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Abstract  
We investigate the theoretical fundamentals of the Kolmogorov–Wiener filter construction 
for the continuous telecommunication traffic prediction. The traffic is treated as a continuous 
fractional Gaussian noise. The integral equation for the filter weight function is solved with 
the help of the Galerkin method in the framework of which the unknown function is sought 
as a truncated series in orthogonal functions. The investigation is different to our previous 
papers based on the polynomial functions, in this paper we propose to realize the Galerkin 
method on the basis of truncated Walsh function expansion, which is the method 
enhancement. Such an enhancement is based on the idea that the Walsh functions are step 
ones, which allows one to obtain the analytical expressions for the integral brackets. So, the 
corresponding numerical calculation of the double integrals is not needed. Moreover, the 
proposed approach does not require the calculation of the products of very large and very 
small numbers. So, the proposed enhancement allows one to investigate a wider range of 
parameters and higher numbers of functions in contrast to the polynomial realizations. The 
approach developed in the paper may be applied to the practical telecommunication traffic 
prediction. 
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1. Introduction and related works 

In this paper we deal with the telecommunication traffic prediction. This problem is important for 
telecommunications and has many applications (see [1] and references therein). In particular, it is 
urgent for information security because security attacks may be detected if the traffic behavior 
significantly differs from the predicted one [1-2]. 

In telecommunication systems with packet transfer of data, the telecommunication traffic is treated 
as a self-similar process. In a rather simple model the telecommunication traffic is treated as fractional 
Gaussian noise. The practical applicability of the corresponding model is a debatable question [3]; 
however, fractional Gaussian noise is still used for the simulation of traffic data (see, for example, 
[4]). If the amount of data is rather large, the traffic may be treated as a continuous process [5], so in 
this paper we consider traffic as continuous fractional Gaussian noise. 

Fractional Gaussian noise is a stationary random process [4], and the Kolmogorov–Wiener filter is 
applicable to the prediction of stationary processes [6]. This filter is linear and stationary (rather 
simple one), so it is logical enough to apply this filter to the prediction of stationary 
telecommunication traffic. There exist many different and rather complicated approaches to 
telecommunication traffic prediction (their brief overview is given in [1]); however, the approach 
based on the Kolmogorov–Wiener filter is not sufficiently developed in the literature. 
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The Kolmogorov-Wiener filter weigh function obeys the Wiener–Hopf integral equation, which is 
a Fredholm integral equation of the first kind [6]. An exact solution for this equation can hardly be 
treated analytically, and it is reasonable enough to investigate an approximate solution. Such an 
investigation may be realized with the help of the Galerkin method [7]. In the framework of the 
corresponding method, the solution is treated as a truncated orthogonal function series.  

In our previous paper [8], we investigated the corresponding solution with the help of the 
polynomial functions. The use of polynomial expansions is rather popular nowadays in different fields 
of knowledge (see the applications to the solution of kinetic equations [9, 10]). It is shown [8] that the 
polynomial solutions give a good agreement of both sides of the integral equation if the number of 
polynomials is rather large. However, in our opinion, the polynomial expansion has some drawbacks. 
First of all, the analytical expressions for the so-called integral brackets are too cumbersome, and they 
may not be applicable if the number of polynomials is rather large. Moreover, the use of polynomials 
may lead to the product of very large and very small numbers, which may not be adequately treated 
numerically, that is why the number of polynomials that may be investigated and the range of traffic 
parameters may be limited. It should also be indicated that for other traffic models some polynomial 
approximations may fail even for a rather large number of polynomials (see the description for a 
power-law structure function model [11]).  

In order to overcome the above-mentioned drawbacks, we use a truncated Walsh function 
expansion instead of a polynomial one. The Walsh functions are step ones [12], which allows one to 
derive the integral brackets analytically and to avoid the product of very large and very small 
numbers. The goal of the paper is to derive the Kolmogorov–Wiener filter weight function for the 
continuous telecommunication traffic prediction with the help of a truncated Walsh function 
expansion and to compare the both sides of the corresponding integral equation for the obtained 
weight function. 

This paper is structured as follows. In Sec. 1 an introduction is given, in Sec. 2 the Wiener–Hopf 
integral equation, the Galerkin method and the Walsh functions are described, Sec. 3 contains the 
derivation of an algorithm for  obtaining the above-mentioned weight function, Sec. 4 contains a 
numerical comparison of both sides of the Wiener-Hopf integral equation for the obtained weight 
function, in Sec. 5 conclusions are formulated, and Sec. 6 contains the refrences.  

2. Wiener-Hopf integral equation, Galerkin method and Walsh functions 

The unknown Kolmogorov–Wiener filter weight function ℎ(𝜏𝜏) for the continuous 
telecommunication traffic prediction in the fractional Gaussian noise model obeys the following 
integral equation [8]: 

�𝑑𝑑𝜏𝜏ℎ(𝜏𝜏)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2 = (𝑡𝑡 + 𝑧𝑧)2𝐻𝐻−2
𝑇𝑇

0

 (1) 

where 𝑇𝑇 is the time interval on which the traffic input data is given, 𝑧𝑧 is the time interval on which the 
prediction is made, and 𝐻𝐻 is the Hurst exponent. Eq. (1) is valid only if 0.5 < 𝐻𝐻 < 1, for simplicity 
we do not consider other situations. The integral equation (1) is the Wiener–Hopf integral equation. 
This equation may be solved via the Galerkin method, the idea of which is as follows [7]. 

The unknown weight function is sought in the form 

ℎ(𝜏𝜏) = �𝑔𝑔𝑗𝑗𝑓𝑓𝑗𝑗(𝜏𝜏)
𝑛𝑛

𝑗𝑗=1

 (2) 

where  𝑓𝑓𝑗𝑗(𝜏𝜏) are the functions orthogonal on the time interval 𝜏𝜏 ∈ [0,𝑇𝑇] and  𝑔𝑔𝑗𝑗 are the unknown 
coefficients. From (1) and (2) one can obtain 

�𝑔𝑔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�𝑑𝑑𝜏𝜏𝑓𝑓𝑗𝑗(𝜏𝜏)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2 = (𝑡𝑡 + 𝑧𝑧)2𝐻𝐻−2.
𝑇𝑇

0

 (3) 

On multiplying both sides of (3) by 𝑓𝑓𝑘𝑘(𝑡𝑡), 𝑘𝑘 = 1,2, . . ,𝑛𝑛  and integrating over 𝑡𝑡 , one can obtain  



�𝑔𝑔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

��𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏𝑓𝑓𝑗𝑗(𝜏𝜏)𝑓𝑓𝑘𝑘(𝑡𝑡)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑇𝑇

0

𝑇𝑇

0

= �𝑑𝑑𝑡𝑡𝑓𝑓𝑘𝑘(𝑡𝑡)(𝑡𝑡 + 𝑧𝑧)2𝐻𝐻−2
𝑇𝑇

0

,   𝑘𝑘 = 1,𝑛𝑛�����. (4) 

Let us introduce the following designations: 

𝐺𝐺𝑗𝑗𝑘𝑘 = ��𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏𝑓𝑓𝑘𝑘(𝑡𝑡)𝑓𝑓𝑗𝑗(𝜏𝜏)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑇𝑇

0

𝑇𝑇

0

,    𝐵𝐵𝑘𝑘 = �𝑑𝑑𝑡𝑡𝑓𝑓𝑘𝑘(𝑡𝑡)(𝑡𝑡 + 𝑧𝑧)2𝐻𝐻−2,
𝑇𝑇

0

 (5) 

the quantities  𝐺𝐺𝑗𝑗𝑘𝑘 are the integral brackets. So (4) can be rewritten as  

�𝐺𝐺𝑗𝑗𝑘𝑘𝑔𝑔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 𝐵𝐵𝑘𝑘 ,     𝑘𝑘 = 1,𝑛𝑛�����. (6) 

The obtained expression (6) is a system of linear algebraic equations for the unknown coefficients 𝑔𝑔𝑗𝑗. 
It can be solved with the help of the matrix method. (6) can be rewritten in matrix form  

𝐺𝐺𝑔𝑔 = 𝐵𝐵 (7) 
where 𝐺𝐺 is the matrix of the integral brackets, 𝑔𝑔 is the column vector of the unknown coefficients, and 
𝐵𝐵 is the column vector of the free terms:  

𝐺𝐺 = �

𝐺𝐺11 𝐺𝐺12 … 𝐺𝐺1𝑛𝑛
𝐺𝐺21 𝐺𝐺22 … 𝐺𝐺2,𝑛𝑛
⋮
𝐺𝐺𝑛𝑛1

⋮
𝐺𝐺𝑛𝑛,2

⋱
…

⋮
𝐺𝐺𝑛𝑛𝑛𝑛

� ,    𝑔𝑔 = �

𝑔𝑔1
𝑔𝑔2
⋮
𝑔𝑔𝑛𝑛

� ,     𝐵𝐵 = �

𝐵𝐵1
𝐵𝐵2
⋮
𝐵𝐵𝑛𝑛

�.   (8) 

On the basis of (7) and (8) in matrix form we have 
𝑔𝑔 = 𝐺𝐺−1𝐵𝐵. (9) 

The functions 𝑓𝑓𝑗𝑗(𝜏𝜏) in the expansion (2) form a complete orthogonal function system, which 
usually contains an infinite number of functions. Nevertheless, the number of functions in expansion 
(2) should be artificially truncated; otherwise, the system (6) would contain an infinite number of 
equations and could hardly be treated. The solution in the form (2) is called the solution in the 𝑛𝑛-
function approximation. 

In this paper we propose to choose the functions 𝑓𝑓𝑗𝑗(𝜏𝜏) as the Walsh functions. As is known [12], 
the Walsh functions form a complete orthogonal function system and may be defined with the help of 
the Hadamard matrices. The Hadamard matrices 𝐻𝐻(2𝑚𝑚) may be introduced in a recursive way: 

𝐻𝐻(2) = �1 1
1 −1� ,    𝐻𝐻(2𝑚𝑚+1) = �𝐻𝐻

(2𝑚𝑚) 𝐻𝐻(2𝑚𝑚)

𝐻𝐻(2𝑚𝑚) −𝐻𝐻(2𝑚𝑚)� ,     𝑚𝑚 ∈ ℕ.   (10) 

The Walsh functions in the Hadamard numeration walh𝑘𝑘(𝑡𝑡) are defined as follows on the time 
interval  𝑡𝑡 ∈ [0,𝑇𝑇]: 

walh𝑘𝑘(𝑡𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐻𝐻𝑘𝑘1

(2𝑚𝑚), 𝑡𝑡 ∈ ⌊0,𝑇𝑇 2𝑚𝑚⁄ ⌋

𝐻𝐻𝑘𝑘2
(2𝑚𝑚), 𝑡𝑡 ∈ (𝑇𝑇 2𝑚𝑚⁄ , 2𝑇𝑇 2𝑚𝑚⁄ ]

𝐻𝐻𝑘𝑘3
(2𝑚𝑚), 𝑡𝑡 ∈ (2𝑇𝑇 2𝑚𝑚⁄ , 3𝑇𝑇 2𝑚𝑚⁄ ]

⋮
𝐻𝐻𝑘𝑘,2𝑚𝑚

(2𝑚𝑚), 𝑡𝑡 ∈ ((2𝑚𝑚 − 1)𝑇𝑇 2𝑚𝑚⁄ ,𝑇𝑇]

 (11) 

where 𝐻𝐻𝑗𝑗𝑗𝑗
(2𝑚𝑚) are the Hadamard matrix elements and 𝑚𝑚 is the least natural number that obeys the 

inequality 𝑘𝑘 ≤ 2𝑚𝑚. The set of Walsh functions in the Walsh numeration coincides with that in the 
Hadamard numeration, but the numerations differ from each other. In the Walsh numeration, the 
Walsh functions wal𝑘𝑘(𝑡𝑡) are numerated in ascending order of sign changes on the time interval 𝑡𝑡 ∈
(0,𝑇𝑇). The first Walsh function wal1(𝑡𝑡) = 1 = const has 0 sign changes, the second Walsh function  

wal2(𝑡𝑡) = � 1, 𝑡𝑡 ∈ ⌊0,𝑇𝑇 2⁄ ⌋
−1, 𝑡𝑡 ∈ (𝑇𝑇 2⁄ ,𝑇𝑇] (12) 

has 1 sign change, and so on. As is known [11], the so-called Walsh matrix 𝑊𝑊(2𝑚𝑚) may be formed in 
terms of the Hadamard matrix 𝐻𝐻(2𝑚𝑚)  by rearranging the rows in ascending order of sign changes. For 
example, the matrices 𝐻𝐻(4) and 𝑊𝑊(4) are as follows: 



𝐻𝐻(4) = �
1 1 1 1
1 −1 1 −1
1
1

1
−1

−1
−1

1
1

� ,    𝑊𝑊(4) = �
1 1 1 1
1 1 −1 −1
1
1

−1
−1

−1
1

1
−1

�, (13) 

so the first row in 𝑊𝑊(4) has 0 sigh changes, the second row in  𝑊𝑊(4)  has 1 sign change, and so on. 
The Walsh functions wal𝑘𝑘(𝑡𝑡) are defined as follows: 

wal𝑘𝑘(𝑡𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑊𝑊𝑘𝑘1

(2𝑚𝑚), 𝑡𝑡 ∈ ⌊0,𝑇𝑇 2𝑚𝑚⁄ ⌋

𝑊𝑊𝑘𝑘2
(2𝑚𝑚), 𝑡𝑡 ∈ (𝑇𝑇 2𝑚𝑚⁄ , 2𝑇𝑇 2𝑚𝑚⁄ ]

𝑊𝑊𝑘𝑘3
(2𝑚𝑚), 𝑡𝑡 ∈ (2𝑇𝑇 2𝑚𝑚⁄ , 3𝑇𝑇 2𝑚𝑚⁄ ]

⋮
𝑊𝑊𝑘𝑘,2𝑚𝑚

(2𝑚𝑚), 𝑡𝑡 ∈ ((2𝑚𝑚 − 1)𝑇𝑇 2𝑚𝑚⁄ ,𝑇𝑇]

 (14) 

where 𝑊𝑊𝑗𝑗𝑗𝑗
(2𝑚𝑚) are the Walsh matrix elements and 𝑚𝑚 is the least natural number which obeys the 

inequality 𝑘𝑘 ≤ 2𝑚𝑚.  
The Walsh matrix is built in some mathematical packages. In this paper we used the Wolfram 

Mathematica package, in the framework of which the Walsh matrix is expressed as 
𝑊𝑊(2𝑚𝑚) = √2𝑚𝑚HadamardMartix[2𝑚𝑚] (15) 

where the matrix HadamardMartix[2𝑚𝑚] is built in the Wolfram Mathematica package. 
In what follows, we use the Walsh functions in the Walsh numeration. We realize the Galerkin 

method with the help of a truncated Walsh function expansion. In other words, we put   
𝑓𝑓𝑗𝑗(𝑡𝑡) = wal𝑗𝑗(𝑡𝑡) .  (16) 

The use of the Walsh functions is convenient because they are step ones, which significantly 
simplifies the calculation in comparison with the polynomial solution derivation [8]. The derivation of 
the unknown weight function with the help of Walsh functions is given in the following section. 

3. Derivation of the weight function 

First of all, let us derive the integral brackets 𝐺𝐺𝑗𝑗𝑘𝑘 (see (5)). Let us consider the approximation of  
𝑛𝑛 = 2𝑚𝑚 Walsh functions. The Walsh functions wal𝑗𝑗(𝑡𝑡) are step ones, they are constant on each time 
interval 𝑡𝑡 ∈ (𝑙𝑙𝑇𝑇 𝑛𝑛⁄ , (𝑙𝑙 + 1)𝑇𝑇 𝑛𝑛⁄ ), 𝑙𝑙 = 0,𝑛𝑛 − 1. That is why the integral brackets (5) may be 
calculated, for example, as follows: 

𝐺𝐺𝑗𝑗𝑘𝑘 = � 𝜃𝜃𝑗𝑗𝑗𝑗𝜃𝜃𝑘𝑘𝑘𝑘𝑉𝑉𝑗𝑗𝑘𝑘

𝑛𝑛

𝑗𝑗,𝑘𝑘=1

 (17) 

where 𝜃𝜃𝑗𝑗𝑗𝑗 are the corresponding values of the Walsh functions on the corresponding intervals: 

𝜃𝜃𝑗𝑗𝑗𝑗 = wal𝑗𝑗 �
1
2
∙ �

(𝑙𝑙 − 1)𝑇𝑇
𝑛𝑛

+
𝑙𝑙𝑇𝑇
𝑛𝑛
�� = wal𝑗𝑗 �

(2𝑙𝑙 − 1)𝑇𝑇
2𝑛𝑛 �. (18) 

and 𝑉𝑉𝑗𝑗𝑘𝑘 are the following integrals: 

𝑉𝑉𝑗𝑗𝑘𝑘 = � � 𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑘𝑘𝑇𝑇 𝑛𝑛⁄

(𝑘𝑘−1)𝑇𝑇
𝑛𝑛

𝑗𝑗𝑇𝑇 𝑛𝑛⁄

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

. (19) 

As can be seen from (14),  

wal𝑗𝑗 �
(2𝑙𝑙 − 1)𝑇𝑇

2𝑛𝑛 � = 𝑊𝑊𝑗𝑗𝑗𝑗
(𝑛𝑛), (20) 

so the integral brackets (14) may be rewritten as 

𝐺𝐺𝑗𝑗𝑘𝑘 = � 𝑊𝑊𝑗𝑗𝑗𝑗
(𝑛𝑛)𝑊𝑊𝑘𝑘𝑘𝑘

(𝑛𝑛)𝑉𝑉𝑗𝑗𝑘𝑘

𝑛𝑛

𝑗𝑗,𝑘𝑘=1

. (21) 

The integrals  𝑉𝑉𝑗𝑗𝑘𝑘 can be calculated analytically. The quantities 𝑉𝑉𝑗𝑗𝑘𝑘 have the following properties: 
𝑉𝑉𝑗𝑗𝑘𝑘 = 𝑉𝑉𝑘𝑘𝑗𝑗 (22) 



and 
𝑉𝑉𝑗𝑗𝑘𝑘 = 𝑉𝑉𝑗𝑗+1,𝑘𝑘+1. (23) 

As for the property (22), let us redefine the variables: 

𝑉𝑉𝑗𝑗𝑘𝑘 = � 𝑑𝑑𝑡𝑡 � 𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑘𝑘𝑇𝑇 𝑛𝑛⁄

(𝑘𝑘−1)𝑇𝑇
𝑛𝑛

𝑗𝑗𝑇𝑇 𝑛𝑛⁄

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

= {𝑡𝑡 ↔ 𝜏𝜏} = � 𝑑𝑑𝜏𝜏 � 𝑑𝑑𝑡𝑡|𝜏𝜏 − 𝑡𝑡|2𝐻𝐻−2
𝑘𝑘𝑇𝑇 𝑛𝑛⁄

(𝑘𝑘−1)𝑇𝑇
𝑛𝑛

𝑗𝑗𝑇𝑇 𝑛𝑛⁄

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

= 

= {|𝜏𝜏 − 𝑡𝑡|2𝐻𝐻−2 = |𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2} = � 𝑑𝑑𝑡𝑡 � 𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2 = 𝑉𝑉𝑘𝑘𝑗𝑗

𝑗𝑗𝑇𝑇 𝑛𝑛⁄

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

𝑘𝑘𝑇𝑇 𝑛𝑛⁄

(𝑘𝑘−1)𝑇𝑇
𝑛𝑛

. 

(24) 

As for the property (23), 

𝑉𝑉𝑗𝑗𝑘𝑘 = � 𝑑𝑑𝑡𝑡 � 𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑘𝑘𝑇𝑇 𝑛𝑛⁄

(𝑘𝑘−1)𝑇𝑇
𝑛𝑛

𝑗𝑗𝑇𝑇 𝑛𝑛⁄

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

= �𝑥𝑥 =
𝑇𝑇
𝑛𝑛

+ 𝑡𝑡,𝑦𝑦 =
𝑇𝑇
𝑛𝑛

+ 𝜏𝜏� = 

= � 𝑑𝑑𝑥𝑥 � 𝑑𝑑𝑦𝑦 ��𝑥𝑥 −
𝑇𝑇
𝑛𝑛
� − �𝑦𝑦 −

𝑇𝑇
𝑛𝑛
��
2𝐻𝐻−2

(𝑘𝑘+1)𝑇𝑇
𝑛𝑛

𝑘𝑘𝑇𝑇 𝑛𝑛⁄

(𝑗𝑗+1)𝑇𝑇
𝑛𝑛

𝑗𝑗𝑇𝑇 𝑛𝑛⁄

= � 𝑑𝑑𝑥𝑥 � 𝑑𝑑𝑦𝑦|𝑥𝑥 − 𝑦𝑦|2𝐻𝐻−2

(𝑘𝑘+1)𝑇𝑇
𝑛𝑛

𝑘𝑘𝑇𝑇 𝑛𝑛⁄

(𝑗𝑗+1)𝑇𝑇
𝑛𝑛

𝑗𝑗𝑇𝑇 𝑛𝑛⁄

= 

= 𝑉𝑉𝑗𝑗+1.𝑘𝑘+1. 

(25) 

On the basis of (22) and (23) one can conclude that the matrix of the quantities 𝑉𝑉𝑗𝑗𝑘𝑘  takes the form  

𝑉𝑉 =

⎝

⎜
⎛

𝑉𝑉11
𝑉𝑉12
𝑉𝑉13
⋮
𝑉𝑉1𝑛𝑛

𝑉𝑉12
𝑉𝑉11
𝑉𝑉12
⋮

𝑉𝑉1,𝑛𝑛−1

𝑉𝑉13
𝑉𝑉12
𝑉𝑉11
⋮

𝑉𝑉1,𝑛𝑛−2

⋯
⋯
⋯
⋱
⋯

𝑉𝑉1𝑛𝑛
𝑉𝑉1,𝑛𝑛−1
𝑉𝑉1,𝑛𝑛−2
⋮
𝑉𝑉11 ⎠

⎟
⎞

, (26) 

so a straightforward calculation is needed only for the first row of the matrix 𝑉𝑉 (𝑛𝑛 straightforward 
calculations rather than 𝑛𝑛2) . Let us calculate 𝑉𝑉11: 

𝑉𝑉11 = � 𝑑𝑑𝑡𝑡 � 𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2 =

𝑇𝑇 𝑛𝑛⁄

0

𝑇𝑇 𝑛𝑛⁄

0

� 𝑑𝑑𝑡𝑡𝑑𝑑(𝑡𝑡)

𝑇𝑇 𝑛𝑛⁄

0

 (27) 

where 

𝑑𝑑(𝑡𝑡) = �𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2

𝑇𝑇
𝑛𝑛

0

= {𝑦𝑦 = 𝑡𝑡 − 𝜏𝜏} = − � 𝑑𝑑𝑦𝑦|𝑦𝑦|2𝐻𝐻−2
𝑡𝑡−𝑇𝑇𝑛𝑛

𝑡𝑡

= � 𝑑𝑑𝑦𝑦|𝑦𝑦|2𝐻𝐻−2
𝑡𝑡

𝑡𝑡−𝑇𝑇𝑛𝑛

 (28) 

As can be seen from (27), 𝑡𝑡 ∈ �0, 𝑇𝑇
𝑛𝑛
�, so the limits of integration in the last expression in (28) have 

opposite signs,  and 

𝑑𝑑(𝑡𝑡) = � 𝑑𝑑𝑦𝑦(−𝑦𝑦)2𝐻𝐻−2
0

𝑡𝑡−𝑇𝑇𝑛𝑛

+ �𝑑𝑑𝑦𝑦𝑦𝑦2𝐻𝐻−2
𝑡𝑡

0

= {𝑢𝑢 = −𝑦𝑦} = � 𝑑𝑑𝑢𝑢𝑢𝑢2𝐻𝐻−2

𝑇𝑇
𝑛𝑛−𝑡𝑡

0

+ �𝑑𝑑𝑦𝑦𝑦𝑦2𝐻𝐻−2 =
𝑡𝑡

0

 

=
1

2𝐻𝐻 − 1�
�
𝑇𝑇
𝑛𝑛
− 𝑡𝑡�

2𝐻𝐻−1
+ 𝑡𝑡2𝐻𝐻−1�. 

(29) 

So, on the basis of (29) and (27) one can obtain 

𝑉𝑉11 =
1

2𝐻𝐻 − 1
� 𝑑𝑑𝑡𝑡 �

𝑇𝑇
𝑛𝑛
− 𝑡𝑡�

2𝐻𝐻−1
𝑇𝑇 𝑛𝑛⁄

0

+
1

2𝐻𝐻 − 1
� 𝑑𝑑𝑡𝑡𝑡𝑡2𝐻𝐻−1
𝑇𝑇 𝑛𝑛⁄

0

= �𝑢𝑢 =
𝑇𝑇
𝑛𝑛
− 𝑡𝑡� = (30) 



=
1

2𝐻𝐻 − 1
� 𝑑𝑑𝑢𝑢𝑢𝑢2𝐻𝐻−1
𝑇𝑇 𝑛𝑛⁄

0

+
1

2𝐻𝐻 − 1
� 𝑑𝑑𝑡𝑡𝑡𝑡2𝐻𝐻−1
𝑇𝑇 𝑛𝑛⁄

0

=
1

𝐻𝐻(2𝐻𝐻 − 1) �
𝑇𝑇
𝑛𝑛
�
2𝐻𝐻

. 

Let us calculate 𝑉𝑉1𝑗𝑗 , 𝑙𝑙 = 2,𝑛𝑛�����: 

𝑉𝑉1𝑗𝑗 = �𝑑𝑑𝑡𝑡 � 𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2

𝑗𝑗𝑇𝑇
𝑛𝑛

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

𝑇𝑇
𝑛𝑛

0

= �𝑑𝑑𝑡𝑡𝑋𝑋𝑗𝑗(𝑡𝑡)

𝑇𝑇
𝑛𝑛

0

 (31) 

where 

𝑋𝑋𝑗𝑗(𝑡𝑡) = � 𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2

𝑗𝑗𝑇𝑇
𝑛𝑛

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

= {𝑦𝑦 = 𝑡𝑡 − 𝜏𝜏} = � 𝑑𝑑𝑦𝑦|𝑦𝑦|2𝐻𝐻−2
𝑡𝑡−(𝑗𝑗−1)𝑇𝑇

𝑛𝑛

𝑡𝑡−𝑗𝑗𝑇𝑇𝑛𝑛

 (32) 

As can be seen from (21), 𝑡𝑡 ∈ �0, 𝑇𝑇
𝑛𝑛
�, so both limits of integration in the last expression in (32) are 

non-positive, and 

𝑋𝑋𝑗𝑗(𝑡𝑡) = � 𝑑𝑑𝑦𝑦(−𝑦𝑦)2𝐻𝐻−2
𝑡𝑡−(𝑗𝑗−1)𝑇𝑇

𝑛𝑛

𝑡𝑡−𝑗𝑗𝑇𝑇𝑛𝑛

= {𝑢𝑢 = −𝑦𝑦} = � 𝑑𝑑𝑢𝑢𝑢𝑢2𝐻𝐻−2

𝑗𝑗𝑇𝑇
𝑛𝑛−𝑡𝑡

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛 −𝑡𝑡

= 

=
1

2𝐻𝐻 − 1�
�
𝑙𝑙𝑇𝑇
𝑛𝑛
− 𝑡𝑡�

2𝐻𝐻−1

− �
(𝑙𝑙 − 1)𝑇𝑇

𝑛𝑛
− 𝑡𝑡�

2𝐻𝐻−1

�. 

(33) 

So on the basis of (33) and (31) one can conclude that 

𝑉𝑉1𝑗𝑗 =
1

2𝐻𝐻 − 1
� 𝑑𝑑𝑡𝑡 �

𝑙𝑙𝑇𝑇
𝑛𝑛
− 𝑡𝑡�

2𝐻𝐻−1

−

𝑇𝑇 𝑛𝑛⁄

0

1
2𝐻𝐻 − 1

� 𝑑𝑑𝑡𝑡 �
(𝑙𝑙 − 1)𝑇𝑇

𝑛𝑛
− 𝑡𝑡�

2𝐻𝐻−1𝑇𝑇 𝑛𝑛⁄

0

= 

= �𝑦𝑦 =
𝑙𝑙𝑇𝑇
𝑛𝑛
− 𝑡𝑡,𝑢𝑢 =

(𝑙𝑙 − 1)𝑇𝑇
𝑛𝑛

− 𝑡𝑡� =
1

2𝐻𝐻 − 1
� 𝑑𝑑𝑦𝑦𝑦𝑦2𝐻𝐻−1

𝑗𝑗𝑇𝑇
𝑛𝑛

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

−
1

2𝐻𝐻 − 1
� 𝑑𝑑𝑢𝑢𝑢𝑢2𝐻𝐻−1

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

(𝑗𝑗−2)𝑇𝑇
𝑛𝑛

= 

=
1

2𝐻𝐻(2𝐻𝐻 − 1)��
𝑙𝑙𝑇𝑇
𝑛𝑛
�
2𝐻𝐻

+ �
(𝑙𝑙 − 2)𝑇𝑇

𝑛𝑛 �
2𝐻𝐻

− 2 �
(𝑙𝑙 − 1)𝑇𝑇

𝑛𝑛
�
2𝐻𝐻

�. 

(34) 

For clarity, let us summarize the results: 

𝑉𝑉11 =
1

𝐻𝐻(2𝐻𝐻 − 1) �
𝑇𝑇
𝑛𝑛
�
2𝐻𝐻

;    𝑙𝑙 = 2,𝑛𝑛�����, 

𝑉𝑉1𝑗𝑗 =
1

2𝐻𝐻(2𝐻𝐻 − 1)��
𝑙𝑙𝑇𝑇
𝑛𝑛
�
2𝐻𝐻

+ �
(𝑙𝑙 − 2)𝑇𝑇

𝑛𝑛 �
2𝐻𝐻

− 2 �
(𝑙𝑙 − 1)𝑇𝑇

𝑛𝑛
�
2𝐻𝐻

�. 
(35) 

Now we should calculate the free terms 𝐵𝐵𝑘𝑘 (see (5)). On the basis of the same idea, one can rewrite 

𝐵𝐵𝑘𝑘 = �𝑊𝑊𝑘𝑘𝑘𝑘
(𝑛𝑛)𝑄𝑄𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 (36) 

where 

𝑄𝑄𝑘𝑘 = � 𝑑𝑑𝑡𝑡(𝑡𝑡 + 𝑧𝑧)2𝐻𝐻−2.

𝑘𝑘𝑇𝑇
𝑛𝑛

(𝑘𝑘−1)𝑇𝑇
𝑛𝑛

 (37) 

The integral (37) can be analytically calculated: 



𝑄𝑄𝑘𝑘 = {𝑦𝑦 = 𝑡𝑡 + 𝑧𝑧} = � 𝑑𝑑𝑦𝑦𝑦𝑦2𝐻𝐻−2

𝑘𝑘𝑇𝑇
𝑛𝑛 +𝑧𝑧

(𝑘𝑘−1)𝑇𝑇
𝑛𝑛 +𝑧𝑧

=
1

2𝐻𝐻 − 1
��
𝑠𝑠𝑇𝑇
𝑛𝑛

+ 𝑧𝑧�
2𝐻𝐻−1

− �
(𝑠𝑠 − 1)𝑇𝑇

𝑛𝑛
+ 𝑧𝑧�

2𝐻𝐻−1

�. (38) 

So  

𝐵𝐵𝑘𝑘 =
1

2𝐻𝐻 − 1
�𝑊𝑊𝑘𝑘𝑘𝑘

(𝑛𝑛) ��
𝑠𝑠𝑇𝑇
𝑛𝑛

+ 𝑧𝑧�
2𝐻𝐻−1

− �
(𝑠𝑠 − 1)𝑇𝑇

𝑛𝑛
+ 𝑧𝑧�

2𝐻𝐻−1

�
𝑛𝑛

𝑘𝑘=1

. (39) 

Finally, let us show that the integral brackets 𝐺𝐺𝑗𝑗𝑘𝑘 have the properties 
𝐺𝐺𝑗𝑗𝑘𝑘 = 𝐺𝐺𝑘𝑘𝑗𝑗 (40) 

and 
𝐺𝐺𝑗𝑗𝑘𝑘 = 0 if  𝑗𝑗 and 𝑘𝑘 have opposite parities. (41) 

As for the property (40), on the basis of (5) and (16) we have 

𝐺𝐺𝑗𝑗𝑘𝑘 = ��𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏wal𝑘𝑘(𝑡𝑡)wal𝑗𝑗(𝜏𝜏)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑇𝑇

0

𝑇𝑇

0

= {𝑡𝑡 ↔ 𝜏𝜏} = 

= ��𝑑𝑑𝜏𝜏𝑑𝑑𝑡𝑡wal𝑘𝑘(𝜏𝜏)wal𝑗𝑗(𝑡𝑡)|𝜏𝜏 − 𝑡𝑡|2𝐻𝐻−2
𝑇𝑇

0

=
𝑇𝑇

0

��𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏wal𝑗𝑗(𝑡𝑡)wal𝑘𝑘(𝜏𝜏)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑇𝑇

0

= 𝐺𝐺𝑘𝑘𝑗𝑗.
𝑇𝑇

0

 

(42) 

To prove the property (41), first of all we should stress that the Walsh functions obey the 
following properties: 

wal𝑘𝑘 �
𝑇𝑇
2
− 𝑥𝑥� = �

wal𝑘𝑘 �
𝑇𝑇
2

+ 𝑥𝑥� ,𝑘𝑘 is even

−wal𝑘𝑘 �
𝑇𝑇
2

+ 𝑥𝑥� ,𝑘𝑘 is odd
. (43) 

So let us consider the quantities 𝐺𝐺𝑗𝑗𝑘𝑘 where 𝑗𝑗 and 𝑘𝑘 have opposite parities: 

𝐺𝐺𝑗𝑗𝑘𝑘 = ��𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏wal𝑘𝑘(𝑡𝑡)wal𝑗𝑗(𝜏𝜏)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑇𝑇

0

𝑇𝑇

0

= �𝑥𝑥 =
𝑇𝑇
2
− 𝑡𝑡, 𝑦𝑦 =

𝑇𝑇
2
− 𝜏𝜏� = 

= � �𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏wal𝑘𝑘 �
𝑇𝑇
2
− 𝑥𝑥�wal𝑗𝑗 �

𝑇𝑇
2
− 𝑦𝑦� |𝑦𝑦 − 𝑥𝑥|2𝐻𝐻−2 = {𝛽𝛽 = −𝑥𝑥, 𝛾𝛾 = −𝑦𝑦}

𝑇𝑇
2

−𝑇𝑇2

𝑇𝑇
2

−𝑇𝑇2

= 

= � �𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏wal𝑘𝑘 �
𝑇𝑇
2

+ 𝛽𝛽�wal𝑗𝑗 �
𝑇𝑇
2

+ 𝛾𝛾� |𝛽𝛽 − 𝛾𝛾|2𝐻𝐻−2

𝑇𝑇
2

−𝑇𝑇2

𝑇𝑇
2

−𝑇𝑇2

= 

= − � �𝑑𝑑𝑡𝑡𝑑𝑑𝜏𝜏wal𝑘𝑘 �
𝑇𝑇
2
− 𝛽𝛽�wal𝑗𝑗 �

𝑇𝑇
2
− 𝛾𝛾� |𝛽𝛽 − 𝛾𝛾|2𝐻𝐻−2

𝑇𝑇
2

−𝑇𝑇2

𝑇𝑇
2

−𝑇𝑇2

= −𝐺𝐺𝑗𝑗𝑘𝑘 

(44) 

which leads to the property (41). It should be stressed the following fact is used in (44): 

wal𝑘𝑘 �
𝑇𝑇
2
− 𝑥𝑥�wal𝑗𝑗 �

𝑇𝑇
2
− 𝑥𝑥� = −wal𝑘𝑘 �

𝑇𝑇
2

+ 𝑥𝑥�wal𝑗𝑗 �
𝑇𝑇
2

+ 𝑥𝑥�, 
𝑗𝑗 and 𝑘𝑘 have opposite parities, 

(45) 

(45) follows from (43). So, a straightforward calculation is needed only for the integral brackets 𝐺𝐺𝑗𝑗𝑘𝑘 
where 𝑗𝑗 ≥ 𝑘𝑘 and 𝑗𝑗,𝑘𝑘 are of the same parity. 

To summarize the above-mentioned, let us write the algorithm of the weight function derivation in 
the approximation of 𝑛𝑛 = 2𝑚𝑚 Walsh functions: 

1. Calculate the quantities 𝑉𝑉11 and 𝑉𝑉1𝑗𝑗, 𝑙𝑙 = 2,𝑛𝑛����� by formulas (35). 
2. Form the matrix 𝑉𝑉 from the elements 𝑉𝑉𝑗𝑗𝑘𝑘, 𝑙𝑙, 𝑠𝑠 = 1,𝑛𝑛����� by formula (26). 



3. Make a straightforward calculation of the integral brackets 𝐺𝐺𝑗𝑗𝑘𝑘 by formula (21) for 𝑗𝑗 ≥ 𝑘𝑘 and 
𝑗𝑗,𝑘𝑘 of the same parity. Calculate the other integral brackets on the basis of the properties (40), (41) 
and form the corresponding matrix 𝐺𝐺 (see (8)). 
4. Calculate the free terms 𝐵𝐵𝑘𝑘 by formula (39) and form the column vector of the free terms 𝐵𝐵 
(see (8)). 
5. Calculate the column vector of the coefficients 𝑔𝑔 by formula (9) 
6. Obtain the weight function ℎ(𝜏𝜏) by formulas (2) and (16). 
In contrast to the previous investigations [8], the proposed algorithm does not require the 

calculation of the integrals with the help of the mathematical packages – all the integrals are 
calculated analytically. 

The following section contains a numerical comparison for both sides of the Wiener–Hopf integral 
equation for the obtained results. 

4. Numerical results 

In order to verify the above-mentioned algorithm, in this section we calculate the MAPE (mean 
average percentage error) of the residual (the difference of the left-hand and the right-hand sides) of 
the Wiener-Hopf integral equation for the obtained weight functions. 

The left-hand side of the integral equation (1) is as follows: 

Left(𝑡𝑡) = �𝑑𝑑𝜏𝜏ℎ(𝜏𝜏)|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2
𝑇𝑇

0

= �ℎ𝑗𝑗𝑋𝑋𝑗𝑗(𝑡𝑡)
𝑛𝑛

𝑗𝑗=1

 (46) 

where 

ℎ𝑗𝑗 = ℎ�
1
2�

(𝑙𝑙 − 1)𝑇𝑇
𝑛𝑛

+
𝑙𝑙𝑇𝑇
𝑛𝑛 �

� = ℎ �
(2𝑙𝑙 − 1)𝑇𝑇

2𝑛𝑛 � (47) 

and 

𝑋𝑋𝑗𝑗(𝑡𝑡) = � 𝑑𝑑𝜏𝜏|𝑡𝑡 − 𝜏𝜏|2𝐻𝐻−2

𝑗𝑗𝑇𝑇
𝑛𝑛

(𝑗𝑗−1)𝑇𝑇
𝑛𝑛

= � 𝑑𝑑𝑦𝑦|𝑦𝑦|2𝐻𝐻−2
𝑡𝑡−(𝑗𝑗−1)𝑇𝑇

𝑛𝑛

𝑡𝑡−𝑗𝑗𝑇𝑇𝑛𝑛

, (48) 

see (32), here the fact that  ℎ(𝜏𝜏) is a step function is used.  
Let us consider different cases: 
1. (𝑗𝑗−1)𝑇𝑇

𝑛𝑛
< 𝑡𝑡 < 𝑗𝑗𝑇𝑇

𝑛𝑛
. In such a case, the limits of integration in (48) are of opposite signs, and 

𝑋𝑋𝑗𝑗(𝑡𝑡) = � 𝑑𝑑𝑦𝑦(−𝑦𝑦)2𝐻𝐻−2
0

𝑡𝑡−𝑗𝑗𝑇𝑇𝑛𝑛

+ � 𝑑𝑑𝑦𝑦𝑦𝑦2𝐻𝐻−2
𝑡𝑡−(𝑘𝑘−1)𝑇𝑇

𝑛𝑛

0

= {𝑢𝑢 = −𝑦𝑦} = 

= � 𝑑𝑑𝑢𝑢𝑢𝑢2𝐻𝐻−2

𝑗𝑗𝑇𝑇
𝑛𝑛−𝑡𝑡

0

+ � 𝑑𝑑𝑦𝑦𝑦𝑦2𝐻𝐻−2
𝑡𝑡−(𝑘𝑘−1)𝑇𝑇

𝑛𝑛

0

=
1

2𝐻𝐻 − 1
��
𝑙𝑙𝑇𝑇
𝑛𝑛
− 𝑡𝑡�

2𝐻𝐻−1

+ �𝑡𝑡 −
(𝑙𝑙 − 1)𝑇𝑇

𝑛𝑛 �
2𝐻𝐻−1

�. 

(49) 

2. 𝑡𝑡 ≥ 𝑗𝑗𝑇𝑇
𝑛𝑛

. In such a case, both limits of integration in (48) are non-negative, and 

𝑋𝑋𝑗𝑗(𝑡𝑡) = � 𝑑𝑑𝑦𝑦𝑦𝑦2𝐻𝐻−2
𝑡𝑡−(𝑗𝑗−1)𝑇𝑇

𝑛𝑛

𝑡𝑡−𝑗𝑗𝑇𝑇𝑛𝑛

=
1

2𝐻𝐻 − 1
��𝑡𝑡 −

(𝑙𝑙 − 1)𝑇𝑇
𝑛𝑛 �

2𝐻𝐻−1

− �𝑡𝑡 −
𝑙𝑙𝑇𝑇
𝑛𝑛
�
2𝐻𝐻−1

� (50) 

3. 𝑡𝑡 ≤ (𝑗𝑗−1)𝑇𝑇
𝑛𝑛

.  In such a case, both limits of integration in (48) are non-positive, and 𝑋𝑋𝑗𝑗(𝑡𝑡) is 
given by formula (33). 
To summarize the above-mentioned, 



𝑋𝑋𝑗𝑗(𝑡𝑡) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 1
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��
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� ,
(𝑙𝑙 − 1)𝑇𝑇

𝑛𝑛
< 𝑡𝑡 <

𝑙𝑙𝑇𝑇
𝑛𝑛

 

1
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�
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1
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�
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𝑛𝑛
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. (51) 

The right-hand side of the Wiener–Hopf integral equation (1) is as follows: 
Right(𝑡𝑡) = (𝑡𝑡 + 𝑧𝑧)2𝐻𝐻−2. (52) 

The MAPE may be introduced as follows: 

MAPE =
1
𝑇𝑇
� �

Left(𝑡𝑡) − Right(𝑡𝑡)
Right(𝑡𝑡)

� 𝑑𝑑𝑡𝑡 ∙ 100%
𝑇𝑇

0

, (53) 

The integral (53) is the only integral that cannot be calculated analytically. We use the method of 
trapezoids in order to calculate an approximate value of (53): 

MAPE ≈
1
𝑇𝑇
∙��

Left((2𝑗𝑗 − 1)𝑇𝑇 2𝑁𝑁⁄ ) − Right((2𝑗𝑗 − 1)𝑇𝑇 2𝑁𝑁⁄ )
Right((2𝑗𝑗 − 1)𝑇𝑇 2𝑁𝑁⁄ ) �

𝑁𝑁

𝑗𝑗=1

∙
𝑇𝑇
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∙ 100% = 

= ��
Left((2𝑗𝑗 − 1)𝑇𝑇 2𝑁𝑁⁄ ) − Right((2𝑗𝑗 − 1)𝑇𝑇 2𝑁𝑁⁄ )

Right((2𝑗𝑗 − 1)𝑇𝑇 2𝑁𝑁⁄ ) �
𝑁𝑁

𝑗𝑗=1

∙
100%
𝑁𝑁

 

(54) 

where 𝑁𝑁 is the number of intervals into which the interval (0,𝑇𝑇) is divided. In this paper, 𝑁𝑁 = 104.  
To summarize the above-mentioned, let us write the algorithm of calculation of the MAPE for the 

derived weight function in the approximation of  𝑛𝑛 = 2𝑚𝑚 Walsh functions: 
1. Calculate the quantities ℎ𝑗𝑗 by formula (47) 
2. Introduce the function Left(𝑡𝑡) by formulas (51) and (46) 
3. Introduce the function Right(𝑡𝑡) by formula (52) 
4. Calculate the MAPE by formula (54) 
In what follows, some numerical results are given. The following parameters were considered: 

𝑇𝑇 = 100, 𝑧𝑧 = 3, 𝐻𝐻 = 0.8, (55) 
it should be stressed that these parameters were investigated in our previous work [8] devoted to 
polynomial solutions. The MAPEs for parameters (55) are given in Table 1. 
 
Table 1 
MAPE for parameters (55) for approximations of different numbers of Walsh functions 

Number of Walsh functions MAPE,% 
2 15 
4 6.4 
8 2.6 

16 1.0 
32 3.9∙10–1 

64 1.5∙10–1 
128 6.0∙10–2 
256 2.4∙10–2 

 
The MAPE values in Table 1 are rounded off to two significant digits. The corresponding graphs are 
given for the approximation of 256 Walsh functions (see Fig. 1). 

The following parameters were also considered: 
𝑇𝑇 = 1000, 𝑧𝑧 = 3, 𝐻𝐻 = 0.8, (56) 

The MAPEs for parameters (56) are given in Table 2. 
 



 
Figure 1: Both sides of the integral equation (1) for the approximation of 256 Walsh functions for 
parameters (55) 
 
Table 2 
MAPE for parameters (56) for approximations of different numbers of Walsh functions 

Number of Walsh functions MAPE,% 
2 19 
4 9.4 
8 4.4 

16 2.0 
32 8.5∙10–1 

64 3.5∙10–1 
128 1.3∙10–1 
256 5.1∙10–2 

 
The MAPE values in Table 2 are also rounded off to two significant digits, the graphs for the 

approximation of 256 Walsh functions is given on Fig. 2. 
 

 
Figure 2: Both sides of the integral equation (1) for the approximation of 256 Walsh functions for 
parameters (56) 

 
As can be seen from Table 1 and Table 2, the approximations of rather small numbers of Walsh 

functions are not accurate, but the approximations of rather large numbers of Walsh functions are 
rather accurate. Both sides of the integral equation (1) almost coincide for the approximation of 256 
Walsh functions.  

The investigation of the polynomial solutions [8] for the parameters (55) is limited by the 
approximation of 19 polynomials only (the corresponding MAPE is equal to 0.57%), the Wolfram 



Mathematica is not able to build a graph of the left-hand side of the integral equation adequately for 
the approximations of a number of polynomials greater than 19. In our opinion, this is because of the 
products of very large and very small numbers. The method based on the Walsh functions does not 
have such a disadvantage, and the approximations of a few hundreds of Walsh functions may be 
investigated, the corresponding MAPE values are less than 0.57%. The parameters (56) were not 
investigated in [8], their investigation is given in order to illustrate that the proposed method based on 
the Walsh functions may be applied in a rather wide range of parameters. 

5. Conclusions 

The problem of prediction of telecommunication traffic is important for telecommunications; in 
particular, it is important for information security because security attacks may be detected if the 
traffic behavior significantly differs from the predicted one [1].  

We investigate the theoretical fundamentals of the Kolmogorov–Wiener filter construction for the 
continuous telecommunication traffic prediction. Our goal is to develop a method of the filter weight 
function derivation as a solution of the Wiener–Hopf integral equation. The traffic is taken in the 
model where it is treated as continuous fractional Gaussian noise.  

The corresponding Wiener–Hopf integral equation for the unknown weight function is solved via 
the Galerkin method. The idea of the Galerkin method is to seek the unknown weight function in the 
form of an expansion into an artificially truncated series in orthogonal functions. In our previous work 
[8] we used the Galerkin method based on the polynomial functions. In this paper we use the Walsh 
functions instead of the polynomial ones, which leads to the following advantages: 

1. The integral brackets can be obtained analytically, and the corresponding analytical 
expressions are applicable even for a rather large number of Walsh functions; the numerical 
calculation of the double integrals in the integral brackets is not needed. 
2. An easy-to-use analytical expression for the function Left(𝑡𝑡), which is the left-hand side of 
the corresponding Wiener-Hopf integral equation, may be obtained; the numerical calculation of 
the corresponding integral is not needed. 
3. The products of very large and very small numbers are absent in the framework of the 
proposed method based on the Walsh functions, which allows one to investigate the 
approximations of large numbers of Walsh functions. 
It should also be noted that the only integral that should be calculated numerically is the integral 

(53) for the MAPE. The other integrals are calculated analytically.  
The approximations of 𝑛𝑛 = 2𝑚𝑚 Walsh functions are investigated both for the parameters (55) and 

(56). The investigation is conducted up to the approximation of 256 Walsh functions. For comparison, 
it should be noted that the investigation of polynomial solutions [8] for the parameters (55) is limited 
by the approximation of 19 polynomials only, the Wolfram Mathematica is not able to treat the 
approximations of more polynomials adequately. The parameters (56) were not investigated on the 
basis of polynomial functions, the corresponding investigation on the basis of Walsh functions is 
given in order to stress that the proposed Walsh function approach is applicable in a rather wide range 
of parameters.  

The accuracy of the approximations rises with the number of Walsh functions, and the coincidence 
of both sides of the integral equation under consideration is very good for rather large numbers of 
Walsh functions. 

It should be noted that in this paper we investigate only the theoretical fundamentals of the 
Kolmogorov–Wiener filter construction. This filter may be applied to the prediction of stationary 
processes, so it is logical enough to use the approach based on this filter for the prediction of the 
stationary telecommunication traffic, for example, in the model where the traffic is treated as 
fractional Gaussian noise and in the model where the traffic is treated as a process with a power-law 
structure function. There are plenty of different approaches to traffic prediction [1], for example, the 
ARIMA models, the approaches based on the wavelet transforms, the approaches based on the neural 
networks and so on, but the approach based on the Kolmogorov–Wiener filter is not sufficiently 
developed in the literature. The Kolmogorov–Wiener filter is linear and stationary, so it is a rather 
simple filter, and the use of the Kolmogorov–Wiener filter may be less complicated than the use of 



the above-mentioned approaches. That is why the proposed approach may have practical significance 
for the prediction of stationary telecommunication traffic. The concrete experimental prediction of the 
modeled or real telecommunication traffic based on the proposed approach is our plan for the future 
and may be given in another paper.  

One more plan for the future is the application of the developed approach to other stationary traffic 
models. For example, the polynomial solutions need a significant enhancement for the power-law 
structure function model (see [11]), so the application of the developed approach to the traffic 
prediction in the framework of that model may be another plan for the future.  
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