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Abstract  
The aim of this work is to construct grid algorithms for solving nonstationary second-order 

partial differential equations that arise when modeling problems of the hydrodynamic theory 

of lubrication of thrust bearings. In constructing the grid schemes in the parts of the bearing, 

the finite element method and the version of discontinuous Galerkin method were used. To 

solve the pressure equation, the method of adder identities is used. To obtain a solution in a 

thrust bearing, a domain decomposition method is built based on the Lions method. 

Numerical experiments were performed demonstrating the convergence of the grid scheme of 

the Galerkin method on a sequence of condensing grids. A set of programs was built with the 

help of which it is possible to study the behavior of the bearing at various geometric and 

physical parameters. Determine lubricant consumption and bearing capacity over time.  
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1. Introduction 

Thrust plain bearings are an important design element for centrifugal and screw compressors. They 

are designed to take the axial load acting on the rotor, transfer it to the stator, and also to fix the rotor 

relative to the housing in the axial direction. 

The lubricant flow in the lubricant layer of thrust bearing is mathematically described by a system 

of nonlinear differential equations. In this work, we use models of lubricant flow in bearings, 

proposed by Kazan mathematicians Sokolov, Khadiev and Maximov [1, 2]. 

Thrust bearings used in compressors have fixed pads and a rotating collar, between which 

lubricant flows. The surface of the pad is profiled and experiences thermal deformations. Therefore, 

the thickness of the gap of the lubricating layer is variable. Between the pads are channels through 

which lubricant is supplied. In the collar and bearing pads, it is assumed that the linear heat equation 

is satisfied. In the lubricating layer, the pressure distribution is described by the two-dimensional 

Reynolds equation, and heat transfer is described by the three-dimensional energy equation with 

dominant convection. In this case, there is no thermal conductivity in the radial direction in the 

lubricating layer.  

The temperature distribution in the collar and pads is described by the linear heat conduction 

equation. In the lubricating layer, the pressure distribution is described by the two-dimensional 

Reynolds equation, and heat transfer is a three-dimensional nonlinear energy equation with dominant 

convection. 

When modeling bearing dynamics, it is convenient to use a cylindrical coordinate system. We 

denote by the coordinate axes corresponding to the radius, angular coordinate, and thickness of the 

lubricant layer. 
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2. Issue statement 

The two-dimensional equation determining the pressure distribution has the form 
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where p  — pressure function, p  and 0f , f  — coefficients depending on the temperature of 

lubricant layer. At the boundaries of the region, the pressure is set. 

The energy equation in the lubricating layer, collar and pad has the form 
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where the velocity vector and the thermal conductivity in the lubricating layer has the form 
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The speed in the pad area is assumed to be zero, (0, ,0)TV V=  in the collar area and K  — 

diagonal matrix. 

We supplement equation (2) with boundary conditions. By coordinate   in the collar and 

lubricant layer we assume that the periodicity condition is fulfilled. In the y  direction, at the 

boundaries between the lubricating layer and the solid bearing elements, we set the condition for 

equal temperatures and heat fluxes. Within the inter-air channel, at the conditional boundary 

( , )y h r =  of the lubricating layer, the temperature of the inflowing lubricant is set. At other 

boundaries of solid elements, a condition of the third kind of heat exchange with the environment is 

set. The equation in the lubricating layer has the following feature. By the variable r , there is only a 

convective term. It is assumed that the velocity rV  determines the outflowing flows on the external 

and internal radii of the region [1]. Therefore, boundary conditions are not set there. The temperature 

of the inflowing grease is considered set. 

3. Solution methods 

The thickness of the lubricating layer h  is a variable in connection with the profiling of the pad, as 

well as thermal deformations. Therefore, we first make a change of variables 

, , ( , )r r y h r y  = = = , that translates the original computational domain into a rectangular one. A 

change of variables was performed, preserving the divergent form of the equation. 

To numerically solve the obtained boundary value problem in the lubricating layer, a scheme of 

the discontinuous Galerkin method with rectangular elements is constructed. The choice is determined 

by the local conservatism of the grid schemes built on its basis, low circuit viscosity, and also their 

stability for a wide class of problems with dominant convection in a wide range of grid 

parameters [3]. In the constructed scheme, piecewise constant inside the computational domain 
h  

and piecewise linear near the boundary y  of the space of approximating functions were used. The 

choice of this type of approximating functions makes it possible to significantly reduce the amount of 

resources required for the calculation, without a tangible loss in the quality of the solution. A method 

of constructing schemes of this kind is given in [4].  

The grid scheme allows us to reduce issue to a grid equation, which in operator notation has the 

form 
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where hu  is a grid approximation of the temperature function t . 

The operators in equation (3) are defined by the following forms 
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for any hw  from the space of approximating functions. Here h  is the set of finite elements of the 

region  , hK  — finite element; p  — unit normal vector to the boundaries of the elements of the 

partition area, oriented so that 0e p  , (1,1,1) / 3e = , w  — positive or negative part of the 

function w . The spaces of approximating functions contain discontinuous functions. Here, the 

symbols pw  denote the limit values of the functions of the partitioning elements adjacent to the 

boundary from the side p . Equation (3) is approximated by an implicit scheme for which an 

iterative process is constructed with lowering   to the lower time layer. 

For the numerical solution of equations in solids, the finite element method was used. To 

approximate equation (1), the method of adder identities is used. For solution obtained by the grid 

method, the upper relaxation method is used. 

In order to consider heat transfer between regions, a method based on the Lyons method of 

decomposition of regions is constructed [5, p. 59]. Iterations of the decomposition method for two 

regions, with different speeds and thermal conductivity coefficients, are given by the equations: 
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where 1n , 2n  — normal vectors to the boundary of the first and second regions, ,,i i iV K u  — velocity 

vector, thermal conductivity coefficient and temperature of the i-th region. 

4. Results 

To solve the constructed grid circuits, a set of C ++ programs was created using the Eigen 3.0 class 

library [6, 7]. With its help, numerical experiments were carried out, demonstrating the convergence 

of schemes on condensing grids. In numerical experiments, the approximate solution hu  was 

compared with the exact solution t  of the issue test model. Figure 1 shows a graph of the solution 

error depending on the grid step and number of points of partition of space and time .n The figure 

shows that there is a convergence of the constructed method with linear velocity with increasing n . 



 
Figure 1: Graph of the solution error depending on the number of points n  and grid step h . 

 

The sought quantities in the problem under consideration are temperature and pressure. To find 

them with real parameters, the methods and program complexes described above are used. Figure 2 

shows a graph of isobars, and Figure 3 shows a graph of isotherms in the lubricating layer of a thrust 

bearing when considering the stationary version of the problem. 

 

 

 
Figure 2:Graph of isobars. 



 
Figure 3:Graph of isotherms. 

 

The decomposition method (4) is used to solve the problem. Figure 4 shows a graph of the 

temperature distribution at fixed r  and   at the centers of the calculated areas of the pad, collar and 

lubricant layer. 

 
Figure 4: Graph of the temperature distribution at fixed r  and  . 

 

During bearing operation, the disc moves in a vertical direction. A set of programs allows to study 

the behavior of the bearing at various geometric and physical parameters over time. The Figure 5 

shows graphs of changes in bearing characteristics during sinusoidal collar motion. The dots mark the 

characteristics under consideration, and the line shows the thickness of the lubricating layer during the 

movement of the disk. 



 
Figure 5: Graphs of changes in bearing characteristics during collar motion. 
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