
Knowledge Infused Policy Gradients for Adaptive
Pandemic Control
Kaushik Roy, Qi Zhang, Manas Gaur and Amit Sheth

Artificial Intelligence Institute, University of South Carolina

Abstract
COVID-19 has impacted nations differently based on their policy implementations. The effective policy
requires taking into account public information and adaptability to new knowledge. Epidemiological
models built to understand COVID-19 seldom provide the policymaker with the capability for adaptive
pandemic control (APC). Among the core challenges to be overcome include (a) inability to handle a
high degree of non-homogeneity in different contributing features across the pandemic timeline, (b)
lack of an approach that enables adaptive incorporation of public health expert knowledge, and (c)
transparent models that enable understanding of the decision-making process in suggesting policy. In
this work, we take the early steps to address these challenges using Knowledge Infused Policy Gradient
(KIPG) methods. Prior work on knowledge infusion does not handle soft and hard imposition of vary-
ing forms of knowledge in disease information and guidelines to necessarily comply with. Furthermore,
the models do not attend to non-homogeneity in feature counts, manifesting as partial observability in
informing the policy. Additionally, interpretable structures are extracted post-learning instead of learn-
ing an interpretable model required for APC. To this end, we introduce a mathematical framework for
KIPG methods that can (a) induce relevant feature counts over multi-relational features of the world, (b)
handle latent non-homogeneous counts as hidden variables that are linear combinations of kernelized
aggregates over the features, and (b) infuse knowledge as functional constraints in a principled manner.
The study establishes a theory for imposing hard and soft constraints and simulates it through experi-
ments. In comparison with knowledge-intensive baselines, we show quick sample efficient adaptation
to new knowledge and interpretability in the learned policy, especially in a pandemic context.

Keywords
adaptive pandemic control, knowledge infusion, functional policy gradient, interpretability

1. Introduction

Reinforcement learning (RL) is one of the main techniques to solve sequential decision making
problems. When combined with deep neural networks, RL has achieved impressive perfor-
mance in many applications, including robotics [1], game playing [2], recommender systems
[3], etc. As RL fundamentally solves decision making problems via trial and error, a major
drawback of RL is the huge amount of interactions required to learn good decision policies,
which can lead to prohibitive cost and slow convergence.

The inefficiency of RL has motivated studies on incorporating expert domain knowledge
when solving decision making problems. In this direction, prior work has largely focused on

In A. Martin, K. Hinkelmann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen (Eds.), Proceedings of the AAAI
2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021) - Stanford
University, Palo Alto, California, USA, March 22-24, 2021.
�

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the setting of imitation learning (IL), in which knowledge is represented through expert demon-
strations, i.e., the expert demonstrates the desired behavior (rather than specifying the reward
signal) in various scenarios stemming from a decision making problem. Such demonstrations
can be used to either directly learn a classifier that mimics the expert’s behavior, known as
behavior cloning [4], or infers the reward function that rationalizes the expert’s behavior and
is then optimized through RL, known as inverse RL [5]. The performance of IL relies on the
quality of expert demonstrations. Expert demonstrations are often not exhaustive to provide
supervision for all kinds of scenarios that might be countered. Moreover, sometimes only a
suboptimal expert is available due to human’s bounded rationality. Therefore policies learned
with IL are inferior to the policies learned with RL that uses the problem’s original reward.
These limitations of IL has further motivated recent work that attempts to combine RL and IL.
These approaches leverage both the original reward and expert demonstrations to learn better-
than-expert policies faster than RL-only approaches. For example, AlphaGo is pretrained with
human expert moves and then refined via RL [2].

This paper focuses on combining RL and expert knowledge to solve sequential decision mak-
ing problems, which we term as knowledge infused RL. Different from the aforementioned
prior works, we aim to deal with the following important, yet understudied challenges in
knowledge infused RL (KIRL). 1) Partial observability and non-stationarity. Many real-world
domains modeled as sequential decision making problems are partially observable. Moreover,
there are often exogenous factors that are un-modeled in the input features, making the under-
lying decision making problem non-stationary. Most existing works in KIRL (e.g., combining
RL and IL) ignore this and apply algorithms developed with the assumption of full observability
and stationarity, while we aim to explicitly consider partial observability and non-stationarity
in our KIRL method. 2) Structured knowledge representation. The IL framework assumes
that knowledge is represented by expert demonstrations of low-level behavior, yet low-level
demonstrations are difficult to obtain in many domains. Instead, human knowledge is often
represented in a structured, high-level manner. As an example, consider the guidelines of a
public health agency for a pandemic. We argue that leveraging such structured knowledge
requires structured input representation for the RL algorithm. 3) Interpretability. We aim to
develop approaches such that both the process of leveraging expert knowledge and the result-
ing learned policy are interpretable. The interpretability for KIRL is required in high-stakes
domains such as public health and yet largely ignored in prior works.

Adaptive Pandemic Control This paper focuses on the pandemic control setting that man-
ifests all of the three aforementioned challenges. Consider a scenario where a notional city is
in a pandemic, with the following characteristics: people living in homes, working at offices,
and shopping at places, all connected in a geographical map. The city’s government aims to
optimize its pandemic control policy with KIRL to strike a balance between public health and
economic resiliency. The true number of infected people is only partially observable to the gov-
ernment, as exhaustive testing is often not possible. In general, the course of the pandemic is a
non-stationary process due to exogenous factors, such as people flowing into a certain area for
some short-term local event, an abrupt decrease in the mortality rate of the disease due to new
medications, etc. The partial observability and non-stationarity result in a non-homogeneous

counting process of the observed number of infected individuals. The knowledge of experts
consulted is often formatted into high-level guidelines; for example, shopping area A should be
locked down before shopping area B since locking down B will result in more severe economic
consequences. In order to incorporate such guidelines, the input to the KIRL algorithm needs
to be represented in an interpretable manner. Further, the resulting pandemic control policy
learned by KIRL needs to be also interpretable.

Related Work For APC, during COVID-19, we have identified specific challenges that in-
clude the agent handling relational features, non-homogeneity in the feature counts, and learn-
ing non black-box interpretable structures through knowledge infusion [6]. We believe that the
inability to handle these issues by previous approaches can pose bottlenecks in agent models
for assisting policymakers. Our study aims to investigate our formulation in handling these
specific challenges through knowledge infusion in functional space since we specify knowledge
as functional constraints. There is a rich body of work on RL concerning relational feature-
based functional spaces [7, 8]. However, they do not use knowledge infusion, handle count
features, or deal with partial observability in the state. Poisson dependency networks have
been proposed to handle multivariate count data but do not consider non-homogeneity in the
counts [9]. Odom et al., present a way to incorporate knowledge constraints in relational func-
tion spaces that can be used in conjunction with the work of Kersting et al., and Hadiji et al.,
to achieve knowledge infusion in Policy Gradients [10, 7, 9] for pandemic control. Our work
most closely resembles this, and we, therefore, employ it as our evaluation baseline. We make
key and necessary modifications to the agent’s approximation architecture in moving from
trees to linear basis, using kernel aggregates to handle non-homogeneity, partial observability
and most importantly, development of a mathematical framework for hard and soft imposi-
tion of knowledge as functional constraints that are applicable in a wide range of scenarios
in APC. Also, we prove that the baseline is an instance of our framework. Other approaches
for knowledge infusion in functional spaces include the use of cost sensitivity constraints in
imbalanced data, and monotonicity constraints which are not directly applicable to our setting
[11, 12]. The use of monotonicity constraints in preference-based knowledge infused RL can
be an interesting extension to our work.

Contribution Our contribution is two folds: First, we create an agent-based pandemic sim-
ulator that models the interactions between individuals that move across specific locations
within a community, such as homes, offices, shops, hospitals, etc. The spread of the disease is
simulated using the typical SIR model. Interventions like locking down a specific location and
increasing testing are the control measures modeled in the simulator. The pandemic simulator
manifests all of the three motivating challenges. Second, we develop a novel KIRL algorithm,
Knowledge Infused Policy Gradient, that addresses the challenges. To incorporate structured
knowledge format and support interpretability, the policy is derived from learned relational
features using an interpretable 2-layer neural network. An example of such a relational fea-
ture is - There exists a residential neighborhood, a person living in a home, and shop in the same
route with many people shopping at this place, where a potential intervention is locking down such
shops. The partial observability is addressed by aggregating the learned relational features over

Figure 1: The knowledge infusion and analysis pipeline that begins with the agent interacting with
the simulator to learn the policy, constructing a state representation and utilizing knowledge through
KIPG to learn a knowledge infused agent policy for APC scenarios. This policy is then evaluated for its
efficacy (% of test cases passed) and interpretability (readable and meaningful).

time. Further, expert knowledge is infused into the policy gradient-based optimization in an
online manner so that the knowledge can be adjusted whenever necessary to adapt to the non-
stationary course of the pandemic. Figure 1 shows the pipeline of our KIRL algorithm, which
will be described in detail in Sections 2 and 3.

2. Preliminaries

2.1. Policy Gradients in Functional Space

In the standard RL framework, a Markov Decision Process (MDP) is defined by a set of states
𝑠 ∈ 𝑆, actions 𝑎 ∈ 𝐴, state transition probabilities on taking actions 𝛿(𝑠, 𝑎, 𝑠

′

) ∶ 𝑆×𝐴×𝑆 → [0, 1],
and a reward model 𝑟(𝑠, 𝑎) ∶ 𝑆 ×𝐴 → 𝐑. A common way to specify the policy 𝜋 (𝑠, 𝑎), to execute
in state 𝑠, is using a Boltzmann distribution: 𝜋 (𝑠, 𝑎) = 𝑒

𝜓 (𝑠,𝑎)

∑
𝑎
′ 𝑒

𝜓 (𝑠,𝑎
′
)

, where𝜓 (𝑠, 𝑎) = 𝜃𝐓Φ(𝑠, 𝑎), where

Φ(𝑠, 𝑎) represents features about (𝑠, 𝑎), 𝜃 are the parameters and 𝑎
′

∈ 𝐴. Policy gradients seek
to learn the parameters 𝜃 , that optimize the value of a policy:

𝜕𝜈𝜋

𝜕𝜃

= ∑

𝑠

𝑑
𝜋
(𝑠)∑

𝑎

𝜕𝜋 (𝑠, 𝑎)

𝜕𝜃

.𝑄
𝜋
(𝑠, 𝑎) (1)

Here, 𝑑𝜋 is the distribution from which the states are drawn and 𝑄
𝜋 is the Q-value function

corresponding to policy 𝜋 . The 𝑄𝜋 (s,a) function is estimated using state-action pair trajec-
tories from a simulator, by Monte Carlo methods or function approximation. Kersting et al.,
show that 𝜃 parameterization of the policy is difficult to achieve owing to feature selection in
continuous and relational environments, in which there are infinitely many possibilities [7].

Thus we employ gradient ascent in functional space to learn the function 𝜓 (𝑠, 𝑎) directly, that
rely on learned relational features (see Section 3.1). The learning of these features overcomes
the problem of pre-defining count features, and thereby providing finer grained control. We
start with an initial function 𝜓0(𝑠, 𝑎) and add 𝑘 = 1 − 𝐾 functions, 𝛿𝑘(𝑠, 𝑎) to fit the gradients:
𝜕𝜈𝜋 /𝜕𝜓𝑘−1(𝑠, 𝑎) where 𝜓𝑘(𝑠, 𝑎) = 𝜓0(𝑠, 𝑎) +∑

𝑘−1

𝑗=1
𝛿𝑗(𝑠, 𝑎).

In the parametric setting we use the gradient specified in Equation 1. Here we make the
change from 𝜃 to the function 𝜓 (𝑠, 𝑎), we need the form for the gradient 𝜕𝜋 (𝑠,𝑎)

𝜕𝜓 (𝑠,𝑎)
, as this is

the only component of the gradient dependent on 𝜓 (𝑠, 𝑎), for each action 𝑎 ∈ 𝐴. We instead
compute the gradient as: 𝜕𝜋 (𝑠,𝑎)

𝜕𝜓 (𝑠,𝑎)
≡ 𝜋 (𝑠, 𝑎)

𝜕 log 𝜋 (𝑠,𝑎)

𝜕𝜓 (𝑠,𝑎)
. Using the Boltzmann distribution form for

𝜋 (𝑠, 𝑎) =
𝑒
𝜓 (𝑠,𝑎)

∑
𝑎
′ 𝑒

𝜓 (𝑠,𝑎
′
)

, this gradient becomes: 𝜕 log 𝜋 (𝑠,𝑎)

𝜕𝜓 (𝑠,𝑎)
= 𝐼 (𝑠, 𝑎) − 𝜋 (𝑠, 𝑎). This has a very intuitive

form, as it defines the gradient between, if 𝑎 was taken in 𝑠 given by the indicator function
𝐼 (𝑠, 𝑎), and the probability of taking 𝑎 in 𝑠 according to our model given by 𝜋 (𝑠, 𝑎).

2.2. Gradient boosted 2-layer Neural Network Learning

In this paper, the agent uses a Neuro-Symbolic approximator for the policy by learning a set
of linear models. Each linear model 𝛿𝑘(𝑠, 𝑎) can be viewed as a basis function for 𝜓 (𝑠, 𝑎) ap-
proximation. To prevent the correlation between them, the sample state action pairs will be
sub-sampled each time. The resulting policy will be a linear combination of these basis func-
tions. We move away from tree-based models, for the following reasons: 1) The basis functions
can handle continuous, discrete, and relational inputs without extensive pre-processing or bin-
ning. 2) The final linear combination 𝜓 (𝑠, 𝑎) can be laid out as a 2-layer Neural Network(NN),
for which the weights in the 2nd layer are unity. The network weights can be refined through
backpropagation. Beubeck et al., show that a 2-Layer NN with RELU activations are able to ap-
proximate arbitrary functions with high precision and𝑂(𝑁

𝑑
) neurons in the hidden layer, where

𝑑 is the dimension of the input and 𝑁 is the number of data samples [13]. Since the dimension-
ality 𝑑 in our setting is high and 𝑁 , i.e. size of the data is typically low, we can use just a few
linear basis functions (neurons) in the hidden layer to achieve good approximation. 3) Each
basis function 𝛿𝑘(𝑠, 𝑎) has interpretable structure. Interpretability theory for NN structures has
recently been well studied and we require that the agent policy be robust and interpretable for
applications such as APC. Dombrowski et al., show that a target interpretation on the decision
making by the NN 𝜋 (𝑠,𝑎), given by the network weights (heat map), can be manipulated in
terms of its features Φ(𝑠, 𝑎) and yet still yield almost the same interpretation 𝜋 (𝑠,𝑎) [14]. This
is related to the curvature of the output manifold of the NN. They propose to alleviate this
issue by replacing RELU activations with soft-plus non linearities with a small parameter 𝛽
as: 1

𝛽
log(1 + 𝛽Φ(𝑠, 𝑎)). With this modification, the weights are more robust to perturbations or

modifications in the input (𝑠, 𝑎).

3. Methodology

3.1. Relational Feature Extractor and Aggregator Kernel

We learn the relational features (clauses) over of the stateΦ(𝑠, 𝑎) using standard and well under-
stood Inductive Logic Programming (ILP) methods [15]. The inductive bias is provided in the
form of Aleph modes which can be automatically learned from a schema of the world [16, 17].
This bias is included to constraint the search to not include features that do not make sense. For
example, to decide on locking down a shop we would not like an irrelevant feature that does not
actually contain the shop or anything related to it. Furthermore, we count the number of ex-
amples over the features that make up Φ(𝑠, 𝑎) for example the feature: same(State,Res,Shop)
∧ pin(State,Person,Home) ∧ hin(State, Home,Res) outputs the number of persons, homes,
shops, and residential areas that satisfy this feature description, where the feature denotes:
There exists a residential neighborhood and shop in the same route and a person living in a home
that is part of the residential neighborhood. We make use of a minimal threshold of mutual
information to satisfy along with a maximum clause length for picking the features Φ(𝑠, 𝑎).

It is likely in APC, that 𝜋 (𝑠, 𝑎) is a process that depends on counts 𝜆ℎ(𝑠,𝑎) over latent state
features ℎ(𝑠, 𝑎), such as number of persons ill i.e. 𝜆Φ(𝑠,𝑎) = 𝑓 (𝜆ℎ(𝑠,𝑎)). This creates partial ob-
servability, and thus the entire observed data trajectory history = {(𝑠1, 𝑎1), (𝑠2, 𝑎2).. (𝑠𝑇 , 𝑎𝑇)}

influences counts 𝜆Φ(𝑠,𝑎) and in turn the policy 𝜋 (𝑠, 𝑎). Hadiji et al., present a way to handle
multivariate count models, although not latent counts [9]. However, their model does not
take into account non-homogeneity in the counts that is also characteristic of APC scenarios.
Hence, due to expected non-homogeneity, the count can be modeled as:

𝜆
𝑇

Φ(𝑠,𝑎)
= 𝜇𝑇 +

𝑇−1

∑

𝑡=1

𝑤𝑡(𝜆
𝑡

Φ(𝑠,𝑎)
, 𝜆

𝑇−1

Φ(𝑠,𝑎)
),

where 𝜇𝑇 models a base count (bias). We aggregate count features that make up over the his-
tory using this type of kernel to handle partial observability and non-homogeneity in
the counting process. The Kernel approach inspired by a Hawkes process model 1, acts as a
method to model a homogeneous count process in the local neighborhood around 𝑇 , where the
non-homogeneity arises due to a union of several such locally homogeneous processes. Addi-
tionally, it has been studied before that the limiting distribution of a binary outcome process
over an infinite horizon is a counting process, for example binomial to Poisson [18]. We can
similarly use the same principle in reverse to model the policy as a binary outcome process
over each discrete (𝑠, 𝑎), at time 𝑇 . We thus model the policy 𝜋 (𝑠, 𝑎) at time 𝑇 as a binary out-
come problem, using relational count features from the trajectory history , up to time 𝑇 − 1,
aggregated using kernel = 𝑒

−(𝑥−𝑦)
2

3.2. Bayesian Knowledge Infusion

Using a relational description, we can mathematically formalize knowledge as specifying con-
straints over the parameters 𝜃 . More precisely, knowledge is specified as a set of 𝑀 functional

1https://mathworld.wolfram.com/HawkesProcess.html

https://mathworld.wolfram.com/HawkesProcess.html

constraints 𝐹𝐶𝑖 , where 𝑖 ∈ [1, 𝑀] for each action 𝑎 ∈ 𝐴 as: ∧𝑓𝑖(𝑠) ⇒ (𝑃 (𝜃) = 𝑝𝑖(𝜔𝑖 , 𝜃)), which
says that functional constraints are applied in probability space to the parameters, if the con-
junction of conditions, ∧𝑓𝑖 are satisfied in state 𝑠. If 𝑃 (𝜃) is high, then action 𝑎 is preferred in 𝑠

when ∧𝑓𝑖 applies. In functional space, 𝜓 (𝑠, 𝑎) is constrained in place of 𝜃 . We will denote 𝐃 to
be the data containing (𝑠, 𝑎) pairs from trajectories. 𝜓 (𝑠, 𝑎) is updated according to Bayes rule
that defines the posterior as:

𝑃 (𝜓 (𝑠, 𝑎)|𝐃) =

𝑃 (𝐃|𝜓 (𝑠, 𝑎))𝑃 (𝜓 (𝑠, 𝑎))

∫
𝜓 (𝑠,𝑎)

𝑃 (𝐃|𝜓 (𝑠, 𝑎))𝑃 (𝜓 (𝑠, 𝑎))

Taking log on both sides we get log 𝑃 (𝜓 (𝑠, 𝑎)|𝐃) ∝ log 𝑃 (𝐃|𝜓 (𝑠, 𝑎)) + log 𝑃 (𝜓 (𝑠, 𝑎)). For our
problem the distribution 𝑃 is the policy 𝜋 , that we trying to learn. Therefore, 𝑃 (𝐃|𝜓 (𝑠, 𝑎)) =
𝜋 (𝑠, 𝑎) =

𝑒
𝜓 (𝑠,𝑎)

∑
𝑎
′ 𝑒

𝜓 (𝑠,𝑎
′
)

, and log 𝑃 (𝜓 (𝑠, 𝑎)) are the 𝜔𝑖’s corresponding to each 𝐹𝐶𝑖 , of which there are

𝑀 . We assume independence among the 𝐹𝐶𝑖’s. Instead of using the data likelihood 𝑃 (𝐃|𝜓 (𝑠, 𝑎))
as the functional form of policy 𝜋 , we now use the Bayesian posterior, 𝑃 (𝜓 (𝑠, 𝑎)|𝐃). This gives
us a new form for policy: log 𝜋 (𝑠, 𝑎) ∝ log(

𝑒
𝜓 (𝑠,𝑎)

∑
𝑎
′ 𝑒

𝜓 (𝑠,𝑎
′
)

) + log 𝑃 (𝜓 (𝑠, 𝑎)). Using the Laplace distri-

bution form i.e. 𝑝𝑖(𝜓 (𝑠, 𝑎), 𝜔𝑖) = 𝑒

−|𝜓 (𝑠,𝑎)−𝜔
𝑖
|

𝑏

2𝑏
and setting 𝑏 = 1, we now derive the new knowledge

infused functional gradient 𝜕 log 𝜋 (𝑠,𝑎)

𝜕𝜓 (𝑠,𝑎)
, when 𝐹𝐶𝑖 applies in 𝑠 when learning model for action 𝑎,

as follows:

𝜕 log 𝜋 (𝑠, 𝑎)

𝜕𝜓 (𝑠, 𝑎)

=

𝜕 log(
𝑒
𝜓 (𝑠,𝑎)

∑
𝑎
′ 𝑒

𝜓 (𝑠,𝑎
′
)

) + log 𝑃 (𝜓 (𝑠, 𝑎))

𝜕𝜓 (𝑠, 𝑎)

= 𝐼 (𝑠, 𝑎) − 𝑃 (𝐃|𝜓 (𝑠, 𝑎) − 𝐬𝐢𝐠𝐧(𝜓 (𝑠, 𝑎) − 𝜔𝑖)
(2)

where, −𝐬𝐢𝐠𝐧(𝜓 (𝑠, 𝑎) − 𝜔𝑖) is 1 when 𝐹𝐶𝑖 really prefers 𝑎 in 𝑠, with 𝜔𝑖 being a large positive
number, and is −1 when 𝐹𝐶𝑖 does not prefer 𝑎 in 𝑠, with 𝜔𝑖 being a large negative number.
With multiple 𝐹𝐶𝑖 , we can write the knowledge infused functional gradient as:

(𝐼 (𝑠, 𝑎) − 𝑃 (𝐃|𝜓 (𝑠, 𝑎))) +∑

𝑖

𝛼𝑖(−𝐬𝐢𝐠𝐧(𝜓 (𝑠, 𝑎) − 𝜔𝑖))

where 𝛼𝑖 can be thought of as a weight on how important we consider 𝐹𝐶𝑖 . It is worth noting
that if we set all 𝛼𝑖 = 𝛼 in Equation 2, we recover the formulation in Odom et al.’s work [10].
We formally state this in Theorem 1, where the proof is omitted due to the space limit. More
generally, 𝑝𝑖(𝜓 (𝑠, 𝑎), 𝜔𝑖) can assume functional forms other than Laplace distributions as well,
depending on domain requirements.

Theorem 1. With 𝜔𝑖 for each Functional Constraint set to ±𝐾 where 𝐾 is the number of learned
basis functions during Functional Gradient Ascent, and all 𝛼𝑖 = 𝛼 ,

(𝐼 (𝑠, 𝑎) − 𝑃 (𝐃|𝜓 (𝑠, 𝑎))) +∑

𝑖

𝛼𝑖(−𝐬𝐢𝐠𝐧(𝜓 (𝑠, 𝑎) − 𝜔𝑖)) = (𝐼 (𝑠, 𝑎) − 𝑃 (𝐃|𝜓 (𝑠, 𝑎))) + 𝛼(𝑛𝑡 − 𝑛𝑓) (3)

𝑛𝑡 is the number of Functional Constraints that agree with the action taken and 𝑛𝑓 is the number
that does not.

3.3. Conditional Functional Gradients for Knowledge Infusion

The Bayesian formulation imposes constraints in a soft way such that the agent gradually
incorporates the knowledge. A second way to incorporate knowledge as functional constraints
that enforces hard imposition, is to use the conditional functional gradient ascent method [19].
In this method, after 𝜓𝑘(𝑠, 𝑎), after 𝑘 stages of boosting, is approximated as 𝜓0(𝑠, 𝑎) +∑𝑘−1

𝑗=1
𝛿𝑗 , a

constrained 𝜓𝑘(𝑠, 𝑎) is obtained by solving the linear program (LP)

𝜓
∗

𝑘
(𝑠, 𝑎) = 𝐚𝐫𝐠𝐦𝐢𝐧

𝜓𝐹𝐶
𝑖
(𝑠,𝑎)

𝜓
𝐓
(𝑠, 𝑎)(𝜋 (𝑠, 𝑎)

𝜕 log 𝜋 (𝑠, 𝑎)

𝜕𝜓 (𝑠, 𝑎)

𝑄(𝑠, 𝑎))

, where 𝜓𝐹𝐶𝑖 (𝑠, 𝑎) are the 𝜓 (𝑠, 𝑎) functions that are constrained to adhere to 𝐹𝐶𝑖 , and 𝜋 (𝑠, 𝑎) =
𝑒
𝜓 (𝑠,𝑎)

∑
𝑎
′ 𝑒

𝜓 (𝑠,𝑎
′
)

. 𝜓𝑘(𝑠, 𝑎) is then recomputed as (1 − 𝛾𝑘)𝜓𝑘(𝑠, 𝑎) + 𝛾𝑘𝜓 ∗

𝑘
(𝑠, 𝑎), where 𝛾𝑘 ∈ [0, 1]. 𝛾𝑘 is a

hyper-parameter that is empirically set and decayed as learning progresses. The form of the
𝐹𝐶𝑖 , is the same as in the Bayesian formulation. Thus these constraints can be infused into the
optimization through conditional functional gradients to handle 𝐒𝐨𝐮𝐫𝐜𝐞,𝐂𝐨𝐬𝐭 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 and
𝐇𝐲𝐛𝐫𝐢𝐝 constraints as well. Any off the shelf LP solver can be used during optimization.The LP
formulation for 𝐹𝐶𝑖 is detailed below:

min ∑

(𝑠,𝑎)∈𝐃

(𝜓𝑘(𝑠, 𝑎))(𝜋 (𝑠, 𝑎)

𝜕 log 𝜋 (𝑠, 𝑎)

𝜕𝜓 (𝑠, 𝑎)

𝑄(𝑠, 𝑎)) s.t. 𝜓𝑘(𝑠, 𝑎) = 𝜔𝑖 , if ∧ (𝑓𝑖(𝑠) = 𝐓𝐫𝐮𝐞) (4)

The LP can also be solved using gradient descent on the Lagrangian constructed as: if ∧(𝑓𝑖(𝑠) =
𝐓𝐫𝐮𝐞)

(𝜓 (𝑠, 𝑎)) = ∑

(𝑠,𝑎)∈𝐃

𝜓𝑘(𝑠, 𝑎)(𝜋 (𝑠, 𝑎)

𝜕 log 𝜋 (𝑠, 𝑎)

𝜕𝜓 (𝑠, 𝑎)

𝑄(𝑠, 𝑎)) − 𝛼𝑖(𝜓𝑘(𝑠, 𝑎) − 𝜔𝑖)

3.4. Combination of Hard and Soft Constraints

In APC, assistive agents are required to comply with general guidelines (hard constraints)
while also benefiting from adapting to knoweldge in a gradual manner (soft constraints). We
can combine the Bayesian formulation with Conditional Functional Gradients to achieve this
type of agent. Thus, first knowledge is specified for soft infusion using 𝐹𝐶𝑠𝑜𝑓 𝑡 = ∧𝑓𝑠𝑜𝑓 𝑡 (𝑠) ⇒

(𝑃 (𝜓 (𝑠, 𝑎)) = 𝑝𝑠𝑜𝑓 𝑡 (𝜔𝑏𝑖𝑎𝑠 , 𝜓 (𝑠, 𝑎))), following which 𝜕 log 𝜋 (𝑠,𝑎)

𝜕𝜓 (𝑠,𝑎)
is computed as (𝐼 (𝑠, 𝑎)−𝑃 (𝐃|𝜓 (𝑠, 𝑎)))+

−𝐬𝐢𝐠𝐧(𝜓 (𝑠, 𝑎)−𝜔𝑠𝑜𝑓 𝑡). Next, hard constraints that the agent has to comply with can be specified
for hard infusion using 𝐹𝐶ℎ𝑎𝑟𝑑 ∧𝑓ℎ𝑎𝑟𝑑 (𝑠) ⇒ (𝑃 (𝜓 (𝑠, 𝑎)) = 𝑝ℎ𝑎𝑟𝑑 (𝜔ℎ𝑎𝑟𝑑 , 𝜓 (𝑠, 𝑎))), which can be
optimized using an LP solver or by solving the Lagrangian: if ∧(𝑓ℎ𝑎𝑟𝑑 (𝑠) = 𝐓𝐫𝐮𝐞)

(𝜓 (𝑠, 𝑎)) = ∑

(𝑠,𝑎)∈𝐃

(𝜓𝑘(𝑠, 𝑎))(𝜋 (𝑠, 𝑎)

𝜕 log 𝜋 (𝑠, 𝑎)

𝜕𝜓 (𝑠, 𝑎)

𝑄(𝑠, 𝑎)) − 𝛼ℎ𝑎𝑟𝑑 (𝜓𝑘(𝑠, 𝑎) − 𝜔ℎ𝑎𝑟𝑑)

In this way, knowledge infusion is carried for the agent to effectively assist policy makers
with both incoming knowledge about the developing situation and compliance with general
guidelines.

ID Feature Description of Clause

1 same(State,Res,Shop)∧pin(State,Person,Home)∧
hin(State,Home,Res)

There exists a residential neighborhood
and shop in the same route and a person
living in a home that is part of the residen-
tial neighborhood.

2 same(State,Shop,Work)∧
pin(State,Person,Home)∧
hin(State,Home,Res)∧same(Shop,Res,Work)

There exists a shop, a workplace, and
a residential neighborhood in the same
route and person living in a home belong-
ing to that residential neighborhood.

3 sopen(State,Shop) There exists a Shop that is open.

Table 1
Some relational features that are learned with their English descriptions. It can be seen that the features
allow finer grained control at the level of individual shops, homes, residences, workplaces, and routes.

4. Experiments and Evaluation

We design a simulator that interacts with the agent. It simulates the pandemic spread in a small
city. The simulator includes information about persons, households, and facilities in the city
namely - residential areas, hospitals, shops, and workplaces. Actions are lock/unlock parts of
the city as well as increase testing by 10%. The reward model is to reduce human fatalities.
We now compare the knowledge infusion methods, with and without feature aggregation. Ta-
ble 1 shows feature examples that stayed consistent after the ILP module across all tasks and
hence were retained for conducting the experiment, where same denotes that the establish-
ments are along the same route, pin denotes person in home, hin denotes home in residential
neighborhood, sopen denotes an open shop, hostpitalized and quarantined denotes persons hos-
pitalized or quarantined, ropen, wopen and hopen denotes residential neighborhood, workplace
and home being open. Here open means not placed under lockdown. Possible actions are to
lockdown or unlock routes, homes, residential neighborhoods, shops, or workplaces and in-
crease testing at these locations. "NilPolicy" is also included as part of the action space. All
features are existentially quantified.

4.1. Comparison of Knowledge Infusion methods

The agent learns by interacting with the simulator to optimize the reward of minimizing in-
fections. It is then subsequently required to adapt to new knowledge about the city map. This
knowledge is provided in the form of prohibition of closing down of certain parts of the city
specified as functional constraints with 𝜔 denoting the constraint strength/importance ad-
judged by the constraint specifier, for example, lockshop(State, Shop):-sopen(State,Shop), -1
and 𝛼 = 1 denoting the confidence of incorporation in terms of trust/validity for the bayesian
infusion technique. For the combined setting, we also use lockshop(State,Shop):-ph(State,Person),
+1 for infusion by Conditional Gradients. The aim is to combine the hard constraint of priority
being given to locking down places of interaction such as shops, if many people are hospital-
ized as there are now fewer beds and the soft constraint of keeping open shops running in order

Trajectories Bayes CFG Co w/o B B-Co

20 0.8 0.85 0.85 0.4 0.79 0.5
50 0.9 0.95 0.85 0.6 0.9 0.65
100 0.94 0.95 0.85 0.7 0.93 0.7

Table 2
Comparison of Different types of knowledge infusion to test sample efficiency. Bayes: Bayesian, CFG:
Conditional Functional Gradient, Co: Combined, w/o: Without, B: Baseline, B-Co: Baseline Combined

to keep the economy functioning. Table 2 shows how Knowledge Infusion using all methods,
fares against Policy Gradient without Knowledge Infusion (KI) and against the baseline which
use relational count features and combines Odom et al.,[10]’s knowledge infusion with Kerst-
ing et al.,[7]’s Policy Gradient approach. The baseline also uses linear basis instead of trees. We
define a test-case passed as the number of times policy choice is equal to the real MDP choice.
Recall from Figure 1 that the real MDP is known during evaluation. The percentage of test
cases passed is reported against number of simulator trajectories. Note that in the combined
setting, the baseline approach which uses Odom’s KI cancels out the effect of knowledge that is
weighted contrastingly i.e. 𝛼 and −𝛼 . Also, as seen in Section 3.1, aggregation is used to model
Partial Observability in the state. We note that aggregation shows improved performance as
without aggregation the % test-cases passed are on average 10% lower than with for 20,50 and
100 trajectories, across all comparison settings. It can be seen that the sample efficiency vastly
improves with KI than without. More over, in other settings the baseline is similar in results
because it is exactly derivable from the bayesian formulation as proved in Theorem 1.

4.2. Exogeneity of Multiple Events

We define an Event as - setting into movement, a certain population of people who don’t follow
the typical simulation dynamics. For example, as already mentioned, the simulator encodes
that persons in a residential area shop at a "shop" that is in the neighborhood. But we select
certain persons who may instead deviate from this routine. A concrete example of this might
be those who deviate from their daily routine of going to work to instead gather at a location
staging a rally. This Event if not handled early, for example by locking down the location and
testing everyone that attended, can cause unintended consequences in terms of both human
fatalities and economic losses incurred. We demonstrate how knowledge infusion can be used
to mitigate this effect. We must take care here to analyse the Event before acting too quickly in
infusing knowledge. Since the effect of imposing policy in RL at any given time step propagates
forward to all other time steps, in the case that the Event is transient in nature (passes quickly),
knowledge infusion may cause more harm than good.

4.3. Interpretability Analysis

We analyze the weights at the input layer of the neural network to understanding which parts
of the state space were highlighted towards the enforcement of the agent policy. This is similar

Method Event 1 Event 2 Event 3

KIPG-Bayesian with 𝜆 = 1 2 2 2
KIPG-Bayesian with 𝜆 = 0.5 3 3 3
KIPG-Bayesian with 𝜆 = 2 1 1 1

KIPG-CFG 2 2 2

Table 3
Comparison of different configurations of knowledge infusion when multiple events are injected into
the simulation. The time taken by each method to reach ≥ 0.75 % test cases passed is recorded.

to a heat map visualization like Dombrowski et al. use except that only the input layer weights
are considered [14]. The single hidden layer is a composition of the input features and is
hence omitted from the interpretability analysis. We take the example of the top 2 largest
weights for lockshop and the percentage of test cases that this held true in, to illustrate that
the interpretability. The top 2 features are feature IDs 1 and 3 with 0.85% test cases passed. We
do this for the combined knowledge infusion setting. The feature IDs are from Table 1. We can
see that for example:
for lockshop, the features with ID 1 and 3, hold the most weight for 𝟖𝟓% of the test cases.

The simulator dynamics encodes that persons in a residential area shop at a “shop” that is in
the neighborhood. This is what the “same” predicate means. Thus the feature states that there
are many people in homes that are part of a residential area with a shop. Thus this implies due
to the simulator dynamics that many people will be shopping regularly at this shop (i.e. high
interaction). Therefore this result is not only interpretable but shows that the agent learns to
implement locking down of a shop only when the shop is a source of high interaction among
people and when it is open.

5. Conclusion and Future Work

In settings where there is continuously evolving dynamics and the resulting non-stationarity
and partial observability, standard RL frameworks suffer from unaffordable delays due to non-
stationarity and sub-optimal policy learning due to partial observability. This is because of
their fundamental trial and error based correction. In our example setting of APC, this delay
and in correction or a sub-optimal policy can prove extremely costly. In various other Real-
Life Scenarios, we see similar issues. We develop a principled Knowledge Infusion framework
to enable effective control of unintended consequences that arise there-of and demonstrate its
effectiveness. We will explore more specifications for the knowledge as functional constraints
and their applications in future work in enhanced simulation settings.

References

[1] J. Kober, J. A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey, The
International Journal of Robotics Research 32 (2013) 1238–1274.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of go
with deep neural networks and tree search, nature 529 (2016) 484–489.

[3] L. Li, W. Chu, J. Langford, R. E. Schapire, A contextual-bandit approach to personalized
news article recommendation, in: Proceedings of the 19th international conference on
World wide web, 2010, pp. 661–670.

[4] S. Ross, G. Gordon, D. Bagnell, A reduction of imitation learning and structured prediction
to no-regret online learning, in: Proceedings of the fourteenth international conference
on artificial intelligence and statistics, 2011, pp. 627–635.

[5] P. Abbeel, A. Y. Ng, Apprenticeship learning via inverse reinforcement learning, in:
Proceedings of the twenty-first international conference on Machine learning, 2004, p. 1.

[6] M. Gaur, U. Kursuncu, A. Sheth, R. Wickramarachchi, S. Yadav, Knowledge-infused deep
learning, in: Proceedings of the 31st ACM Conference on Hypertext and Social Media,
2020, pp. 309–310.

[7] K. Kersting, K. Driessens, Non-parametric policy gradients: A unified treatment of propo-
sitional and relational domains, in: Proceedings of the 25th international conference on
Machine learning, 2008, pp. 456–463.

[8] S. Das, S. Natarajan, K. Roy, R. Parr, K. Kersting, Fitted q-learning for relational domains,
arXiv preprint arXiv:2006.05595 (2020).

[9] F. Hadiji, A. Molina, S. Natarajan, K. Kersting, Poisson dependency networks: Gradient
boosted models for multivariate count data, Machine Learning 100 (2015) 477–507.

[10] P. Odom, T. Khot, R. Porter, S. Natarajan, Knowledge-based probabilistic logic learning,
in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[11] S. Yang, T. Khot, K. Kersting, G. Kunapuli, K. Hauser, S. Natarajan, Learning from imbal-
anced data in relational domains: A soft margin approach, in: 2014 IEEE International
Conference on Data Mining, IEEE, 2014, pp. 1085–1090.

[12] H. Kokel, P. Odom, S. Yang, S. Natarajan, A unified framework for knowledge intensive
gradient boosting: Leveraging human experts for noisy sparse domains., in: AAAI, 2020,
pp. 4460–4468.

[13] S. Bubeck, R. Eldan, Y. T. Lee, D. Mikulincer, Network size and weights size for memo-
rization with two-layers neural networks, arXiv preprint arXiv:2006.02855 (2020).

[14] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller, P. Kessel, Explana-
tions can be manipulated and geometry is to blame, in: Advances in Neural Information
Processing Systems, 2019, pp. 13589–13600.

[15] S. Muggleton, Inductive logic programming, 38, Morgan Kaufmann, 1992.
[16] A. L. Hayes, M. Das, P. Odom, S. Natarajan, User friendly automatic construction of

background knowledge: Mode construction from er diagrams, in: Proceedings of the
Knowledge Capture Conference, 2017, pp. 1–8.

[17] A. Srinivasan, The aleph manual, 2001.
[18] G. Simons, N. Johnson, et al., On the convergence of binomial to poisson distributions,

The Annals of Mathematical Statistics 42 (1971) 1735–1736.
[19] C. Wang, Y. Wang, R. Schapire, et al., Functional frank-wolfe boosting for general loss

functions, arXiv preprint arXiv:1510.02558 (2015).

	1 Introduction
	2 Preliminaries
	2.1 Policy Gradients in Functional Space
	2.2 Gradient boosted 2-layer Neural Network Learning

	3 Methodology
	3.1 Relational Feature Extractor and Aggregator Kernel
	3.2 Bayesian Knowledge Infusion
	3.3 Conditional Functional Gradients for Knowledge Infusion
	3.4 Combination of Hard and Soft Constraints

	4 Experiments and Evaluation
	4.1 Comparison of Knowledge Infusion methods
	4.2 Exogeneity of Multiple Events
	4.3 Interpretability Analysis

	5 Conclusion and Future Work

