CEUR-WS.org/Vol-2862/paper5.pdf

Warm Rocks for Cold Lizards: Generating Meaningful Quests in Caves of Qud

Jason Grinblat, C. Brian Bucklew
Freehold Games
{jason,bbucklew } @freeholdgames.com

Dynamic quest generation is a topic of interest in the
game Al community, with examples appearing in AAA
games (Lenhardt 2012), indie games (Coxon 2016), and
academia (Sullivan et al. 2012). In July 2018, we released
an update to our simulative science fantasy roguelike Caves
of Qud (Freehold Games 2015) that added its own take
on dynamically generated villages and quests. These sys-
tems were built on top of a framework we previously de-
veloped for generating historical biographies (Grinblat and
Bucklew 2017). Like that framework, our approach to dy-
namic quest generation—novel in the space as far as we
know—was shaped primarily by two design forces at work
in the project’s development. The first is an architectural
constraint; to support its large-scale game worlds, Caves of
Qud uses a two-phase approach to world creation (Bucklew
and Grinblat 2019) that delays the full fabrication of game
“zones” until the player enters them. The quest generation
system was necessarily designed to fit this two-tiered archi-
tecture. The second is an aesthetic choice of procedural con-
tent design; we tend to be nonprescriptive in deciding which
of our content modules can be procedurally combined, pre-
ferring instead to “let our generators run wild,” as we say, but
ensure that they smooth the rough edges off their output. For
our storyful generators, this means eschewing causal logic in
favor of randomness that’s parameterized by the richly nar-
rative world the generators are embedded in. The resulting
outputs are ripe for apophenic readings.

As mentioned, the quest generation work is split between
the two phases of world creation, world-gen and zone-gen,
plus some pre-authoring of templates. World-gen happens at
the start of each game, where abstract representations of the
game zones, their contents, and their relationships are gener-
ated. Zone-gen happens when a player enters a new zone and
those abstractions are reified and fabricated as game objects.
With this architectural context in mind, the components of
the quest generation system are as follows:

1. A catalog of pre-authored quest templates (e.g. “Discov-
erAnlmportantLocation”, “Find AnlmportantItem”)

2. An abstract DynamicQuestContext interface that zones
Copyright (©) 2020 for this paper by its authors. Use permitted un-

der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

implement in order to answer questions about themselves;
those answers get used to populate details in the templates
of quests generated inside the zones

3. A dynamic quest factory that, when asked for a quest orig-

inating in a zone, chooses a template and resolves its de-
tails with the context provided by that zone

4. A list of annotations that get sent to the zone building

module for the requesting zone and any other zones that
are affected by the quest

5. A replacement grammar for each quest template that, in

conjunction with additional replacement rules for the fab-
ricated objects, is used to generate quest names and dialog

Let’s walk through an example. During world-gen, a vil-
lage zone of moisture-farming reptiles wants to generate a
dynamic quest for itself. It instantiates a class that imple-
ments DynamicQuestContext, where it specifies answers to
relevant quest questions, like who are the potential quest
givers (the most senior reptiles) and what’s important to
them (warm rocks). The quest factory randomly chooses
the FindAnImportantltem template and populates the de-
tails with the reptile village’s provided context, including
the quest item (a quartz slab) and its location (another reptile
village, randomly chosen from among nearby locations). An
annotation is sent to the zone builder module that tells it to
add quest-giving dialog to the quest givers, who are chosen
from among the viable fabricated creatures during zone-gen.
Another annotation is sent to the destination zone, telling
the zone builder to make sure to place the quartz slab when
it builds the zone. (This allows for a sequence break where
the player arrives at the destination zone before having re-
ceived the quest or even generating the source zone at all.
The quartz slab is still there and retrievable.) Finally, when
the player arrives at the source zone for the first time, the
zone is generated, game objects such as the reptile villagers
are fabricated, a quest giver is chosen based on the resolved
quest context, and that quest giver is given appropriate dia-
log generated by the replacement grammar (“Hello, friend.
We heard about this lovely warm rock in a neighboring vil-
lage. Would you go retrieve it for us?”).



References

Bucklew, C. B., and Grinblat, J. 2019. Math for Game
Developers: End-to-End Procedural Generation in ‘Caves
of Qud’. https://www.gdcvault.com/browse/gdc-19/play/
1026313.

Coxon, T. 2016. Quest Friends Forever. https:/
playstarbound.com/quest-friends-forever/.

Freehold Games. 2015. Caves of Qud. http://www.
cavesofqud.com/.

Grinblat, J., and Bucklew, C. B. 2017. Subverting Historical
Cause & Effect: Generation of Mythic Biographies in Caves
of Qud. In Proceedings of the 12th International Conference
on the Foundations of Digital Games.

Lenhardt, H. 2012. Bethesda’s Nesmith reflects on the
difficult birth of Skyrim’s ‘Radiant Story’ system. https:
/Iventurebeat.com/2012/01/27/bethesdas-nesmith-reflects-
on-the-difficult-birth- of- skyrims-radiant-story-system/.
Sullivan, A.; Grow, A.; Mateas, M.; and Wardrip-Fruin, N.
2012. The Design of Mismanor: Creating a Playable Quest-
Based Story Game. In Proceedings of the International Con-
ference on the Foundations of Digital Games.



