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ABSTRACT
Early Time-Series Classi�cation (ETSC) is the task of discerning
the class of time-series observations, as accurately and fast as
possible. Such approaches can be incorporated in forecasting,
and this way assist on many research �elds. However, available
approaches are not suitable for all problems, since the shape
and the nature of data can impact their performance. In the
context of this work, we empirically evaluate �ve state-of-the-
art ETSC algorithms on publicly available data, as well as on
two newly introduced datasets, originating from the biological
and maritime application areas. The �rst dataset refers to cancer
simulation data, while the second consists of vessel geospatial
information. The aim is to extensively evaluate ETSC algorithms,
and provide intuition on how such approaches work, and what
are the problem characteristics that may render each method
successful. Also, the framework we used for the evaluation can
serve as a benchmark for new related approaches.

1 INTRODUCTION
The evolution of computer systems and the proliferation of In-
ternet of Things has signi�cantly aided to the expansion of time-
series data production, collection, and storage [35]. For instance,
in the life sciences �eld, simulation frameworks aim to estimate
how cellular structures respond to treatments, e.g. in the face of
new experimental pharmaceuticals [9]. Such simulations require
vast amounts of computational resources, as well as time, and
produce gigabytes of data in each run. Thus, non-interesting
cases should be detected at early stages and stopped as soon as
possible, since they are not expected to provide any useful result.

However, many problems remain regarding the detection of
situations and ailments ahead of time. Many e�ective methods
for tackling such problems stem from the Early Time-Series Clas-
si�cation (ETSC) domain. Contrary to standard time-series clas-
si�cation, which requires all the time-points to make a decision,
ETSC approaches aim to classify time-series as early in time as
possible, always pursuing the smallest impact in the accuracy of
the predictions. By providing results ahead of time, early classi�-
cation can give e.g. critical data about a patient’s future health
complications in the long-term within the predictive medicine
�eld [20], or in the short-term, such as arrhythmia detection [16]
or stroke prediction [3].
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The integration of state-of-the-art sensory and telecommu-
nication devices on ships provides a constant stream of data
reporting the geospatial positioning, direction, or trajectory in
the form of time-series data. These can be incorporated in ETSC,
for example to aid the tasks of naval authorities [22]. Some cases
worth noting are the early detection of ship collisions [27], which
prevents the dangers of the densely used naval routes, or to detect
naval smuggling events [1] as soon as possible, which calls for
immediate action. Another important application of ETSC is the
prediction of earthquakes and the intensity of aftershocks from
respective sensor readings; and in the energy �eld, in order to
predict the energy consumption of households and optimize the
energy supply system [32].

In this paper, we focus on the state-of-the-art of ETSC aiming
to extend the benchmarking literature and tools. We employ a
collection of various algorithms, and extensively evaluate them
on publicly available datasets that include multivariate and uni-
variate cases of di�erent sizes. Two new datasets are employed,
originating from drug treatment discovery, and maritime surveil-
lance. Overall, we bundle together algorithms and datasets in a
single and publicly available framework, which can serve as a
benchmark for future developments in this domain.

The rest of the paper is organized as follows. In Section 2
we discuss related work and the algorithms that are evaluated.
Section 3, describes the datasets that we utilize. In Section 4 we
present the experimental results, and, �nally, in Section 5, we
conclude.

2 ETSC ALGORITHMS
Although ETSC is not a novel �eld, most of the existing work com-
pares methods for regular time-series classi�cation, or forecast-
ing, using the whole time-series for predictions. A representative
example is the work of Demsar et al. [6], which evaluates classic
classi�ers, such as, k-NN and Naive Bayes, by incorporating a
variety of methods for statistical comparison. Multiple datasets
are included in the evaluation, and conclusions are drawn using
ANOVA and Friedman tests. The work of [28], does the same, but
also for Arti�cial Neural Networks (ANN) approaches, evaluated
on a dataset regarding smartphone data usage. The analysis of
the results highlights that classi�ers can be quite e�ective in
the smartphone data usage application, with the Random Forest
approach being the most well performing one. Also, di�erent
algorithms seem to perform more e�ectively for certain datasets
compared to others, rendering the evaluation of multiple algo-
rithms on each dataset necessary. Moreover, given the increasing
data sources worldwide, as well as the rising complexity in the



contemporary data analysis processes, focus has been put on
multivariate time-series [8]. In a recent work presented in [7],
authors examine the state-of-the-art methods for solely multi-
variate time-series classi�cation and compare inter-dimensional
dependencies among classi�ers, providing this way further in-
sight to this �eld of research.

A recent work was also conducted in ETSC, reviewing ex-
isting approaches related to the �eld [10]. The algorithms are
categorized into four groups and the analysis is performed on
a theoretical level, highlighting their strengths, limitations, and
major concerns for each group. Our approach di�ers, since we
follow an empirical approach. We categorize ETSC algorithms
according to their internal structure and subcomponents and
evaluate them on multiple datasets. Here, we distinguish three
main types, i.e. those that rely on subsequence extraction and
analysis, algorithms that are based on clustering of the time-
series, and others that employ ANNs. Note that some algorithms
could be considered to belong to more than one category. In this
case, the type was chosen based on which component was the
most signi�cant for the classi�cation task.

2.1 Subsequence-based Approaches
The algorithms that use subsequences, in principle, isolate smaller
windows of the time-series—termed as subseries—andmanipulate
them accordingly, to maximize information gain and achieve the
earliest and most accurate results. We distinguish �ve cases that
belong to this category. An example of such an algorithm is
Early Distinctive Shapelet Classi�cation (EDSC) [34] where the
classi�cation task is based on subseries extraction. Initially, the
user provides as input the minimum and maximum lengths of the
windows that are to be extracted. Then, during the extraction step,
all the corresponding sub-series are isolated from the full time-
series and, by using Chebyshev Inequality on each extracted part,
a threshold is calculated. This threshold controls the minimum
similarity that a sub-series should have, so to be assigned in the
same class. Next, each sub-series is transformed into a triplet
containing the class of the time-series it was extracted from, the
sub-series itself, and the threshold, forming this way a shapelet.

Having all the shapelets in hand, a utility function calculates
a measure similar to the F1-score for each one, which represents
in some sense the distinctive capability of the shapelet, i.e., how
appropriate a shapelet is to be considered as a template for a
particular class. Ranked by their utility values, the best shapelets
are selected and stored into a “pool” that constitutes the clas-
si�cation basis. To ease the reader we incorporate a running
example for the biological case. Suppose we have the time-series
t = {1137, 1227, 1205, 1082, 893, 736, 664, 639, 631} which is part
of a time-series from our biological dataset. The user gives as
input minimum length 2 and maximum, 4. Firstly, all the sub-
series between sizes 2 and 4 are going to be extracted from the
time-series. Let one sub-series be tpr ime = {1137, 1227, 1205}.
For tpr ime , a threshold δ = 3.05 is calculated based on Cheby-
shev’s inequality, which ensures the similarity of tpr ime only
with time-series of distance less or equal than the value of δ .
After this step, spr ime = (class, tpr ime ,δ ) is created, and then,
the weighted F1-Score of each shapelet is calculated and stored
in a list. Assuming that the list is [1.3, 3.67, 0.83] and 3.67 is the
score of tpr ime , the top K shapelets from the list are selected as
the classi�er shapelets. When the distance of the test time-series
from a shapelet is less than δ , then the shapelet’s class is assigned.

A similar approach to the EDSC is followed by the Mining
Core Feature for Early Classi�cation (MCFEC) [11] algorithm.
The di�erence in this case lies in the criteria for shapelet se-
lection, and also in that MCFEC has the capability to process
multivariate time-series. Like EDSC, for each variable, all the
sub-series of minimum and maximum lengths are extracted, but
are additionally grouped using Silhouette Clustering [26]. Then,
the best shapelets from each cluster are selected for classi�cation
based on an extension of the F1-score metric.

E�ective Con�dence-based Early Classi�cation (ECEC) [19]
utilizes subsequences, but in a quite di�erent way. ECEC employs
a transformation algorithm called WEASEL [29] that extracts
windows (e.g. {1137, 1227, 1205}), transforms them to symbols
that form words (e.g. (abc, cba . . . )), and measures the frequency
of their appearance in each time-series. In more detail, the user
provides as input (i) the desired window length and (ii) the length
of the words. Then, the frequency of each word (e.g. [1, 2, 1, 0, 0]
for a time-series and all window lengths), is passed on to a lo-
gistic regression classi�er, which in turn produces probabilistic
predictions. ECEC truncates the input into t di�erent pre�x sizes,
beginning from the 1/t of the time-series up to its full length. For
each pre�x, it trains a WEASEL classi�er and performs a 5-fold
cross validation on the dataset as an evaluation. The predictions
acquired are then passed into a cost function, which, based on the
probability of the prediction being correct, calculates a threshold
θ . During the testing phase, using the classi�er of the minimum
pre�x size, a prediction is made for each pre�x, and the corre-
sponding cost is calculated. If the cost is higher than the threshold
θ then the prediction is produced, otherwise the algorithm waits
until enough data have been accumulated to form the next pre�x.

The WEASEL algorithm for transforming the input data com-
bined with logistic regression is utilized by the Two-tier Early
and Accurate Series classi�ER (TEASER) method [30]. This algo-
rithm truncates the time-series into S pre�xes, each containing
length of time-series

S
more time points than the previous pre�x.

For each pre�x, TEASER applies the WEASEL - logistic regres-
sion pipeline to obtain respective probabilistic values. In order
to ensure the reliability of the classi�cation result, the outputs
are passed into a One-Class SVM constructed for each pre�x,
that accepts or rejects a prediction. The �nal requirement for
the approval of a classi�cation is that a prediction should be
consistently the same for v out of S pre�xes, with v being an
algorithm’s hyper-parameter subject to optimization.

Early Classi�cation framework for time series based on class
Discriminativeness and Reliability(ECDIRE) [21] also uses part
of the time-series to produce reliable and early predictions. The
algorithm requires as input the set E which contains time-series
lengths at which there is high information value, in order to
reduce granularity of data. Consequently, 10 times 5-fold cross-
validation is done for each length using Gaussian Process Classi-
�ers [24], storing the predictions and probabilities for each class.
Based on the predictions, an earliness threshold is constructed,
which indexes the time-point from which class instances di�er
from the other labeled instances. Using the probabilities from the
cross-validation, a second probabilistic threshold is calculated,
that ensures the reliability of the prediction. A classi�cation result
must satisfy both thresholds in order to be passed as a prediction.

A more recent approach for early time-series classi�cation is
the Distance Transformation based Early Classi�cation (DTEC)
algorithm [36]. DTEC relies on the transformation of data and
the usage of probabilistic classi�ers to achieve early and accurate



results. In particular, DTEC extracts subsequences of time-series
and maps them to another space based on distances. The trans-
formed data are then used to train a probabilistic classi�er by
forming the con�dence area, which is drawn based on the proba-
bility strength of the class to be passed as a prediction, making
this way the classi�cation result more reliable.

We selected EDSC, TEASER, and ECEC for evaluation from
this category. EDSC is considered a widely referenced method
for ETSC, since most recently developed algorithms use it as a
baseline. TEASER and ECEC are also interesting choices, since
they follow di�erent internal processes and have readily available
implementations that provide good results.

2.2 Clustering-based Approaches
Clustering is the task of forming groups of data similar to each
other based on some similarity measure. We refer to two dis-
tinct cases in this category. Early Classi�cation on Time Series
(ECTS) [33] is an algorithm that relies on clustering, as well as,
the 1-Nearest Neighbors (1-NN) search, to perform accurate and
early classi�cation. In detail, �rst the 1-NN set of each time-series
is calculated. Based on that set, the algorithm follows the Reverse
Nearest Neighbors (R-NN) approach, which in a sense shows how
many time-series consider the examined one as a nearest neigh-
bor. Based on the consistency of the R-NN set for each di�erent
subsequence of the time-series, ECTS computes the minimum
prediction length for each time-series that represents how many
time-points are required for the time-series to act as a reliable
classi�er. First, the time-series are clustered using agglomera-
tive hierarchical clustering [31] based on Euclidean distances.
The minimum prediction length of each cluster is considered
and appointed to each time-series in the cluster. During the test
phase, time-series are paired with NN, using initially only the
�rst time-point and increasing through each iteration, until the
time-series they pair with has minimum prediction length less
or equal to that time-point’s position.

TRIGGER [4] is another algorithm that uses clustering in com-
bination with a cost function to estimate if a time-series can
provide a trustworthy result. The time-series are grouped into
clusters using k-means [31] based on Euclidean distances. For
each cluster k and time-step t ∈ [1, . . . ,T ], a Multilayer Percep-
tron [31] hkt is trained using time-series of length t from the clus-
terk . When a new time-series arrives, a “membership” probability
is calculated to appoint it to a cluster and, based on the cluster
and the length of the time-series, a prediction is performed. The
results of the classi�er are handled with a cost function, which
is calculated for every time-point between the current and the
last of the time-series. If the cost function returns a value of zero
the result of the classi�er is deemed safe and is returned along
with the size of the incomplete time-series up to the currently ex-
amined time-step. We choose to incorporate the ECTS algorithm
in our evaluation since, similarly to EDSC, it is one of the oldest
and most known approaches for early time-series classi�cation.

2.3 Arti�cial Neural Networks-based
Approaches

First of all, a typical ANN-based approach performs time-series
classi�cation given data in the full-length time-series. However,
this can be tackled on a higher level, by supplying to the in-
put only parts of the time-series, thus making them capable of
conducting ETSC. We refer to two cases in this category.

The Multivariate LSTM-FCNs (MLSTM-FCN) [18] method uti-
lizes neural networks and operates on multivariate time-series.
This is actually an extension of the original algorithm LSTM-
FCN [17], which supported only univariate datasets. Both algo-
rithms duplicate the input and pass the data to two sub-models:
The �rst sub-model consists of three convolutional neuron lay-
ers. The use of CNNs is widely adopted in regular time-series
classi�cation [37], since it extracts important features from se-
quences of data that often derive from imagery. In the described
model, data that exit from each of the �rst two layers are �rst
batch normalized [15] and then passed to an activation function,
i.e. a Recti�ed Linear Unit (ReLU). In order to maximize the ef-
�ciency of the model on multivariate time-series, the activated
output is also passed into a squeeze and excitation block [13].
A squeeze and excite network consists of a global pooling layer
and two dense layers that give to each variable of the time-series
a unique weight, so that to increase the sensitivity of predic-
tions. The second sub-model, consists of a masking layer and
the output is passed on an attention based LSTM. LSTM [12]
is a Recurrent Neural Network model, popular in time-series
classi�cation, because of its ability to remember inter time-series
dependencies with minimal computational cost and high accu-
racy for time-series of length less than a thousand time points [2].
Attention based LSTMs are variations of the normal LSTMs, with
increased computational complexity, which nevertheless results
to increased overall performance. The output of the two sub-
models is concatenated and passed through a dense layer with
as many neurons as the classes, and via a softmax activation
function predictions as a probabilistic output are provided.

Another similar approach is the Multi-Domain Deep Neural
Network (MDDNN) [14] algorithm, which utilizes simple neu-
ral networks based on the same principles as the previous one.
However, this algorithm consists of two sub-models which are
identical with respect to their structure, but di�er on the input
they receive. The �rst model takes as input the z-normalized
raw time-series represented on the time domain, and the sec-
ond takes as input the z-normalized fast-fourier transform of
the time-series represented on the frequency domain. Both mod-
els consist of two CNN layers. After each layer the output is
again batch normalized and passed onto a one-dimensional max
pooling layer, activated with a ReLU layer. The output of each
model is then concatenated, �attened, and passed through two
dense layers. Finally a softmax layer is applied, just as in the
MLSTM-FCN. We selected the MLSTM-FCN for our evaluation,
since there are much more details available for this particular
approach than others. Also, it is worth noting that the authors
provide respective source-code and datasets to be used by the
community.

3 DATASETS
In this section, we describe the datasets used in our evaluation,
i.e., the publicly available UCR [5], as well as two new ones, from
the domains of life-sciences and maritime. Note that, instances
included from the publicly available collection are univariate,
while the two new cases are both multivariate. Also, since not
every selected algorithm is designed towork onmultivariate time-
series, we implemented a simple voting method for classi�cation.
This applies to the ECTS, EDSC, TEASER, and ECEC algorithms.



3.1 Dataset of cancer cell simulations
This dataset includes the count of tumor cells population during
the administration of speci�c drug treatments as resulting from
large-scale model exploration experiments. Each time-series rep-
resents one simulation experiment of a speci�c drug treatment
con�guration, which di�ers from the others based on a set of
con�gurable parameters, such as the time of administration, the
duration, and the drug concentration. A time-point of each in-
stance corresponds to three di�erent integer values, indicating
the number of Alive, Necrotic and Apoptotic cells. The time-series
are preclassi�ed as interesting or non-interesting, based on if the
drug treatment was e�ective or not, according to a particular clas-
si�cation rule that was de�ned by domain experts. The dataset
consists of 644 time-series, each having 48 time-points. The time-
series instances included in the dataset were created by executing
a parallel version of the PhysiBoSSv2 simulator.1

Since the dataset originates from large-scale simulation ex-
periments oriented to drug treatment discovery, the classes are
rather imbalanced. Speci�cally, the con�gurations that produced
interesting time-series constitute the 20% of the dataset, while
the remaining 80% account for non-interesting cases. Moreover,
many interesting and non-interesting examples tend to be very
similar during the early stages of the simulation, until the drug
treatment takes e�ect, which, as observed, is usually after the
�rst 30% of the time-points of the time-series. This fact makes the
dataset an interesting benchmark, since it is nearly impossible to
obtain accurate predictions in less time than this.

3.2 Dataset of vessel position signals
The maritime dataset contains data of nine di�erent sea vessels
that cruise around the port of Brest, France. This dataset is derived
from [23, 25]. Each measurement corresponds to a vector of val-
ues for longitude, latitude, speed, heading, course over ground of
a vessel at a given time-point. The time-series are fragmented to
a speci�c length, and divided into two classes, based on whether
the ship entered or didn’t enter this particular port during the
time course of the corresponding time-series fragment. In total,
there are 5249 instances of 30 time-points each.

4 EXPERIMENTAL RESULTS
4.1 Evaluation Metrics
For our evaluation we use �ve well-known metrics.

Earliness. Earliness counts how many time-points were re-
quired to make the �nal prediction for each time-series.

Earliness =
consumed time series lenдth

total lenдth o f timeseries

Accuracy. Accuracy is translated to how many time-series
were classi�ed correctly during the testing process.

Accuracy =
number o f correct predictions

number o f test instances

F1-score. F1-score is the harmonic mean of precision and recall:

F1-score =
tp

tp +
1
2
(f p + f n)

where tp, f p, and f n are the true positives, false positives, and
false negatives respectively.

1https://github.com/xarakas/spheroid-tnf-v2-emews

Harmonic Mean. Harmonic mean is a metric proposed in [30]
and it represents the Pythagorean harmonic mean between earli-
ness and accuracy.

HarmonicMean =
2 · (1 − earliness) · accuracy

(1 − earliness) · accuracy

Note that the algorithmswere evaluated using 5-fold cross-validation
on the two real-world datasets.

Training and Testing times. Measured in minutes and seconds
respectively.

4.2 Comparison of ETSC Approaches
We present results from an evaluation of 5 state-of-the-art algo-
rithms, i.e, EDSC, ECTS, TEASER, ECEC, and MLSTM-FCN. The
implementations were readily available, except for ECTS, which is
a custom implementation. In particular, ECEC as well as TEASER
are written in Java, while ECTS and MLSTM-FCN in Python, and,
�nally, EDSC in C++. The algorithms were tested using 5-fold
cross validation for the maritime and biological datasets. The
results were run on a server with an Intel Xeon E5-2630 2.60GHz
processor, with 25-cores and 252 GB RAM.

Sincemost algorithms don’t support multivariate time-series, a
voting method was applied. According to the voting method, clas-
si�ers are trained, and tested on each of the folds, but separately
for each dimension of the input vector shape. Upon collecting
each of the outputs, the most frequent or voted prediction was
chosen, however, assigned with the worst earliness among them.
In the case of equal votes among classi�ers, the earliest one made
is selected. MLSTM-FCN is tested on the [40%, 50%, 60%] of the
time-series length in each dataset, and the length with the best
results based on harmonic mean is chosen, for each dataset indi-
vidually. The number of LSTM cells is set to 8 for all experiments
as default. For TEASER, S is set to 10 for the biological and mar-
itime case whereas for the UCR dataset is �xed to 20. The code
of our testing framework is available publicly, accompanied with
the respective datasets and algorithm con�gurations.2

It should be noted that �g. 1 presents for the biological and
maritime cases using the 5-fold cross validation over the multi-
variate datasets. Also for the UCR datasets, each entry is a dataset
and the F1-Score bar represents the average F1-score from all
dataset’s classes. The training and testing time plots were made
using log-scale on the y-axis.

ECTS, as one of the older and simpler approaches in the ETSC
algorithmic ‘arsenal’, has considerably high training times, an
undesired characteristic that results to the algorithm being unable
to provide results within several hours. In particular, for the
maritime dataset, this algorithm did not progress after 48 hours
of execution. This can be explained by the fact that ECTS uses
1-NN as the main procedure behind the early classi�cation. 1-NN
requires to calculate Euclidean distances between all time-series,
resulting to very high computation times for big datasets both
in length and size. One notable example is the StarLightCurves
dataset, which contained 1000 training time-series of length 1024,
resulting to more than 65 hours of training and testing times.
However, for the biological dataset (�g. 1a), the computation
time was on average around 30 minutes per fold. It reaches at
top accuracy and over 90% F1-scores which shows that ECTS can
successfully tackle the class imbalance.

EDSC, the �rst approach to propose the use of sub-sequences
for early time-series classi�cation, is also struggling with time
2https://github.com/Eukla/ETS
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Figure 1: Evaluation measures (top) and training/testing times (bottom) for each dataset and each of the algorithms.

complexities. In fact, training and testing times are greatly in�u-
enced by the size of the dataset and, more importantly, the length
of the time-series. Having lengths of more than a thousand time-
points, and dataset sizes larger than a hundred time-series leads
to increased computation times, e.g. the Haptics dataset, which
has 155 time-series of size 1093 time-points and training times of
more than 24 hours. For the available biological dataset the per-
formance is high in terms of accuracy. However, the data usage is
also very high. For the maritime (�g. 1b), the performance is sub-
optimal, since F1-score is relatively low and the earliness reaches
to 100%. When EDSC is unable to �nd a prediction, returns the
most frequent class label with the maximum data-usage. EDSC
for both the biological and the maritime dataset was unable to
make predictions and returned the default answer.

We can observe increased earliness values for ECTS and EDSC.
Recall that the biological dataset consists of 3 variables, the Alive,
Necrotic and Apoptotic cell counts at each time-step. While for
the Alive and Necrotic variables numerical value di�erences
exist between di�erent class instances, for the Apoptotic, the
number of cells is more consistent in both classes. This creates
ambiguity for a simple classi�er such as ECTS and EDSC, resulting
in very delayed classi�cation when using the Apoptotic variable
as training. During a test instance, predictions with minimal data
usage are produced by the classi�ers trained with the Alive and
Necrotic subseries but delayed classi�cations are made from the
Apoptotic trained ones. The voting classi�cation method chooses
the most voted prediction, which is usually the one made from
the Apoptotic classi�er, and assigns as earliness the largest value
among the three options, which in this dataset is the one from
Apoptotic. For this reason earliness becomes worse.

Up next, we have the ECEC method. As already explained, the
ECEC spilts the dataset to pre�xes and computes a con�dence
threshold based on the a priori probability of a prediction being

correct. For the biological dataset, the ECEC has the highest accu-
racy with very low length usage, being the best one in harmonic
mean among the evaluated algorithms. However, this could be
considered as a misleading result due to the weakness of the
con�dence threshold as a measure of classi�cations reliability,
and the strong predisposition of the algorithm to choose the
majority class as a prediction over the minority. Because the
80% of the dataset is considered as non-interesting, even if all
predictions are the same, high accuracy can be attained. Note
though that the F1-Score does not su�er from this. For the Mar-
itime dataset, where the classes are more balanced, the harmonic
mean of ECEC is signi�cantly low, with about 80% data usage. It
should be noted that the F1-Score is on the higher end, at about
92% which is explained by increased data usage. Times increase
signi�cantly with the size of each dataset, since for datasets such
StarLightCurves training needed more than 5 hours.

TEASER, usesWEASEL just like ECEC but is shown to perform
di�erently. The computation times for the biological, maritime
and UCR dataset are very low. Testing times are also the lowest.
As one of the most promising presented algorithm in this paper,
achieves steadily over 80% accuracy, with less than 50% earliness
on all datasets. Also this was achieved by conducting multivariate
time-series classi�cation using the simple voting method. The
3-step prediction process containing, the transformation and lo-
gistic regression, the One-Class SVM, and the check of prediction
consistency along with the hyperparameter searching step, give
reliable results, very quickly, remaining una�ected from dataset
sizes. A weakness of TEASER is the high data usage, in the Inli-
neSkate dataset of UCR (�g. 1c) for example, which, nevertheless,
can be tackled by increasing the available RAM. Also the F1-Score
is high but still has room for improvement.

Lastly, MLSTM-FCN uses Deep Neural Networks to make pre-
dictions. Since we essentially run MLSTM-FCN 3 times for each



dataset of the UCR, for the [40%, 50%, 60%] of the dataset, both
training and testing times are generally high for the UCR. How-
ever, for the two distinct datasets using 40% of the time-series
had the minimal trade-o� in accuracy and earliness. For each
fold, the MLSTM-FCN, proved the biggest divergence of accuracy.
Weights are randomly initialized at the start of each run, and
Neural Networks are generally sensitive to dataset information,
sometimes leading to erratic results. Nevertheless, MLSTM-FCN
shows potential in both unique datasets with very low computa-
tion times, good accuracy, and early predictions. The F1-Score
is also high on average except for a few particular folds and
datasets. Also, for the UCR datasets, MLSTM-FCN shows some
low accuracies compared to other algorithms. Insu�cient results
derive from the lack of hyper parameter optimization that has
not yet been integrated on the used MLSTM-FCN for univariate
and multivariate time-series. For the LSTM layer, we used the
default 8 cells. Using a grid search for cells might improve UCR
results, but would drastically increase computation times.

5 SUMMARY AND FURTHERWORK
In this work, we evaluated state-of-the-art for ETSC on pub-
licly available datasets and newly introduced ones originating
from real-world applications. The results were very positive,
since all the algorithms achieved over 80% accuracy, with the
most recently introduced ones using less than half of the avail-
able time-points, i.e., producing accurate predictions quite early.
Each algorithm performed slightly di�erently on each dataset,
but TEASER and MLSTM-FCN provided a stable and good per-
formance on both classi�cation precision and earliness, in all
datasets. We also provide a public repository with all of the algo-
rithms and datasets used, therefore allowing to test and choose
the most appropriate algorithm for new applications.

A possible extension of this suite is the integration of online
data streams to preform time-series classi�cation, allowing to
test such algorithms in realistic settings.
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