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Abstract

Procedural content generation via Machine Learning
(PCGML) creates game levels from examples. PCGML for
platformers with physics-based player movement gener-
ally has not guaranteed the reachability of goals, relying
on post-generation filtering approaches or game-specific
heuristic rules. In contrast, constraint-based PCGML can
provide gameplay guarantees, but has typically been ap-
plied to games with simple grid-based movement. In this
work, we present a constraint-based PCGML approach
for platformers with physics-based player movement that
guarantees playability and provides design controllability.
Our approach exhaustively precomputes all possible player
movement states in example tile-based platformer levels. It
extracts metatiles containing local state information and uses
them in constraint-based level generation that ensures legal
tile neighbors and consistent movement state transitions.
The approach can ensure constraints on gameplay, such
as the reachability of goals, guaranteeing level playability,
and other elements like platforms and bonuses. It can also
incorporate other designer-controllable constraints.

Introduction

Procedural content generation via Machine Learning
(PCGML) is an approach to game level generation that
learns from existing levels (Summerville et al. 2018). By
learning to generate unique levels from hand-designed ones,
PCGML methods can complement and support human de-
signers’ creativity. They can generate new ideas that match
well with the designer’s style and needs, helping with brain-
storming or refinement of a level design.

While researchers have developed PCGML approaches to
generate levels for platformer games, these systems typically
do not provide guarantees about the reachability of level el-
ements, such as goals, and thus whether the resulting lev-
els are playable. They often rely on post-generation filtering
and playability heuristics and start over if the level is not
playable (Snodgrass and Ontafién 2016). Constraint-based
PCG approaches can incorporate reachability constraints
that guarantee playability, but have typically been applied to
games with simple tile-based movement rules (Nelson and
Smith 2016).
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Figure 1: Screenshot of Turtle Loves Pizza, showing the tur-
tle, blocks, hazards, a bonus, and the pizza goal. Positions
and transitions of enumerated state graph overlaid in teal.
Border tiles omitted for clarity.

Beyond playability, PCGML methods often struggle to
guarantee other attributes of the resulting levels such as the
distribution of design elements or the reachability of col-
lectible items. Many PCGML methods rely on neural net-
works, probabilistic graphical models, and other similar ap-
proaches that are not easily interpretable or controllable. De-
signers may need to iteratively re-train, often guessing what
might help the system achieve their desired vision (Sum-
merville, Philip, and Mateas 2015). Constraint-based meth-
ods allow designers to write a declarative description of their
requirements for the resulting level.

In this paper, we propose an approach to constraint-based
PCGML for platformers with physics-based player move-
ment that allows reachability and other designer-controllable
constraints. Our approach precomputes all possible player
states, based on the game’s physics and movement rules,
in the training levels, and associates the tiles with those
states and the transitions between them to create metatiles.
By tracking and constraining state transitions when generat-
ing levels, we ensure reachability of specific tiles like goals
and collectibles. We also include tile neighbor constraints
inspired by Wave Function Collapse (WFC) (Gumin 2016),
and generate levels by solving the constraints using Answer
Set Programming (ASP) (Gebser et al. 2011). We show how
this can be combined with other constraints to ensure other
design requirements, e.g. specific ranges and numbers of tile
types. This process can be divided into 3 steps: (1) enumer-
ating the state graph, (2) extracting the metatiles and con-
straints and (3) generating a new level that satisfies all the



constraints. We consider this to be a type of PCGML as some
of the constraints are learned from the training levels.

We applied this level generation technique to a simple
tile-based platformer game we created called Turtle Loves
Pizza (TLP), shown in Figure 1. We trained on simplified
versions of Super Mario Bros. levels from the Video Game
Level Corpus (VGLC) (Summerville et al. 2016).

We applied two types of reachability constraints: playa-
bility, whether the generated level contains a path from the
start to each goal; and usefulness, whether platforms and col-
lectibles in the generated level are reachable and can be used
or collected. The ideal generated level should be both useful
and playable. We show that our approach can be used to gen-
erate playable levels that also meet additional user-specified
design constraints including specific level dimensions and
the number of certain tile types in the generated level.

The focus of this work is to propose a new technique for
generating novel levels from existing ones in platformers.
The contributions are (1) a level generation approach which
ensures reachability and allows for other controllable con-
straints using constraint-based PCGML and precomputed
player movement and (2) a demonstration of the approach
using levels from an established domain with movement
rules from a custom platformer game.

Related Work

PCG for Platformers Many researchers have proposed
and tested methods for generating levels for platformer
games. One line of work used designer-defined libraries
or grammars, often paired with constraints or optimiza-
tions. Compton and Mateas (2006) proposed hill-climbing
to generate segments of levels by difficulty, stitched to-
gether with grammars. Inspired by Spelunky (Yu and Hull
2009), Mawhorter and Mateas (2010) created more flexi-
ble levels, at the expense of playability guarantees, by an-
choring hand-defined chunks based on player movement. G.
Smith et al. (2010; 2011) followed these concepts of pat-
tern analysis, adding the idea of rhythm and “beats,” by us-
ing a constraint solver and reactive planning. Another ap-
proach employed graph grammars (Londofio and Missura
2015). Though some of these techniques guaranteed playa-
bility, they only supported a single path through each level,
and required manual work to define the available patterns.

Seeking to learn such patterns from training data, Soren-
son and Pasquier (2010), Shaker et al. (2012), and To-
gelius and Dahlskog (2013) employed evolutionary algo-
rithms. These did not guarantee playability, but did use
fitness functions to search towards it. Controllability of
the output, however, was lacking. Others tried probabilis-
tic graphical models such as n-grams and Markov Models
(Dahlskog, Togelius, and Nelson 2014; Summerville, Philip,
and Mateas 2015; Snodgrass and Ontafién 2017). However,
these models have difficulty respecting global patterns or
constraints (Summerville and Mateas 2016). Snodgrass and
Ontandn (2016) approximated A* pathfinding to check for
playability, but their test-and-regenerate approach could not
guarantee it.

Finally, others have focused on artificial neural network
(ANN) approaches, beginning with Laskov (2009) and con-

tinuing with Hoover, Togelius, and Yannakis (2015), whose
neuroevolution technique was inspired by music theory, and
then by Guzdial and Riedl (2016). These, however, also did
not guarantee playability. Summerville and Mateas (2016)
include special path tiles, but these tile-based paths may not
reflect the exact player movement rules. ANNs also lack ex-
plainability and transparency, making them less legible for
designers. Recent efforts to integrate PCGML with mixed-
initiative tools (Hoover, Togelius, and Yannakis 2015; Guz-
dial, Liao, and Riedl 2018; Guzdial et al. 2019) may help by
providing feedback and integrating playability checks (Hoyt
et al. 2019), but ANNs remain difficult to train and control.
Our approach, using a constraint solver to generate coherent
levels that respect playability constraints, affords designers
relative flexibility and control to specify additional local and
global constraints on levels.

Constraint-based Level Generation Outside of platform-
ers, researchers have experimented with constraint-based
level generation. In games, this began with the level de-
sign tool SketchaWorld by Smelik et al. (2010), followed
by work by A. Smith et al. (2010; 2011) on generating
puzzle game designs and levels using ASP. As mentioned
above, Tanagra and Launchpad applied constraint solving
to platformer levels (Smith, Whitehead, and Mateas 2010;
Smith et al. 2011), but their approach could only generate a
single player path. Horswill and Foged (2012) applied con-
straint solving to ensure playability in dungeon generation.

Several released games use versions of Wave Function
Collapse (WFC) (Gumin 2016), a method inspired by tex-
ture synthesis and model-based synthesis (Harrison 2005;
Merrell 2009). Others have noted that WFC is, essen-
tially, constraint solving without backtracking (Karth and
Smith 2017), and a PCGML method that learns from exam-
ples (Karth and Smith 2018). Using ASP to re-implement
WEFC in a full constraint solver has proven successful in
generating playable levels for games with simple movement
rules (Nelson and Smith 2016; Scurti and Verbrugge 2018).
Sandhu, Chen, and McCoy (2019) further demonstrated how
design constraints can be incorporated with a WFC approach
to generate non-repetitive levels for a tile-based maze game.

Going beyond previous applications of constraint solv-
ing to platformers, our approach learns from existing levels
to automatically determine playability constraints, melding
ideas from WFC and ASP for dungeon generation with plat-
former physics modeling.

Precomputation and Sampling Previous work has also
applied extensive or exhaustive computation of gameplay
states. One application of this has been improved runtime
performance. Stanton et al. (2016) extensively precomputed
gameplay states to allow for high-quality rendering on mo-
bile devices, and Stanton et al. (2014) adaptively precom-
puted complex fluid dynamics that could be prohibitively
expensive to compute at runtime. Another application is test-
ing and analysis. Bauer and Popovi¢ (2012) used rapidly-
exploring random trees to analyze and visualize player
movement in a platformer game to support level editing.
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Figure 2: Illustrative example of the proposed level generation process. This simplified example does not use TLP physics;
the state only consists of the (x,y) position with start and goal flags, represented by the node color. 1) Given an input level
and the game’s movement rules, a graph of all reachable states is enumerated. 2) Next, all unique metatiles are extracted. A
metatile consists of a tile type and a state graph. We also track which metatiles were neighbors in the training level. 3) Finally, a
constraint solver is used to assemble metatiles into a new level such that metatile neighbor and transition destination constraints
are satisfied, along with any additional constraints supplied. Self transitions and border tiles omitted for clarity.

Overview

To generate levels using reachability constraints, we analyze
existing playable levels to extract information from each tile
and build a set of constraint rules that new levels must sat-
isfy. We organize our method into: (1) enumerating the state
graph, (2) extracting the metatiles and constraints, (3) solv-
ing the constraints to generate a new level. Here we discuss
the generic high-level approach, summarized in Figure 2.

Input Our approach takes as input (1) the game’s move-
ment rules and (2) a playable level for training.

The game’s movement rules take an existing player state
and an input action and return the resulting state. The player
state contains at minimum a position component, a flag for
being the start state, and a flag for being a goal state.

Next, we define a few simplifying assumptions about the
movement rules in the game. We assume that the player’s
movement is deterministic and that the player’s terminal ve-
locity cannot exceed the length of a square tile. Hence, we
assume that the movement rules are local: the player’s move-
ment, current state, and next state are only affected by the
player’s surrounding 3x3 neighborhood of tiles at each pos-
sible state in the level. Thus, we assume that the absolute
position of the state and neighborhood does not matter, only
the state’s relative position within its local neighborhood.
These assumptions are used to extract metatiles which are
then used to generate new levels (discussed below).

A valid training level is an existing level, represented as a
grid of tile types, with a start tile (which defines the player’s
start state), at least one goal tile, and a playable path from
start to goal. In this work, we assume all tiles along the outer
edge of the level (and none of the interior tiles) are border
tiles, which block the player from going out of the level. We
also assume that levels themselves are static, meaning tiles
will never change positions during gameplay.

State Graph Enumeration The first step in the process is
to enumerate the player’s state graph for the input level. We
begin with the player’s start state and use the game’s move-
ment rules to exhaustively precompute every reachable state
in the level. The transitions in the directed graph represent
the player’s ability to move from a source state to a destina-
tion state by performing a particular action. The enumerated
state graph for a valid input level will always contain a path

from the start state to every goal state.

Metatile Extraction After we enumerate the state graph
for the input level, we extract the level’s metatiles. A
metatile contains a tile type, a graph of all the player’s
states within that specific metatile, and the transitions be-
tween them. A metatile’s state graph also includes outgo-
ing edges, edges where the destination states are in adjacent
metatiles. Each metatile’s graph is a subgraph of the fully
enumerated level state graph. Every tile in the input level has
a corresponding metatile. When extracting metatiles, each
state’s position is offset to be relative to the metatile’s loca-
tion in the input level. This way, with a level’s metatiles and
knowledge of their locations in the input level, the metatiles’
graphs can be re-joined to reconstruct the fully enumerated
state graph. Each unique metatile extracted from the input
level is stored and assigned a unique ID.

Once we have extracted the set of unique metatiles from
the input level, we examine the input level to determine the
legal adjacent neighbors for each unique metatile. These are
the metatiles that can be placed in each of the 8 possible
neighbor positions surrounding each metatile.

At this point we have finished analyzing the input level
and have obtained (1) a defined set of metatiles, each con-
taining a unique subgraph of player states and their transi-
tions and (2) the learned adjacency rules for each metatile in
the set.

Level Generation Finally, we input the metatiles and their
adjacency rules into a constraint solver and use WFC to as-
semble instances of the metatiles into a new generated level.
During level generation, when a metatile is assigned to a
position in the new level, all of its associated states and tran-
sitions are also placed in the level and offset to the assigned
position. We use a technique similar to one suggested by
Nelson and Smith (2016) to track state reachability: the start
state is inherently reachable and for any source state that is
reachable, all destination states that can be transitioned to
from the source state are also reachable.
To assemble metatiles into a level, we use the following
generic constraints:
e Size: Levels are rectangular and must satisfy a given
width and height, measured in tiles.
o Metatile neighbors: Each of the 8 neighbors of a metatile
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Table 1: Summary of outcomes from size test. All levels
have 17 rows; sizes include border tiles. Average times are
mean for 5 levels. Rule gen time is the time it took to gen-
erate the generic ASP rules from the extracted metatiles and
constraints for each input level. *SMB 1-2 did not include
the Platform reachability constraint. T After collecting this
dataset, we were able to optimize the rule generation step to
just a few seconds.

must be one of the metatiles that was seen neighboring it
in the same direction in the training level. This is based
on the WFC (Gumin 2016) neighbor constraints.

e Border tiles: The outer edge tiles are assigned to be bor-
der tiles. Interior tiles must not be border tiles. This en-
sures that all 8 neighbors exist for all interior tiles.

e Transition destination: If a source state and transition out
of that state exist, the transition’s destination state must
also exist. This is based on the tile reachability rule from
Nelson and Smith (2016). (Note that this does not re-
quire the destination state to have had a corresponding
incoming transition in the training level).

e Goal reachability: All goal states must be reachable.
This ensures playability.

We used the Potassco (Gebser et al. 2011) tools to run an
ASP solver to find a placement of metatiles that satisfies the
defined constraints. Other games may apply additional con-
straints, as we did in this work (discussed below). With this
approach, we can generate new levels that satisfy defined
reachability and design constraints from a small training set
and elementary ML technique (Karth and Smith 2018).

Application

To explore our approach, we implemented a tile-based plat-
former called Turtle Loves Pizza (TLP). The player con-
trols a turtle that can move left and right and jump. The tur-
tle’s (x, y) position is based on its center. The turtle moves
smoothly within tiles and can occupy many possible posi-
tions within them due to the physics-based movement rules.
Its goal is to traverse the level to collect the pizza at the end.

There are several tile types that can be used in the game:
empty tiles that the turtle can move though, block tiles that
block the turtle from moving, hazard tiles that kill the turtle
when touched, bonus tiles that behave like blocks but give a
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12 |614| 750 | + | 16 50 -] 9] 5] -
1000 | + 10| - 10 | +
200 | T- 50 | *— 0+
1322 30| +|9% | 75| +| 1| 5] -
400 | *- 125 | - 10 | -

Table 2: Summary of outcomes from controllability test.
Timings were similar to those for 100% size, except for
those with a * took 1.5-3x as long to solve, T took roughly
80m to solve, and ¥ were stopped after roughly 24h.

score bonus the first time they are hit from below, a start tile
indicating where the turtle begins in the level, and a goal tile
that completes the level when touched.

The movement rules in TLP are based on simple physics
rules: the turtle’s state has an x and y position and an x
and y velocity. For simplicity, we used integers for position
and velocity. Jumping sets the y velocity to its maximum
upward value, and gravity constantly accelerates the turtle
downward in y. Moving left or right happens at a constant
x velocity. In addition to position and velocity, each state in
TLP has a flag for being a start, a goal, resting on the ground,
or dead. Each state also has an indicator for being in contact
with a bonus tile that can be collected in its local tile neigh-
borhood, if any; the indicator specifies the cardinal direction
of the bonus tile relative to the turtle. Thus, each state can
be considered a tuple of (xpos, ypos, xvel, yvel, isstart,
isgoal, isdead, isonground, whichbonus).

In order to have interesting input levels, we used lev-
els from Super Mario Bros. (SMB) from the VGLC (Sum-
merville et al. 2016). Note that, although we used SMB lev-
els, we used TLP player movement rules; these are differ-
ent from Mario’s but ensure that the levels are still playable.
To prepare SMB levels for TLP we made several modifica-
tions, including mapping SMB tile types to TLP tile types;
adding an additional bottom row of hazard tiles where there
were pits in SMB so that the player would be classified as
dead after falling into a pit; adding border tiles around the
perimeter of the level; defining start and goal tiles, and mak-
ing minute tile placement adjustments as needed for playa-
bility (e.g. removing a tile that Mario can pass through with
a special power-up but the turtle cannot).

In addition to the generic constraints discussed above, we
used the following constraints to generate levels:

e Start and goal tiles: There must be exactly one start tile
within the first 10 columns and one goal tile within the
last 10 columns.

e Other tile counts: The number of block, hazard, and
bonus tiles must be within +£20% of the number in the
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Figure 3: Example levels generated from the size test. From top to bottom, with two rows of each: 1-1, 50% and 100%; 1-1,
150%; 1-2, 100% and 150%:; 1-3, 100% and 150%. Tile characters are —: blank, X: block, @: hazard, ?: bonus, *: start, and

!': goal. Border tiles omitted for clarity.

input level, scaled by the relative size of the output level
(e.g. the counts are halved for levels generated at 50%
size). This constraint helps prevent the solver from gen-
erating uninteresting levels like rectangles of blocks.

e Platform reachability: All blocks that do not have a
block or a goal above them must have a reachable state
in the tile above them with isonground true. This pre-
vents the solver from creating superfluous unreachable
platforms in the air. We did not use this constraint when
using SMB 1-2 for input, as that training level itself had
many unreachable platforms.

e Bonus reachability: All bonuses must have a reachable
state in the tile below, with whichbonus set so they can
be collected.

Processing took place on an AWS r5.4xlarge instance with
16 cores and 128GB RAM, using Python 3 and pypy 3. The
clingo constraint solver was run with 12 threads, using a dif-
ferent random seed for each level generation.

To explore how different levels would impact the genera-
tion process, we used SMB levels 1-1, 1-2, and 1-3 for input.
We ran two sets of level generation tests: a size test and a
controllability test. To confirm playability, we (1) parsed the
solver output to verify that a reachable path existed from the
start to goal and (2) manually played all generated levels.

First, to explore the kinds of levels generated, how long
it took, and how size impacted them, we generated levels
of varying sizes: we used the input level height, and gener-
ated levels at 50%, 100% and 150% of the input level width.
For each input level and size, we generated five levels. A
summary of the size test and the levels generated is given in
Table 1, and examples of levels generated in Figure 3.

Second, to explore how controllable the generated levels
could be, we generated levels requiring exact counts of spe-
cific tile types. For each of the block, hazard, and bonus tile
types, we tried generating a level that required an exact count
for that tile type (while allowing the other two tile types to
fall within the ranges previously discussed) for 100% size. A
summary of the controllability test’s results is given in Table
2, and examples of levels generated in Figure 4.

Discussion

Although we only requested five levels to be generated from
each training level, we observed a few patterns across the
generated levels. The generated levels were largely made up
of repeated “motifs” that could be found in the training lev-
els, such as stairs, pits, and groupings of platforms. These
motifs are similar to the “scenes” with specific game me-
chanics that Green et al. (2020) showed could be stitched
together to generate new SMB levels, though it should be
noted that our approach ensures playability for all generated
levels. The variety in our generated levels seems to be pri-
marily based on reorganizations of these motifs with vari-
ations on their lengths. 1-2 had the least variety of levels
generated, with generated levels of the same length being
made up of the same sequences of motifs and minor rear-
rangements of blocks. In fact, 3 of the 5 levels generated
from 1-2 at 100% size were identical. This may be par-
tially attributable to the relatively closed-off nature of 1-2
and the lack of the platform reachability constraint, allow-
ing the solver to create unusable platforms to easily satisfy
the adjacency and tile type range constraints. The solver ap-
peared more flexible in generating levels from 1-1 and 1-3,
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Figure 4: Example levels generated from the controllability
test. From top to bottom: 1-1, 500 blocks; 1-1, 10 hazards;
1-2, 500 blocks; 1-2, 10 bonuses; 1-3, 300 blocks; 1-3, 75
hazards. Tile characters are —: blank, X: block, @: hazard, ?:
bonus, *: start, and !: goal. Border tiles omitted for clarity.

the training levels that had more empty space. 1-2 and 1-
3 failed to generate smaller size levels, possibly due to not
having enough room to work with to place metatiles.

We found that we needed to add some additional con-
straints to produce interesting and usable levels. Without the
tile count constraints the solver could produce uninteresting
levels such as simple rectangles of blocks. We also found
that border tiles were needed to prevent the solver from find-
ing undesirable solutions like levels with no bottom blocks
to stand on (as it could exploit the fact that the neighbor
metatile constraints only apply to metatiles that are present).

In terms of controllability, we found mixed results. Levels
were only generated for about half of the tile count configu-
rations we tested. This may be due to the limitations of the
“motifs” discussed above: for example, in 1-1 there was no
pit with only one hazard in it, and the solver could not gen-
erate a level with only one hazard. In practice, using range-
based or soft constraints may be helpful to enable the solver
to find valid solutions.

Limitations TLP has relatively simple physics-based
movement rules. For example, the turtle accelerates when
jumping or falling in the y-direction, but moves at a fixed
constant velocity in the x-direction. We believe the gen-
eral technique would work with a more complex movement
physics simulation, but would result in a larger state graph
to precompute. The turtle also has no animation state that
might influence its movement, and the world itself is static.

The training and level generation process was memory
and computation intensive, necessitating a powerful ma-
chine to run on. For example, the average grounding and
solving process to generate a level from 1-1 at 150% width
took nearly an hour. However, we have since been able to up-
grade our approach to ground once and solve multiple times
with different random seeds to generate multiple levels, thus
reducing the time taken to generate a level.

Finally, although generated levels are technically
playable, the path from start to goal can be difficult to
follow (i.e. require precise timings for specific actions at
exact locations). It may be interesting to be able to express
the difficulty of following a path as a constraint as well.

Future Work Future work can explore games where the
character has more complex movement rules, as well as
more complex levels involving larger local neighborhoods
(which would allow for the incorporation of moving ele-
ments like moving platforms and enemies) and generating
levels by training on multiple levels at once. We could also
consider other types of level generation primitives: in SMB-
style levels, it may make sense to train on columns rather
than individual tiles. Optimizations to improve the speed of
training and level generation are also areas for future work.

Ethical Implications This research uses levels authored by
humans, and future work based on it must grapple with eth-
ical questions of compensation, privacy, and equity, among
others. Due to space constraints, we focus here on compen-
sation and equity, and refer readers to Metcalf and Craw-
ford (2016) for a discussion of privacy concerns in ML.

In implementations and continuations of this research,
people should be fairly compensated for their labor to make
levels that train the system. Sloane et al. (2020) point out
that many ML systems are built on uncompensated, unac-
knowledged labor. If misused, this could become one such
system. If it produces profit or increases efficiency by sup-
planting work previously done by people, the profits or sav-
ings should be shared with the people who enabled them.
Beyond monetary compensation, Sloane et al. (2020) call
on implementers and researchers to ask whether their use of
data empowers users or exploits them.

Moreover, machine learning may amplify harms in de-
sign (Phillips et al. 2016; Bennett and Keyes 2019): this
system may create level elements that are harmful or inac-
cessible, or that reproduce intentionally abusive input. Of-
ten, machine learning focuses on removing “bias,” but this
is not sufficient: ML systems may reproduce hate symbols
or add harmful elements, even if they are not “biased” to-
wards them (Phillips et al. 2016). An equitable implemen-
tation would carefully vet input and output designs to mini-
mize harm, especially to vulnerable or marginalized groups.
If automated review is not capable of this detection, human
review may be necessary. We further call for future work to
undergo careful design and ethical review, going beyond this
incomplete list of potential risks and engaging with intersec-
tional analysis (Ciston 2019).

Conclusion

In this work, we present an approach for constraint-
based platformer level generation that guarantees playabil-
ity, based on player movement, without the need for post-
generation evaluation and filtering. Our approach also sup-
ports additional constraints to offer designers more creative
control and allow for flexible level generation. We believe
this controllable, constraint-based PCGML technique can
aid game designers in elaborating on new ideas, re-mixing
and expanding on existing levels, and rapidly iterating, while
maintaining playability.
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