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Abstract  
Terabytes of very high-resolution satellite imagery data are sent to land stations every day 
and only 5% of this information is used which raises a demand in automation of image 
processing routines. Semantic maps become especially popular for a wide range of analysis 
challenges like surveillance, vegetation monitoring, change detection, etc. Nowadays, deep 
learning approach to image processing suggests a very flexible and configurable tool for 
different needs – semantic segmentation included. With the use of deep learning, it is 
possible to extract unique features from data and adapt model and algorithms for specific data 
to achieve the best results possible. In current work the algorithm to instance-like 
segmentation is suggested. This algorithm is applied to a modified semantic segmentation 
neural network in order to work with separate instances of different land objects. There are 
other networks which already perform instance segmentation like Mask RCNN. However, 
often semantic segmentation networks provide better detection results regarding accuracy and 
a possibility to work with detected objects is crucial. Separated instances can be used in 
various calculations and measurements such as a size of these objects, distances, etc. In 
addition to the semantic segmentation neural network, an approach is suggested to 
approximate measurements of such essential physical parameters of land objects as 
perimeters, square areas and building density using knowledge of spatial resolution 
characteristics of the ultra-high-resolution remote sensing imagery used in current work as a 
source of data for the training dataset. The results of suggested methods can be applied to 
countless areas such as urban planning, built-up analysis, traffic control, etc. The solution is 
flexible and can be additionally adjusted for different needs which is discussed in our future 
research. 
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1. Introduction 

The satellite imagery is based on the complex process of converting solar energy reflected from 
the earth's surface and electromagnetic pulses, which are recorded digitally. Until a decade ago, 
access to satellite data was limited, and only military, large corporations, government agencies, and 
some scientific institutions could obtain such information. Now terabytes of satellite data are available 
to everyone. Every day we can see how our planet looks like with the help of satellite imagery. 
Remotely sensed images permit accurate mapping of land cover and can assist the planning and 
coordination of global change. 
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Recently, semantic segmentation of land objects becomes extremely popular in remote sensing 
applications and systems. Such segmented maps have a lot of applications in different areas such as 
urban planning [1], agricultural applications [2], traffic estimation and monitoring as on land as well 
as in water [3], etc. Two categories of approaches are usually considered when solving semantic 
segmentation problems – definitive feature-based algorithms such as described in [2, 4] or stochastic 
deep learning approaches which are heavily relied on deep convolutional neural networks [5-7].  

Considering the fact that feature-based hand-crafted algorithms and other machine learning 
approaches without neural networks may be successfully applied to solve certain satellite imagery 
processing problems, deep learning still remains more promising in the long run [8-10]. The advances 
in deep learning neural networks of direct propagation are the alternation of convolutional and max-
pooling layers [11], topped with several fully connected or sparsely connected layers, according to 
followed by the final layer of classification. Training is usually done without any spontaneous pre-
training. GPU-based approaches have won many image recognition competitions, including the 
IJCNN 2011 Traffic Sign Recognition Competition, [12] the Neural Structure Segmentation 
Competition in the electron microscopy stack. (Segmentation of neuronal structures in EM stacks 
challenge) ISBI 2012 [13], ImageNet [14] and others. Such guided methods of deep learning also 
became the first artificial image recognizers to achieve in some tasks efficiency comparable to human [15]. 

The deep learning applications in remotely sensed images are different from those in natural 
images. The remotely sensed images usually have more complicated and diverse patterns. Thanks to 
the strong ability of deep learning in feature representation, deep learning has been introduced into 
environmental remote sensing and applied in many aspects, including land cover mapping, 
environmental parameter retrieval, data fusion and downscaling, and information construction and 
prediction. More detailed applications of deep learning in environmental remote sensing are as 
follows [16]. 

Most deep learning solutions make use of neural network structures based on convolutional neural 
networks. Certain neural networks type suit better for different challenges – remote sensing is not an 
exclusion. One of the problems that exists even today for remote sensing imagery processing is that it 
is often required to be process in patches or tiles since some neural networks accept 3-channel images 
of certain resolution when most of remote sensing imagery may reach a resolution of more than ten 
thousand pixels per a dimension. Fully Convolutional Network (FCN) was invented to address the 
mentioned problem [17-19]. Using this neural network type, it is possible to generated segmented 
map of any size. Another popular approach for semantic segmentation is encoder-decoder architecture 
which results in generating a semantic map of the same resolution and dimensions as the original 
image. Later, more complex solutions were developed to advance generation of semantic maps 
namely SegNet [20], DCNN+CRF [21], SS-CNN [22] and others. Good review of neural network 
applications for remote sensing data is provided in [23]. One of the main reasons to choose one neural 
network architecture before others is to make use of both spectral and spatial information which is 
often provided for the most used satellite imagery. In most cases the results of deep learning solutions 
for remote sensing are applied successfully only to certain imagery type which it was implemented 
and tested with. However, there are exclusions where a proper combination of neural network 
architectures and parameters solved the problem of semantic segmentation for similar imagery from 
multiple different satellite vehicles. These problems and solutions are described in detail in [24] 

In current research paper the modified Unet-like architecture is suggested for processing a very 
high-resolution hyperspectral WorldView-3 Imagery data. WorldView-3 Imagery is used to design a 
dataset for the neural network training. Additional layers are designed on a top of the neural network 
architecture to separate instances of detected land objects and perform land object density 
measurements algorithm. 

2. Pre-processing 

In current work WorldView-3 imagery is used as a source for a training and testing datasets. 
WorldView-3 is the high resolution satellite sensor operating at an altitude of 617 km. WorldView-3 
satellite provides 31 cm panchromatic resolution, 1.24 m multispectral resolution, 3.7 m short wave 



infrared resolution (SWIR) and 30 m CAVIS resolution. The satellite has an average revisit time of 
<1 day and is capable of collecting up to 680,000 km2 per day [25]. 

In order to achieve the best results possible applying deep learning to satellite imagery, it is 
essential to consider the main characteristics of sensory systems that determine the suitability of the 
data to solve a problem, there are four types of distinction: 

• spectral; 
• spatial; 
• radiometric; 
• temporal. 
Spectral resolution is the ability of a sensor system to register electromagnetic radiation of a 

specific frequency range, which is determined by the number of satellite channels, for example, the 
intervals of wavelengths of the electromagnetic spectrum to which the sensor is sensitive. 
WorldView-3 provides a wide range of options regarding spectral resolution including panchromatic 
images, multispectral visible and non-visible bands. Non-visible bands are short-wave infrared bands 
and are not used in current research.   

Spatial resolution is the size of the smallest object on the earth's surface that differs in the image, 
that is, it is actually the physical size of a pixel. Currently, the best commercially available imagery 
has a spatial resolution of 30 cm – WorldView-3 satellite (excerpt from the Tvis website). This means 
that a 30 × 30 cm object will appear in the image as a single pixel. So, the objects, such as cars, will 
be noticeable in the picture and their color can be determined (if the picture is color), but smaller 
details (registration number, design features that help determine the make and model) will not be read 
in the picture [26]. These characteristics are the main ones which were taken to consideration when 
designing a dataset for the deep neural network training. Details on the dataset design are described in 
[27]. In order to improve a quality of a dataset further, additional image enhancement techniques can 
be applied, in current research [28] are used. There was an additional attempt of shadow detection 
algorithm [29] application to the dataset but it did not show any significant improvement for post-
processing algorithm performance. Resulting spectral and spatial characteristics as well as amount of 
information in pixels are provided in a Table 1. 
 
Table 1 
WorldView-3 Imagery Spatial Characteristics 

Type Wavebands Pixel resolution Num. channels Size 
Grayscale Panchromatic 0.31 m 1 16924 x 17020 

8-band Multispectral 
pansharpened 

0.31 m 8 16924 x 17020 

16-band Multispectral 1.24 m 8 4255 x 4231 
Shor-wave infrared 7.5 m 8 670 x 688 

 
Radiometric resolution is the number of possible encoded spectral luminance values in the data file 

for each spectral band indicated by the number of bits. It is determined by the number of gradations of 
color values, the corresponding transitions from the brightness of absolutely "black" to absolutely 
"white" and is expressed in the number of bits per pixel. For WorldView-3 this value is 16-bit which 
means that spectral luminance values for this imagery varies from 0 to 65535. For the use with the 
neural network these values are normalized between 0 and 1, 16-bit values (FP16). Among the best 
practices for training a Neural Network is to normalize your data to obtain a mean close to 0. 
Normalizing the data generally speeds up learning and leads to faster convergence [30]. 

Temporal characteristics are not considered since the change detection for the same territories in 
different time is out of scope in current research. 

3. Neural network 

For years, Unet architecture remain popular choice in many areas of research where semantic 
segmentation is required. Originally Unet was designed for biomedical image segmentation [31]. 



However, today Unet is applied successfully in other areas of knowledge including remote sensing 
[10, 32-34]. 

The main focus of this research is post-processing of Unet segmentation results so additional 
tuning was done to the neural network used in current work in order to aid separation of the whole 
mask to separated instances and measurements.  

Our neural network consists of: 
• Input layer of size 512 x 512 
• 5 encoder blocks (Fig. 1) 
• 1 extra convolution block (Fig. 1) 
• 5 decoder blocks (Fig. 1) 
• Output sigmoid activation layer.  
 
Unlike most Unet-like architecture applications, dropout is not used in current work – in conducted 

experiments different dropout layers combination didn’t show any improvements for post-processing 
algorithm.  

Training is run on 4255 training and 759 validation samples. Random hue, horizontal flipping and 
height-width shifting are applied as augmentation for the training dataset. Hue delta value of 0.1 is 
chosen. Such augmentation is not applied to a validation dataset.  

 

 
Figure 1: Unet backbone blocks 

 
There are metrics specifically developed to adequately measure deep learning solutions 

performance. Custom metrics and loss functions were developed in current work for better 
representation of both - the neural network performance and the post-processing algorithm 
performance. Since the goal of the article to achieve good instance segmentation, it was decided to 
apply a modifier dice coefficient (F1 score) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1
𝑁𝑁
�

2 ∗ 𝑝𝑝(𝑦𝑦𝑖𝑖) ∗ 𝑦𝑦𝑖𝑖 + 1
𝑝𝑝(𝑦𝑦𝑖𝑖) + 𝑦𝑦𝑖𝑖 + 1

𝑛𝑛

𝑖𝑖=0

, 
(1) 

where 𝑝𝑝(𝑦𝑦𝑖𝑖) is a predicted mask and 𝑦𝑦𝑖𝑖  is a ground truth annotated mask available from the training 
data. 

It was successfully used in [35] to represent instance segmentation results. Original dice 
coefficient is modified by adding 1 for intersection and union parts of the equation to prevent division 
by zero. Additionally, a dice loss function is used for training 

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, (2) 



where Dice is defined in (1). Dice loss function is a metric for measuring overlap for ground truth and 
segmented masks. Dice loss metric is very flexible and could be additionally optimized which may 
improve results more [36], but in current work such optimization is not investigated.  

Unfortunately, for the neural network architecture using 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 led to overfitting of the model 
despite a popular neural network architecture and a relatively big dataset. In order to overcome this 
problem an improvement was implemented for the loss function which helped in another problem 
using similar neural network model [37]. The solution is to define a more complex loss 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = lossdice + 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 , (3) 

 
where 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is a binary cross entropy loss or log loss function which is defined as 

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = −
1
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where 𝑝𝑝(𝑦𝑦𝑖𝑖) is a predicted mask and 𝑦𝑦𝑖𝑖  is a ground truth annotated mask available from training data. 
Adam function was chosen as an optimizer. Additional standard metrics such as accuracy, 

precision and recall were also calculated for secondary analysis of the results.  
Mixed precision technique was applied in order to improve training speed of relatively big model 

(10 million parameters) in the limited training environment. Mixed precision technique is described in 
detail in [38]. 

Final results of training are mentioned in Table 2. 
 

Table 2 
Unet training results 

Metric Value 
Accuracy 0.9834 
Precision 0.9217 

Recall 0.7641 
F1 Score 0.8355 

 
Such results are in line with ones in similar works [10] which have a better recall rate and around 

the same precision.  
Preliminary research showed that more training and dataset cleanup are the main contributors in a 

better recall. 

4. Post-processing 

The main goal of current article is post-processing which is implemented as top layers for the 
Unet-like backbone. This post-processing is capable of multiple sequential steps: 

• Instance separation 
• Semantic labeling 
• Measurements of land objects 
• Building density 

4.1. Instance separation 

Output of Unet is pixel-wise grayscale values in a range of 0..1 which represent a degree of how 
much a pixel belong to certain class. In order to distinguish detected masks properly from the 
background, a threshold must be implemented so every pixel can be separated by this value. 

Most research use a middle value of 0.5. However, for the suggested approach another value 
performs visual better. This value is obtained by application of Otsu’s method [39] to the 
segmentation results which is an automatic image thresholding technique used for classification of all 



pixels into two classes – foreground and background which results in a binarized image (Fig. 2). 
According to the Otsu method, the optimal threshold for binarization reaches the minimization of the 
weighted sum of variances within each cluster or, on the other hand, the maximum sum of the 
interclass variances. 

 

 
Figure 2: Results of applying Otsu’s thresholding algorithm, original image (a), segmented image (b), 
post-processed image (c) 
 

Another algorithm is implemented to separate instances from the whole mask. This technique 
involves feature-based analysis which distinguish arrays of pixels using a centrosymmetric filter 
structure. Such approach helps to keep together pixels that belong to one territory but consists of 
multiple objects of search (Fig. 3). 
 

 
Figure 3: Post-processing algorithm: original image (a) is segmented by 3 split areas (b) but classified 
as a single instance (c) 
 

Additional semantic search is performed after separation to obtain coordinates and dimensions of 
all objects found. These coordinates and dimensions are used for measurements and density 
calculations. 

4.2.  Land objects measurements 

This part of post-processing is considered as the simplest in terms of computation complexity. It is 
based on knowledge of structure of the satellite imagery. It is known that a length of one pixel is 31 
cm which gives an opportunity to calculate physical parameters of detected objects.  

First, the minimal fitting rectangle is calculated for one instance. This rectangle is built with the 
largest vertical and horizontal diameters (Fig. 4). 



  
Figure 4: Maximum vertical and horizontal diameters based on minimal fitting a rectangle 
 

Using calculated diameter land objects physical parameters are assumed – perimeter (5), square 
area (6). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2 ∗ (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + ℎ𝑚𝑚𝑚𝑚𝑚𝑚), (5) 

where hmax is a maximum horizontal diameter assumed from the minimal fitting rectangle, vmax – 
vertical. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ ℎ𝑚𝑚𝑚𝑚𝑚𝑚, (6) 

where hmax and vmax are maximum horizontal and vertical diameters correspondingly. 
Building density is calculated using (7) as a percentage of all pixels identified as land objects to a 

total number of image pixels. Though these calculations only assume the physical sizes of land object 
because AI system cannot be 100% accurate, the formula also considers a correction by using 
precision and recall values as a factor. 

𝐵𝐵𝐵𝐵 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∗
∑ 𝑝𝑝(𝑦𝑦𝑖𝑖)𝑚𝑚
𝑖𝑖=0
∑ 𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=0

, 
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where, m is a number of segmented pixels, n is a total number of image pixels, 𝑝𝑝(𝑦𝑦𝑖𝑖) is a predicted 
pixel, 𝑥𝑥𝑗𝑗 is an image pixel. Precision and recall are corresponding neural network metrics obtained 
during validation stage of the training.  

5. Experiment 

Experiments were conducted in multiple ways – for a neural network part, the post-processing and 
for the whole system. The necessity of such conditions is justified by modularity and comparability of 
each part to similar approaches for pre-processing, neural network processing and postprocessing. 

For the neural network accuracy, precision, recall and F1-score are calculated and compared to 
similar Unet-like neural network solutions for remote sensing semantic segmentation. Unet-like 
architectures are chosen for comparison since we are not suggesting a brand-new neural network 
architecture to compare it with wider range of neural network architectures – the main focus of the 
research is the post-processing part. The point of such comparison is to demonstrate that the suggested 
Unet-backbone is not worse than existing similar models but still optimized for the needs of the post-
processing module. The suggested architecture (SA) is compared to the original Unet, HSFA-Unet 
[9], Refined Unet [10], Stacked Unets [40, 41]. 

All mentioned neural networks are ran on a custom dataset used for development and testing in the 
current work [27]. The result of neural networks testing is provided in Table 3. 
 



Table 3 
Building calculation results 

Neural network Accuracy Precision Recall F1-score 
SA 0.9834 0.9217 0.7641 0.8355 

Unet 0.8911 0.9316 0.7923 0.8563 
HSFA-Unet 0.9831 0.8832 0.7373 0.8036 

Refined Unet 0.7712 0.6909 0.7601 0.7238 
Stacked Unets  0.8989 0.8877 0.7878 0.8347 

 
Traditional Unet is slightly better in terms of general performance but the suggested Unet-like 

architecture is superior considering application of post-processing routine because of much higher 
accuracy than for the original Unet.  

When an optimal neural network architecture was determined, another experiment was conducted 
to test the main part of the research – the port-processing method for measurements of land objects. 
Thus, calculations for the building on figures 2-4 mentioned in Table 4.  
 
Table 4 
Building calculation results 

Metric Value 
Maximum horizontal diameter, m 105.4 

Maximum vertical diameter, m 121.8 
Perimeter, m 454.4 

Area, m2 12837 
Density, % 23 

 
Further experiments showed that the density calculation for the whole scene instead of separate 

tiles decreases approximately by 10%. 

6. Results and discussion 

In current research, the approach for end-to-end AI pipeline is suggested including pre-processing, 
neural network modeling and post-processing.  

Pre-processing stage is heavily relied on the results of previous work [27]. These results suggest a 
complete approach for dataset development for solving remote sensing problems and used in current 
research with minimal changes which include additional augmentation and image enhancement 
techniques in order to improve performance of the neural network processing and post-processing. 

The second part of the solution keeps the novelty of Unet for Remote sensing by suggesting 
another approach to configure this architecture for solving many different problems and challenge 
including instance segmentation and land object measurements which it is not originally purposed for. 
Custom metrics and loss functions are developed which complement the post-processing and are 
highly suggested for using when solving land measurements tasks such as urban planning, etc. This 
section suggests all the required information to successfully conduct described experiment. 

The post-processing is the main part of the research. All the previous work regarding the neural 
network configuration and custom metrics development are done to compliment post-processing. The 
post-processing workflow solves a very applied task fully automated – no interaction with other 
systems or operator is needed.  

All suggested mechanisms are flexible and interchangeable. These results can be used to conduct 
experiments in other areas of research (i.e. Healthcare) and with other neural network architecture.  

The developed approach can be improved further in multiple way: 
• Increasing a number of data and its clean up 
• Optimizing dice loss function 
• Fine-tuning of neural network or replacing with another one 



• Investigating and adding factors to density calculation mechanism such as counting 
vegetation and other objects 
All results are currently applied to the only class of objects – building. The other classes of objects 

are planned to add to dataset in future. Since the source if data remains the same – WorldView-3 
imagery, the developed approach will demonstrate the same performance for new classes of objects 
which may be trees, vehicles, etc. 

7. Conclusions 

The suggested end-to-end approach has been proven to provide promising results in processing 
multiple types of very high resolution satellite imagery data. Current paper demonstrates good quality 
of processing for WorldView-3 imagery. The obtained results lead to conclusion that the methods 
which are suggested in this research paper are suitable for non-RGB images of very high resolution 
such as satellite imagery data. Even though the approach and methods are applied to WorldView-3 
imagery data in current work, it is not limited and can be used in similar satellite imagery for another 
satellite vehicle such Landsat or Sentinel.  

Application of the suggested methods to different remote sensing imagery is possible due to 
flexibility deep learning tools provide and all aspects of adaptation and optimization for the use with 
different imagery is covered in previous sections.  

Another important aspect of work is that it demonstrates an application of deep learning tools on 
not popular open-source remote sensing images (such as Landsat 8, GeoEye-1 or Sentinel-2) but a 
commercial one -WorldView-3, which is of better resolution and quality and the least covered with 
research in compression to government satellite vehicles. Furthermore, the better resolution and 
quality and informational content of WorldView-3 imagery may impact solutions using deep learning 
in multiple ways – better and worse due to neural networks specifics. The latter increases importance 
of covering with research the ‘unpopular’ commercial satellite imagery. Commercial remote sensing 
imagery is very important in terms of application in different fields of knowledge due to its usually 
better technical quality than public satellites, as well as commercial imagery provides coverage of the 
land more frequently which may be crucial for change detection and treating any sorts of 
humanitarian crisis. 
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