐›ฟ) โŠ‚ ๐‘Š 1 (ฮฉ, ๐›ฟ)) be a closure by ๐‘Š 1 (ฮฉ) norm of a set of the infinitely- 2,๐›ฝ 2,๐›ฝ 2,๐›ฝ differentiable functions with a compact support in ฮฉ comply with the conditions (9). We will say ๐œ‘(๐ฑ) โˆˆ ๐‘Š2,๐›ฝ 1/2 (ฮ“, ๐›ฟ), if exists a function ฮฆ(๐ฑ) โˆˆ ๐‘Š2,๐›ฝ 1 (ฮฉ, ๐›ฟ) such that ฮฆ(๐ฑ)| = ๐œ‘(๐ฑ) and โ€–๐œ‘โ€– ฮ“ 1/2 ๐‘Š2,๐›ฝ (ฮ“,๐›ฟ) = inf โ€–ฮฆโ€–๐‘Š2,๐›ฝ 1 (ฮฉ) . ฮฆ|ฮ“ =๐œ‘ For the vector field ๐ฏ = (๐‘ฃ1 , ๐‘ฃ2 ) we define sets ๐‹2,๐›ฝ (ฮฉ, ๐›ฟ) and ๐–12,๐›ฝ (ฮฉ, ๐›ฟ) such that ๐‘ฃ๐‘– โˆˆ ๐ฟ2,๐›ฝ (ฮฉ, ๐›ฟ) and โˆš 1 (ฮฉ, ๐›ฟ), respectively, with a bounded norms โ€–๐ฏโ€– ๐‹2,๐›ฝ (ฮฉ) = โ€–๐‘ฃ1 โ€–๐ฟ2,๐›ฝ (ฮฉ) + โ€–๐‘ฃ2 โ€–๐ฟ2,๐›ฝ (ฮฉ) for the first set ๐‘ฃ๐‘– โˆˆ ๐‘Š2,๐›ฝ 2 2 โˆš and โ€–๐ฏโ€–๐–12,๐›ฝ (ฮฉ) = โ€–๐‘ฃ1 โ€–2๐‘Š 1 (ฮฉ) + โ€–๐‘ฃ2 โ€–2๐‘Š 1 (ฮฉ) for the second one. Similarly, we define the sets of vector 2,๐›ฝ 2,๐›ฝ ๐‘œ fields ๐–1/2 ๐›ฝ (ฮ“, ๐›ฟ) and ๐– 1 (ฮฉ, ๐›ฟ) on ฮ“ and in ฮฉ, respectively. 2,๐›ฝ We introduce the concept of an ๐‘…๐œˆ -generalized solution for the linearized problem (7), (8). ๐œˆ โˆˆ ๐–2,๐œˆ (ฮฉ, ๐›ฟ) and ๐‘ƒ๐œˆ โˆˆ ๐ฟ2,๐œˆ (ฮฉ, ๐›ฟ) is called an ๐‘…๐œˆ -generalized solution Definition 1. The pair ๐ฎ(๐‘˜) 1 (๐‘˜) 0 ๐‘œ ๐œˆ satisfies a condition (8) on ฮ“ for any pair ๐ฏ โˆˆ๐–2,๐œˆ (ฮฉ, ๐›ฟ) and ๐‘ž โˆˆ of the problem (7), (8), where ๐ฎ(๐‘˜) 1 0 ๐ฟ2,๐œˆ (ฮฉ, ๐›ฟ) ๐‘Ž๐‘˜ (๐ฎ(๐‘˜) (๐‘˜) ๐œˆ , ๐ฏ) + ๐‘(๐ฏ, ๐‘ƒ๐œˆ ) = ๐‘™(๐ฏ), ๐‘(๐ฎ(๐‘˜) ๐œˆ , ๐‘ž) = 0 hold, where bilinear and linear forms are as follows ๐œˆ , ๐ฏ) = โˆซ [๐›ผ๐œŒ ๐ฎ๐œˆ โ‹… ๐ฏ + ๐œˆฬ„ โˆ‡๐ฎ๐œˆ โ‹… โˆ‡(๐œŒ ๐ฏ) + ๐œŒ (( curl ๐ฎ๐œˆ ๐‘Ž๐‘˜ (๐ฎ(๐‘˜) 2๐œˆ (๐‘˜) (๐‘˜) 2๐œˆ 2๐œˆ (๐‘˜โˆ’1) ) ร— ๐ฎ(๐‘˜) ๐œˆ ) โ‹… ๐ฏ]๐‘‘๐ฑ, ฮฉ ๐‘(๐ฏ, ๐‘ƒ๐œˆ(๐‘˜) ) = โˆ’ โˆซ ๐‘ƒ๐œˆ(๐‘˜) div (๐œŒ 2๐œˆ ๐ฏ)๐‘‘๐ฑ, ๐œˆ , ๐‘ž) = โˆ’ โˆซ (๐œŒ ๐‘ž) div ๐ฎ๐œˆ ๐‘‘๐ฑ, ๐‘(๐ฎ(๐‘˜) 2๐œˆ (๐‘˜) ๐‘™(๐ฏ) = โˆซ ๐œŒ 2๐œˆ ๐Ÿ โ‹… ๐ฏ๐‘‘๐ฑ ฮฉ ฮฉ ฮฉ and ๐Ÿ โˆˆ ๐‹2,๐›ฝ (ฮฉ, ๐›ฟ), ๐  โˆˆ ๐–1/2 2,๐›ฝ (ฮ“, ๐›ฟ), ๐œˆ โ‰ฅ ๐›ฝ โ‰ฅ 0. 3. The weighted finite element method Perform triangulation ฮฅโ„Ž based on the barycentric partition of the elements ๐ฟ๐‘– of the quasi-uniform triangulation ๐‘‡โ„Ž of the domain ฮฉ. Then, we divide each element ๐ฟ๐‘– โˆˆ ๐‘‡โ„Ž (macroelement) into three triangles ๐พ๐‘–๐‘— (finite element), ๐พ๐‘–๐‘— โˆˆ ฮฅโ„Ž (their common vertex is in the barycenter of the macroelement ๐ฟ๐‘– ). Let ๐‘…๐‘™ and ๐‘†๐‘š be the vertices and midpoints of the sides ๐พ๐‘  โˆˆ ฮฅโ„Ž , respectively. Introduce the notation of sets: 1)๐‘ ๐‘ฃ๐‘’๐‘™ = ๐‘ฮฉ๐‘ฃ๐‘’๐‘™ โˆช ๐‘ฮ“๐‘ฃ๐‘’๐‘™ = {๐‘…๐‘™ โˆช ๐‘†๐‘š }, where ๐‘ฮฉ๐‘ฃ๐‘’๐‘™ and ๐‘ฮ“๐‘ฃ๐‘’๐‘™ are triangulation nodes subsets for the velocity field components in ฮฉ and on ฮ“, respectively; 2)๐‘ ๐‘๐‘Ÿ๐‘’๐‘  = {๐‘„๐‘™ } of triangulation nodes for the Bernoulli pressure, where the node ๐‘„๐‘™ an exact match to the node ๐‘…๐‘š at the appropriate ๐พ๐‘–๐‘— . We denote by ฮฉโ„Ž = โ‹ƒ ๐พ๐‘  the totality of the finite elements with sides of order โ„Ž. Next, we ๐พ๐‘  โˆˆฮฅโ„Ž describe the Scott-Vogelius (SV) element pair (see [12]). For the components of the velocity field, we use polynomials of the second degree (๐‘‹ โ„Ž ), and for the pressure โ€” the first one (๐‘ โ„Ž ): ๐‘‹ โ„Ž = {๐‘ฃโ„Ž โˆˆ ๐ถ(ฮฉ) โˆถ ๐‘ฃโ„Ž |๐พ โˆˆ ๐‘ƒ2 (๐พ ), โˆ€๐พ โˆˆ ฮฅโ„Ž }, ๐—โ„Ž = ๐‘‹ โ„Ž ร— ๐‘‹ โ„Ž ; ๐‘ โ„Ž = {๐‘งโ„Ž โˆˆ ๐ฟ2 (ฮฉ) โˆถ ๐‘งโ„Ž |๐พ โˆˆ ๐‘ƒ1 (๐พ ), โˆ€๐พ โˆˆ ฮฅโ„Ž , โˆซ ๐‘งโ„Ž ๐‘‘๐ฑ = 0}. ฮฉ The SV pair has useful feature, namely div ๐—โ„Ž โŠ‚ ๐‘ โ„Ž . Next, we represent special basis functions and construct a scheme of the weighted finite element method. To each node ๐‘€๐‘š โˆˆ ๐‘ฮฉ๐‘ฃ๐‘’๐‘™ (๐‘„๐‘™ โˆˆ ๐‘ ๐‘๐‘Ÿ๐‘’๐‘  ) we associate the basis function โˆ— โˆ— ๐œƒ๐‘š (๐ฑ) = ๐œŒ ๐œˆ (๐ฑ) โ‹… ๐œ‘๐‘š (๐ฑ), (๐œ’๐‘™ (๐ฑ) = ๐œŒ ๐œ‡ (๐ฑ) โ‹… ๐œ“๐‘™ (๐ฑ)), ๐‘š = 0, 1, โ€ฆ , ( ๐‘™ = 0, 1, โ€ฆ), { 1, ๐‘™ = ๐‘—, where ๐œ‘๐‘š โˆˆ ๐‘‹ โ„Ž , ๐œ‘๐‘š (๐‘€๐‘— ) = ๐›ฟ๐‘š๐‘— ๐‘š, ๐‘— = 0, 1, โ€ฆ (๐œ“๐‘™ โˆˆ ๐‘ โ„Ž , ๐œ“๐‘™ (๐‘„๐‘— ) = ๐›ฟ๐‘™๐‘— , ๐‘™, ๐‘— = 0, 1, โ€ฆ); ๐›ฟ๐‘™๐‘— = , ๐œˆโˆ— 0, ๐‘™ โ‰  ๐‘—, and ๐œ‡ โˆ— are real parameters. The spaces ๐‘‰ โ„Ž and ๐‘„ โ„Ž for the components of the velocity field and pressure are defined as linear span of the basis functions {๐œƒ๐‘š }๐‘š and {๐œ’๐‘™ }๐‘™ , respectively. Let ๐‘‰0โ„Ž be a subspace of ๐‘‰ โ„Ž โˆถ ๐‘‰0โ„Ž = {๐‘ฃ โ„Ž โˆˆ ๐‘‰ โ„Ž โˆถ ๐‘ฃโ„Ž (๐‘€๐‘š )|๐‘€๐‘š โˆˆ๐‘ ๐‘ฃ๐‘’๐‘™ = 0}. The approximate components of the velocity field ๐ฎ(๐‘˜) ๐œˆ,โ„Ž = (๐‘ข๐œˆ,โ„Ž,1 , ๐‘ข๐œˆ,โ„Ž,2 ) and (๐‘˜) (๐‘˜) ฮ“ pressure ๐‘ƒ๐œˆ,โ„Ž (๐‘˜) we seek as a (๐‘˜) (๐‘˜) (๐‘˜) (๐‘˜) (๐‘˜) ๐‘ข๐œˆ,โ„Ž,1 (๐ฑ) = โˆ‘ ๐‘‘2๐‘š ๐œƒ๐‘š (๐ฑ), ๐‘ข๐œˆ,โ„Ž,2 (๐ฑ) = โˆ‘ ๐‘‘2๐‘š+1 ๐œƒ๐‘š (๐ฑ), ๐‘ƒ๐œˆ,โ„Ž (๐ฑ) = โˆ‘ ๐‘’๐‘™(๐‘˜) ๐œ’๐‘™ (๐ฑ), (10) ๐‘š ๐‘š ๐‘™ (๐‘˜) ๐‘– . The coefficients ๐‘‘๐‘— where ๐‘‘๐‘—(๐‘˜) = ๐œŒ โˆ’๐œˆ (๐‘€[๐‘—/2] ) ๐‘‘ฬƒ ๐‘— , ๐‘’๐‘–(๐‘˜) = ๐œŒ โˆ’๐œ‡ (๐‘„๐‘– ) ๐‘’ฬƒ (๐‘˜) and ๐‘’๐‘–(๐‘˜) in (10) are found as โˆ— โˆ— (๐‘˜) a result of solving a system (11), (12) (see below). Let ๐•โ„Ž = ๐‘‰ โ„Ž ร— ๐‘‰ โ„Ž , ๐•โ„Ž0 = ๐‘‰0โ„Ž ร— ๐‘‰0โ„Ž and ๐•โ„Ž โŠ‚ ๐‘œ ๐–12,๐œˆ (ฮฉโ„Ž , ๐›ฟ), ๐•โ„Ž0 โŠ‚๐–12,๐œˆ (ฮฉโ„Ž , ๐›ฟ), ๐‘„ โ„Ž โŠ‚ ๐ฟ02,๐œˆ (ฮฉโ„Ž , ๐›ฟ). Definition 2. The pair ๐ฎ(๐‘˜) ๐œˆ,โ„Ž โˆˆ ๐• and ๐‘ƒ๐œˆ,โ„Ž โˆˆ ๐‘„ is called an approximate ๐‘…๐œˆ -generalized solution of โ„Ž (๐‘˜) โ„Ž the problem (7), (8) for any pair ๐ฏโ„Ž โˆˆ ๐•โ„Ž0 and ๐‘ž โ„Ž โˆˆ ๐‘„ โ„Ž the equalities ๐‘Ž๐‘˜ (๐ฎ(๐‘˜) โ„Ž โ„Ž (๐‘˜) โ„Ž ๐œˆ,โ„Ž , ๐ฏ ) + ๐‘(๐ฏ , ๐‘ƒ๐œˆ,โ„Ž ) = ๐‘™(๐ฏ ) and ๐‘(๐ฎ(๐‘˜) โ„Ž ๐œˆ,โ„Ž , ๐‘ž ) = 0 (11) hold, where ๐Ÿ โˆˆ ๐‹2,๐›ฝ (ฮฉ, ๐›ฟ), ๐  โˆˆ ๐–1/2 2,๐›ฝ (ฮ“, ๐›ฟ), ๐œˆ โ‰ฅ ๐›ฝ โ‰ฅ 0. Thus, we construct a weighted FEM to find an ๐‘…๐œˆ -generalized solution for the problem (7), (8). We get a system of linear algebraic equation: ๐€๐‘˜ ๐(๐‘˜) + ๐๐ž(๐‘˜) = ๐œ” and ๐‚๐‘‡ ๐(๐‘˜) = ๐ŸŽ, (12) where ๐(๐‘˜) = (๐‘‘0(๐‘˜) , ๐‘‘2(๐‘˜) , โ€ฆ , ๐‘‘1(๐‘˜) , ๐‘‘3(๐‘˜) , โ€ฆ)๐‘‡ , ๐ž(๐‘˜) = (๐‘’0(๐‘˜) , ๐‘’1(๐‘˜) , ๐‘’2(๐‘˜) , โ€ฆ)๐‘‡ and ๐œ” be a vector of values of the linear form ๐‘™(๐œƒ๐‘š ). 4. Iterative procedure Now, we present an iterative procedure for solving the sequences of systems view (12), ๐‘˜ = 1, 2, 3, โ€ฆ and thus we will approximately solve the original nonlinear problem in rotation form (4), (5): 1. Let ๐(0) and ๐ž(0) be an arbitrary vectors such that ๐ฎ(0) ๐œˆ,โ„Ž (๐‘€๐‘™ )|๐‘€๐‘™ โˆˆ๐‘ ๐‘ฃ๐‘’๐‘™ = ๐ (๐‘€๐‘™ ), div ๐ฎ๐œˆ,โ„Ž (๐‘€๐‘™ )|๐‘€๐‘™ โˆˆ๐‘ ๐‘ฃ๐‘’๐‘™ = 0 (0) ฮ“ (for example ๐ฎ(0)๐œˆ,โ„Ž (๐‘€๐‘™ )|๐‘€๐‘™ โˆˆ๐‘ฮฉ๐‘ฃ๐‘’๐‘™ = ๐ŸŽ) and ๐‘ƒ๐œˆ,โ„Ž (๐‘€๐‘™ )|๐‘€๐‘™ โˆˆ๐‘ (0) ๐‘๐‘Ÿ๐‘’๐‘  = 0. 2. Realize the Picardโ€™s procedure ๐‘˜ = 0, 1, 2, โ€ฆ until the stopping condition is fulfilled: a) Let ๐œ0(๐‘˜) โˆถ= ๐(๐‘˜) and ๐œ‚(๐‘˜)0 โˆถ= ๐ž ; (๐‘˜) b) We construct an internal convergent iterative process (see [17]). For ๐‘› = 0, 1, โ€ฆ , ๐‘๐‘˜ โˆ’ 1 โˆถ (๐‘˜) โˆ’1 ๐œ๐‘›+1 = ๐œ๐‘›(๐‘˜) + ๐€ฬ‚ ๐‘˜ (๐œ” โˆ’ ๐€๐‘˜ ๐œ๐‘›(๐‘˜) โˆ’ ๐๐œ‚(๐‘˜) ๐‘› ) (๐‘˜) ๐œ‚๐‘›+1 = ๐œ‚(๐‘˜) ฬ‚ โˆ’1 ๐‘‡ (๐‘˜) ๐‘› + ๐’๐‘˜ ๐‚ ๐œ๐‘›+1 ; c) Let ๐(๐‘˜+1) โˆถ= ๐œ๐‘(๐‘˜) ๐‘˜ and ๐ž(๐‘˜+1) โˆถ= ๐œ‚(๐‘˜) ๐‘๐‘˜ , where ๐€๐‘˜ and ๐’๐‘˜ are the preconditioning matrices to ๐€๐‘˜ and ๐’๐‘˜ = ๐‚๐‘‡ ๐€โˆ’1 ฬ‚ ฬ‚ ๐‘˜ ๐, respectively. At first, we build a preconditioner ๐€ฬ‚ ๐‘˜ applying an incomplete LU factorization. We employ the โˆ’1 GMRES(5)-method (see [18]). If we have error ๐ซ0 = ๐€ฬ‚ ๐‘˜ (๐ฌ โˆ’ ๐€๐‘˜ ๐ฏ) for the problem ๐€๐‘˜ ๐ฏ = ๐ฌ, then the โˆ’1 โˆ’1 Arnoldi procedure will build an orthonormal basis of the subspace: Span{๐ซ0 , ๐€ฬ‚ ๐‘˜ ๐€๐‘˜ ๐ซ0 , โ€ฆ , (๐€ฬ‚ ๐‘˜ ๐€๐‘˜ )4 ๐ซ0 }. Further, we construct an auxiliary matrix ๐’ฬƒ ๐‘˜ to ๐’ฬ‚ ๐‘˜ , which is the weight mass matrix ๐Œ๐œˆ,๐œ‡ ,๐œˆฬ„ , such โˆ— that on each ๐ฟ โˆˆ ฮฅโ„Ž โˆถ โˆ— 1 โˆ— (๐Œ๐œˆ,๐œ‡ ,๐œˆฬ„ )๐‘™๐‘š = โˆซ ๐œŒ 2(๐œˆ+๐œ‡ ) ๐œ“๐‘™ (๐ฑ) ๐œ“๐‘š (๐ฑ)๐‘‘๐ฑ, ๐‘™, ๐‘š = 0, 1, โ€ฆ . ๐œˆฬ„ ๐ฟ โˆ— โˆ— After that, we define a diagonal matrix ๐’ฬ„ ๐‘˜ = ๐Œ ฬ„ ๐œˆ,๐œ‡ ,๐œˆฬ„ , where (๐Œ ฬ„ ๐œˆ,๐œ‡ ,๐œˆฬ„ ) = โˆ‘ (๐Œ๐œˆ,๐œ‡ โˆ— ,๐œˆฬ„ ) . ๐‘–๐‘– ๐‘–๐‘™ ๐‘™ It is known (see [19]), that such diagonal lumping ๐’ฬ„ ๐‘˜ is a good preconditioner to matrix ๐’ฬƒ ๐‘˜ . In order โˆ’1 to determining the vector ๐œ“ โ‹„ โˆถ= ๐’ฬ‚ ๐‘˜ ๐œƒ we need to find a solution of the internal procedure: 1) ๐œ™0 = ๐ŸŽ; 2) ๐œ™๐‘š = ๐œ™๐‘šโˆ’1 + ๐’ฬ„ ๐‘˜ (๐œƒ โˆ’ ๐’ฬƒ ๐‘˜ ๐œ™๐‘šโˆ’1 ) (๐‘š = 1, โ€ฆ , ๐‘€); โˆ’1 3) ๐œ“ = ๐œ™๐‘€ . โ‹„ We use the GMRES(5)-method: (Span{๐ซฬ„ , (๐’ฬ„ ๐‘˜ ๐’ฬƒ ๐‘˜ )๐ซฬ„ , โ€ฆ , (๐’ฬ„ ๐‘˜ ๐’ฬƒ )4๐‘˜ ๐ซฬ„ }, ๐ซฬ„ = ๐’ฬ„ ๐‘˜ (๐œƒ โˆ’ ๐’ฬƒ ๐‘˜ ๐œ™๐‘šโˆ’1 )). โˆ’1 โˆ’1 โˆ’1 5. Results of numerical experiments Let ฮฉ = (โˆ’1, 1)ร—(โˆ’1, 1)โงต[0, 1]ร—[โˆ’1, 0]. Then we split ฮฉฬ„ by the horizontal and vertical lines ๐‘ฅ1(๐‘—) = โˆ’1+๐‘— โ„Ž, and ๐‘ฅ2(๐‘–) = โˆ’1 + ๐‘– โ„Ž, respectively, into elementary squares ๐‘†๐‘™ , where ๐‘—, ๐‘– = 0, โ€ฆ , ๐‘ , โ„Ž = ๐‘2 , ๐‘ โ€“ even number. After that, we divide each ๐‘†๐‘™ by the diagonal (the lower left corner connects to the upper right corner) into two triangles ๐ฟ๐‘š (macroelements). Further, each macroelement ๐ฟ๐‘š is partitioned into three triangles ๐พ๐‘  (barycentric partition). Consider a solution (๐ฎ, ๐‘ƒ) of nonlinear problem (4), (5) which has a singularity in the vicinity of the reentrant corner ๐œŽ = 32๐œ‹ with apex at the origin (0, 0) โˆถ ๐œ† ๐‘ฅ2 ๐‘ฅ2 ๐‘ข1 (๐‘ฅ1 , ๐‘ฅ2 ) = (๐‘ฅ12 + ๐‘ฅ22 ) 2 ((1 + ๐œ†) ๐ธ(๐‘ฅ1 , ๐‘ฅ2 ) โ‹… sin(arctg ) + ๐บ(๐‘ฅ1 , ๐‘ฅ2 ) โ‹… cos(arctg )), ๐‘ฅ1 ๐‘ฅ1 ๐œ† ๐‘ฅ2 ๐‘ฅ2 ๐‘ข2 (๐‘ฅ1 , ๐‘ฅ2 ) = (๐‘ฅ12 + ๐‘ฅ22 ) 2 (๐บ(๐‘ฅ1 , ๐‘ฅ2 ) โ‹… sin(arctg ) โˆ’ (1 + ๐œ†) ๐ธ(๐‘ฅ1 , ๐‘ฅ2 ) โ‹… cos(arctg )), ๐‘ฅ1 ๐‘ฅ1 ๐œ†โˆ’1 (1 + ๐œ†)2 ๐บ(๐‘ฅ1 , ๐‘ฅ2 ) + ๐ป (๐‘ฅ1 , ๐‘ฅ2 ) ๐‘ƒ(๐‘ฅ1 , ๐‘ฅ2 ) = (๐‘ฅ12 + ๐‘ฅ22 ) 2 ( ), ๐œ†โˆ’1 where ๐‘ฅ2 ๐‘ฅ2 ๐ธ(๐‘ฅ1 , ๐‘ฅ2 ) = cos((1 โˆ’ ๐œ†) arctg ) โˆ’ cos((1 + ๐œ†) arctg )+ ๐‘ฅ1 ๐‘ฅ1 sin((1 + ๐œ†) arctg ๐‘ฅ๐‘ฅ21 ) โ‹… cos(๐œ† ๐œŽ) sin((1 โˆ’ ๐œ†) arctg ๐‘ฅ๐‘ฅ21 ) โ‹… cos(๐œ† ๐œŽ) + + , ๐œ†+1 ๐œ†โˆ’1 ๐‘ฅ2 ๐‘ฅ2 ๐บ(๐‘ฅ1 , ๐‘ฅ2 ) = (1 + ๐œ†) sin((1 + ๐œ†) arctg ) โˆ’ (1 โˆ’ ๐œ†) sin((1 โˆ’ ๐œ†) arctg )+ ๐‘ฅ1 ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ2 +cos((1 + ๐œ†) arctg ) โ‹… cos(๐œ† ๐œŽ) โˆ’ cos((1 โˆ’ ๐œ†) arctg ) โ‹… cos(๐œ† ๐œŽ), ๐‘ฅ1 ๐‘ฅ1 Table 1 The error between the generalized solution ๐ฎโ„Ž and exact one ๐ฎ in the ๐–12 (ฮฉ) norm. N= 280 140 70 1.379e-1 1.988e-1 2.848e-1 Table 2 The error between an ๐‘…๐œˆ -generalized solution ๐ฎ๐œˆ,โ„Ž and exact one ๐ฎ in the ๐–12,๐œˆ (ฮฉ) norm, for different values ๐œˆ, ๐›ฟ and ๐œˆ โˆ— (๐œ‡ โˆ— = ๐œˆ โˆ— ). (๐œˆ, ๐œˆ โˆ— , ๐›ฟ), ๐‘ = 280 140 70 (2.0, โˆ’0.5, 0.015) 1.627e-5 3.295e-5 6.629e-5 (2.0, ๐œ† โˆ’ 1, 0.015) 1.394e-5 2.796e-5 5.626e-5 (2.0, โˆ’0.4, 0.015) 1.181e-5 2.355e-5 4.760e-5 (1.9, โˆ’0.5, 0.016) 2.785e-5 5.624e-5 1.131e-4 (1.9, ๐œ† โˆ’ 1, 0.016) 2.331e-5 4.672e-5 9.368e-5 (1.9, โˆ’0.4, 0.016) 1.869e-5 3.759e-5 7.549e-5 Table 3 The number of grid nodes ๐‘€๐‘– โˆˆ ๐‘ฮฉ๐‘ฃ๐‘’๐‘™ (in percentage of their total number), where the errors ๐›ฝ๐‘—๐‘– are more than the given limit values ๐œ€๐‘™ , ๐‘™ = 1, 2, of the generalized solution ๐œˆ = ๐œˆ โˆ— = 0, ๐›ฟ = 1. N= 280 140 ๐œ€1 = 10โˆ’5 64.51% 77.82% ๐œ€2 = 10โˆ’6 90.97% 94.81% Table 4 The number of grid nodes ๐‘€๐‘– โˆˆ ๐‘ฮฉ๐‘ฃ๐‘’๐‘™ (in percentage of their total number), where the errors ๐›ฝ๐œˆ,๐‘— ๐‘– are more than โˆ— the given limit values ๐œ€๐‘™ , ๐‘™ = 1, 2, of an ๐‘…๐œˆ - generalized solution ๐œˆ = 1.8, ๐œˆ = โˆ’0.31, ๐›ฟ = 0.014. N= 280 140 ๐œ€1 = 10โˆ’5 28.33% 54.30% ๐œ€2 = 10โˆ’6 77.32% 85.76% ๐‘ฅ2 ๐‘ฅ2 ๐ป (๐‘ฅ1 , ๐‘ฅ2 ) = (1 โˆ’ ๐œ†)3 sin((1 โˆ’ ๐œ†) arctg ) โˆ’ (1 + ๐œ†)3 sin((1 + ๐œ†) arctg )+ ๐‘ฅ1 ๐‘ฅ1 ๐‘ฅ ๐‘ฅ +(๐œ† โˆ’ 1)2 cos((1 โˆ’ ๐œ†) arctg ) โ‹… cos(๐œ† ๐œŽ) โˆ’ (๐œ† + 1)2 cos((1 + ๐œ†) arctg ) โ‹… cos(๐œ† ๐œŽ). 2 2 ๐‘ฅ1 ๐‘ฅ1 Let ๐›ผ = ๐œˆฬ„ = 1 and ๐œ† = 0.54448. The pair of functions (๐ฎ, ๐‘ƒ) is analytic in ฮฉฬ„ โงต (0, 0), but ๐ฎ โˆ‰ ๐–22 (ฮฉ) and ๐‘ƒ โˆ‰ ๐‘Š21 (ฮฉ). It is a typical situation in non-convex polygonal domains. Numerical experiments were carried out on grids with different steps โ„Ž. The errors of the gen- eralized (classical FEM with ๐œˆ = 0, ๐›ฟ = 1, ๐œˆ โˆ— = ๐œ‡ โˆ— = 0) and ๐‘…๐œˆ -generalized (presented weighted FEM) solutions were determined using the modulus of the difference between the exact solution and approximate one at the nodes ๐‘€๐‘– , i. e. ๐›ฝ๐‘—๐‘– = |๐‘ข๐‘— (๐‘€๐‘– ) โˆ’ ๐‘ขโ„Ž,๐‘— (๐‘€๐‘– )| for the generalized solution and ๐œˆ,โ„Ž,๐‘— (๐‘€๐‘– )| for an ๐‘…๐œˆ -generalized one, where ๐‘€๐‘– โˆˆ ๐‘ฮฉ , ๐‘— = 1, 2, and also in the norms ๐‘– = |๐‘ข (๐‘€ ) โˆ’ ๐‘ข ๐›ฝ๐œˆ,๐‘— ๐‘ฃ๐‘’๐‘™ ๐‘— ๐‘– of generalized functions. See Figures 1-2 and Tables 1-4. The optimal values of parameters ๐œˆ, ๐œˆ โˆ— and ๐›ฟ were derived numerically. Figure 1: Distribution of the points ๐‘€๐‘– with errors ๐›ฝ of the generalized solution (๐œˆ = 0, ๐›ฟ = 1, ๐œˆ โˆ— = ๐œ‡ โˆ— = 0): ๐‘Ž) ๐‘ = 140, ๐‘) ๐‘ = 280 and ๐‘) ๐‘ = 140, ๐‘‘) ๐‘ = 280 for the 1st and 2nd components of ๐ฎโ„Ž , respectively. 6. Conclusions The results of computational experiments for the steady Navier-Stokes equations (4), (5) lead to the following conclusions: 1) An approximate ๐‘…๐œˆ -generalized solution by the weighted FEM converges to the exact one with a ๎ˆป(โ„Ž) rate in the ๐–12,๐œˆ (ฮฉ) norm (see Table 2), while the approximate generalized solution by the classical FEM converges to the exact one with a ๎ˆป(โ„Ž0.54 ) rate in the ๐–12 (ฮฉ) norm (see Table 1). In other words, the proposed method suppresses the so-called pollution effect [13]. 2) For all values of ๐›ฟ, ๐œˆ and ๐œˆ โˆ— from the range of optimal values (๐›ฟ โˆผ โ„Ž, ๐œˆ โˆผ 2 and ๐œˆ โˆ— โˆผ 1 โˆ’ ๐œ†) an approximate ๐‘…๐œˆ -generalized solution converges to the exact one with a ๎ˆป(โ„Ž) rate in the ๐–12,๐œˆ (ฮฉ) norm. 3) The number of nodes and their surroundings by using a weighted FEM, in which the values of the absolute errors ๐›ฝ๐œˆ,๐‘— ๐‘– , ๐‘— = 1, 2, do not exceed the given values, increases with ๐‘ and is much more then by using the classical FEM (see Tables 3-4) and Figures 1-2. Acknowledgments The reported study was supported by RSF according to the research project No. 21-11-00039. Compu- tational resources for the numerical experiments were provided by the Shared Services Center "Data Center of FEB RAS". Figure 2: Distribution of the points ๐‘€๐‘– with errors ๐›ฝ๐œˆ of the ๐‘…๐œˆ -generalized solution (๐œˆ = 1.9, ๐›ฟ = 0.014, ๐œˆ โˆ— = ๐œ‡ โˆ— = โˆ’0.35): ๐‘Ž) ๐‘ = 140, ๐‘) ๐‘ = 280 and ๐‘) ๐‘ = 140, ๐‘‘) ๐‘ = 280 for the 1st and 2nd components of ๐ฎ๐œˆ,โ„Ž , respectively. References [1] V. A. Rukavishnikov, On the differential properties of ๐‘…๐œˆ -generalized solution of Dirichlet prob- lem, Dokl. Akad. Nauk SSSR 309 (1989) 1318โ€“1320. [2] V. A. Rukavishnikov, On the existence and uniqueness of an ๐‘…๐œˆ -generalized solution of a bound- ary value problem with uncoordinated degeneration of the input data, Doklady Mathematics 90 (2014) 562โ€“564. doi:10.1134/S1064562414060155. [3] V. A. Rukavishnikov, E. V. Kuznetsova, The ๐‘…๐œˆ -generalized solution of a boundary value problem with a singularity belongs to the space ๐‘Š2,๐œˆ+๐›ฝ/2+๐‘˜+1 ๐‘˜+2 (ฮฉ, ๐›ฟ), Differential Equations 45 (2009) 913โ€“ 917. doi:10.1134/S0012266109060147. [4] V. A. Rukavishnikov, S. G. Nikolaev, On the ๐‘…๐œˆ -generalized solution of the Lamรฉ system with cor- ner singularity, Doklady Mathematics 92 (2015) 421โ€“423. doi:10.1134/S1064562415040080. [5] V. A. Rukavishnikov, A. V. Rukavishnikov, Weighted finite element method for the Stokes prob- lem with corner singularity, Journal of Computational and Applied Mathematics 341 (2018) 144โ€“156. doi:10.1016/j.cam.2018.04.014. [6] V. A. Rukavishnikov, A. Y. Bespalov, An exponential rate of convergence of the finite element method for the Dirichlet problem with a singularity of the solution, Doklady Mathematics 62 (2000) 266โ€“270. [7] V. A. Rukavishnikov, E. V. Kuznetsova, A finite element method scheme for boundary value problems with noncoordinated degeneration of input data, Numerical Analysis and Applications 2 (2009) 250โ€“259. doi:10.1134/S1995423909030069. [8] V. A. Rukavishnikov, E. I. Rukavishnikova, Numerical method for Dirichlet problem with de- generation of the solution on the entire boundary, Symmetry 11 (2019) 1455. doi:10.3390/ sym11121455. [9] V. A. Rukavishnikov, A. O. Mosolapov, E. I. Rukavishnikova, Weighted finite element method for elasticity problem with a crack, Computers and Structures 243 (2021) 106400. doi:10.1016/ j.compstruc.2020.106400. [10] V. A. Rukavishnikov, O. P. Tkachenko, Dynamics of a fluid-filled curvilinear pipeline, Applied Mathematics and Mechanics 39 (2018) 905โ€“922. doi:10.1007/s10483-018-2338-9. [11] M. Benzi, H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005) 1โ€“137. doi:10.1017/S0962492904000212. [12] L. R. Scott, M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, Mathematical Modelling and Numerical Analysis 19 (1985) 111โ€“143. [13] H. Blum, The influence of reentrant corners in the numerical approximation of viscous flow problems, volume 30 of Numerical Treatment of the Navier-Stokes Equations, Springer, 1990. doi:110.1007/978-3-663-14004-7-4. [14] V. A. Rukavishnikov, A. V. Rukavishnikov, New approximate method for solving the Stokes problem in a domain with corner singularity, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software 11 (2018) 95โ€“108. doi:10.14529/ mmp180109. [15] V. A. Rukavishnikov, A. V. Rukavishnikov, New numerical method for the rotation form of the Oseen problem with corner singularity, Symmetry 11 (2019) 54. doi:10.3390/sym11010054. [16] V. A. Rukavishnikov, A. V. Rukavishnikov, The method of numerical solution of the one sta- tionary hydrodymics problem in convective form in ๐ฟ-shaped domain, Computer Research and Modeling 12 (2020) 1291โ€“1306. doi:10.20537/2076-7633-2020-12-6-1291-1306. [17] J. H. Bramble, J. E. Pasciak, A. T. Vassilev, Analysis of the inexact Uzawa algorithm for sad- dle point problems, SIAM Journal on Numerical Analysis 34 (1997) 1072โ€“1092. doi:10.1137/ S0036142994273343. [18] Y. Saad, Iterative methods for sparse linear systems, 2nd. ed., SIAM, Philadelphia, 2003. [19] M. Olshanskii, A. Reusken, Analysis of a Stokes interface problem, Numerische Mathematik 103 (2006) 129โ€“149. doi:10.1007/S00211-005-0646-X.