CEUR-WS.org/Vol-2866/ceur_164-172_chebanukl6.pdf

UDC 004.415.2.045 (076.5)

DOMAIN ENGINEERING APPROACH OF SOFTWARE
REQUIREMENT ANALYSIS

oV Chebanyuk 80000-0002-9873-60101 ') \/_ Palahin bl0000-0003-3223-1391] K.K. Markov ¢[0000-0001-5041-1498]

*National Aviation University, 03058 ave. Lubomira Guzara 1,

°V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, 40, Academician Glushkov
Avenue, Kyiv, 03187, Ukraine

“Institute of Information Theories and Applications, Sofia, 1000, P.O. Box 775, Bulgaria.

Requirement analysis is one of the important processes in software development lifecycle management. In Agile approach
requirements software models are the basic of generating other software development artifacts. Improving requirements
approaches and techniques allows avoiding mistakes in other software development artifacts. Domain engineering fundamentals
is the basic for “template oriented” approaches of software development artifacts designing. Reusing domain models and
knowledge allows adding details in vertical “model to model” transformation operations, refine generated software development
artifacts, organize systematic software reuse and perform many other activities. Paper proposes an approach of requirement
analysis based on UML Use Case diagrams transformations into communication ones and the next refinements of them by means
of information from domain models. The advantages of the proposed approach is the next: proposed transformation method
involves “many to many” transformation in order to save the semantic of initial model. Domain knowledge are used to complete
communication diagram by means of adding details after transformation to them. In order to perform Use case to communication
transformation graph representation of software models is chosen.

Key words: Domain Engineering, Domain Analysis, Requirement Analysis, Software Model Transformation, UML diagram.

AHaji3 BHMOT € Ba)XJHMBHM IPOLECOM JXHTTEBOTO IHMKIY PO3POOKH MPOrpaMHOro 3ade3medeHHs. Y THYYKHX METOIOJOTisSX
PO3pOOKHU MPOrpaMHOTO 3a0e3neueHHsT MOJIeIi BUMOT € TaKUMH apTe(akTaMH PO3poOKH MPOTPaMHOT0 3a0€3Me4YEHHS, 0 MICTATh
BHXIJHY iH(popManito s 3IifiCHEHHS MOJANBIINX 3aBJaHb PO3POOKU. YOCKOHAJECHHS METOIMK aHalidy BHUMOT JI03BOJISIE
YHHKHYTH CHTyallil, KOJTH NOMHJIKH apTe(akTiB, I[0 MPOEKTYIOTbCS NPH aHalli3i BUMOT, HEPEHOCSTHCS Ha iHII apTedakTH
po3poOku mporpamHoro 3abe3neueHHs. JloMeHHa iHXKeHepis 3a0esnedye (QyHAaMEHTaNbHI OCHOBH JUJISl BIPOBAJKEHHS
«abIOHHO-OPIEHTOBAaHUX» METOJMK [POCKTYBaHHS apTe(akTiB po3poOKH mporpamHoro 3abesmneueHHs. IloBropHe
BUKOPHUCTAHHS JOMEHHUX MOJeJiel Ta 3HaHb J03BOJISE JOMOBHUTH IHPOPMALIIO PO CTPYKTYPY MOJEN, 10 Mae OiNIbII [eTanbHy
HOTAL0 micist BUKOHAHHS BEPTHKAIBHOT TpaHchopmanii
«3 MOJielli Y MOJIeJIbY, YTOUYHHUTH CIIPOEKTOBaHUi apTe(hakT po3poOKH MPOrpaMHOro 3a0e3IeueHHs, OpraHi3yBaTH CHCTEMAaTHYHEe
HOBTOPHE BUKOPHCTAHHS MPOrPaMHUX MOJYJIB Ta BUKOHATH 0araTo iHIIKX 3aBAaHb. Y poOOTi MPeaCTaBICHO METOANKY aHATi3y
BHMOT JI0 TIPOIPaMHOTO 3a0e3leyeHHs, 1o 0a3yeThcst Ha TpaHcdopmalii aiarpam MmpeueAeHTIB y AiarpaMu KOMyHikamii 3 ix
MOJANBIINM YTOYHEHHSM 3a JONOMOror iHpopMmarmii, mio MIiCTHTBCS y JJOMEHHHX Mopessix. IlepeBaroro IpejacTaBiIeHOT
METOJHKH o 3piBHAHHIO
3 ICHYIOUHMH € Te, 110 Ul TpaHc(hopMallii BUKOPUCTOBYIOTHCS BCI CKJIAJI0BI BUXiIHOT MOJIENi 3 METOIO IIEPEHECTH 11 CEeMaHTHKY
Ha pe3yNbTyr4y Mojeib. Ilicas TpaHchopmarii BUKOHYETbCS YTOYHEHHS! AiarpaM KOMYyHIKawiil i3 BAKOPUCTAHHSIM HAaKOINYCHUX
3HaHb NPO [JOMeH. BuximHoio iHpopMmauiero a1 TpaHcopmaiii MoJeiell MPOrpaMHOro 3a0e3MeueHHs iX aHaTiTHYHE
Mpe/ICTaBICHHS

y rpadosiif popmi.

Kiro4oBi cii0Ba: JoMeHHa iHXKEHepis, JOMEHHHUIT aHaIli3, aHaIIi3 BUMOT, TpaHchopMallis Moeseit mporpamuoro 3adesneuents, UML
niarpama.

Amnanu3 TpeOOBaHHMIT SBISETCS BaXKHBIM IIPOLECCOM KH3HEHHOTO ILHKJIA Pa3pabOTKH MpOrpaMMHOro obecredeHus. B rubkux
METOJOJIOTHAX Ppa3paboTKH MHPOrpaMMHOrO oOecredeHnsi Mojenu TpeOOBaHHMN sBISAIOTCA apredakTamMu pa3paboTKu
MIPOrPaMMHOT0 0OeCHedeHNMs, KOTOPBIE COAEPKAT HCXOHYI0 HH(OPMAIIHIO IS OCYINECTBICHHS JalbHEHIINX 3aa4 pa3paboTKy.
CoBepuICHCTBOBAaHHE METOJAMK aHaN3a TPeOOBAHHI IO3BOMSET M30€XKaTh CHTyallH, KOTAa OMHMOKH apTe(akToB, KOTOPHIE
HOPOEKTHPYIOTCSL NPH aHanu3e TpeOOBaHUiA, MEPEHOCITCs Ha apyrue apredakTbl pa3pabOTKH MPOrPaMMHOIO O0CCHEYCHHUS.
JloMeHHast MHXeHepusi obecrieynBaeT (yHAAMEHTAJIbHbIE OCHOBBI Ui BHEIAPCHHS «IIa0IOHHO-OPHEHTHPOBAHHBIXY» METOMUK
MIPOEKTUPOBaHHs apTe(hakToB pa3pabOTKH HPOrpaMMHOro obecredeHus. [IOBTOpHOE MCIONB30BaHHE JOMEHHBIX MOJCICH U
3HAHUH MO3BOJISAET JOMOJIHUTh HHPOPMALUIO O CTPYKTYypE MOJEIH, UMEIolIeil 6oiiee MOAPOOHYI0 HOTALMIO MOCIIE BHIIOIHEHUS
BEPTHKAIbHOII TpaHC(OPMALNH «HM3 MOJAECIH B MOJENIbY, YTOUYHUTh CIIPOCKTHPOBAHHBIA apTeakT pa3paboTKu HPOrpaMMHOTO
obecreyeHus, OPraHN30BaTh CHCTEMATHIECKOE IIOBTOPHOE HCIOJIb30BAHKUE IPOrPAMMHBIX MOAYJICH U BBINOJIHHTH MHOTO JAPYTHX
3agad. B pabore mpexcraBieHa METOAMKA aHaiuM3a TPeOOBaHMI K MHPOrpaMMHOMY OOECICYCHHIO, OCHOBAaHHAas Ha
TpaHcopMamUK JUarpaMM IpPELEJCHTOB B AHArpaMMbl KOMMYHHKAIMH C MX MOCIEAYIONIMM YTOYHEHHEM C HOMOIIBIO
nHdOpMaIMK, COAEpKAaLIeics B MTOMEHHBIX MOAENsX. IIpeMMyINecTBOM MPEICTABICHHOM METOMMKH II0 CPaBHCHHIO C
CYLIECTBYIOIMMHU SIBIAETCS TO, 4TO JUI TpaHC()OpPMALUM HCIOJIB3YIOTCS BCE COCTAaBIAIONIME HCXOJHOW MOJEIH C ILENbIO
MEPEHECTH €€ CEMAaHTUKYy Ha pe3ynpTupyiomyio Mozens. Ilocie TpaHcopManuy BBIMONHAETCS YTOYHEHHE JHArpaMm
KOMMYHHKAIUi C HCIIOJIb30BaHHEM HAKOIUICHHBIX 3HaHMII po aoMmeH. McxoxHoit nHdopmarueii s tpanchopmanun Moaeseit
IPOrpaMMHOTO 00ECIeYeHH s ABIAETCS X aHAIUTUYECKOe MPeICTaBlIeHHe B rpadoBoit hopme.

KiroueBble cioBa: JOMEHHAsh MH)XEHEpHUs, JOMEHHbBIH aHaiu3, aHanu3 TpeOoBaHMi, TpaHcopMalys MOAENEH NPOrpaMMHOTO
obecneuenus, UML nuarpamma.

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). 164

Introduction

In practice, domain engineering finds practical implementation in Software Product Line approach. There are
software engineering standards with recommendations to organize lifecycle processes in AGILE approach (ISO 12207,
ISO 15288, ISO 19770-1, ISO 29119-2, ISO 20000-4). General recommendations of software development lifecycle
process organization are complicated by specific operations aimed to organize an effective reuse of different software
development artifacts. As software models are central development artifacts in AGILE approach operations of their
reuse will allow to avoid designing and other mistakes. In order to organize effective software artifacts reuse scheme it
is necessary to answer on two research questions (RQ):

(RQ1) What should be reused? Other words: how to select proper domain knowledge for reuse?
(RQ2) How to merge domain model with software development artifacts?

Effective solving of these questions propose performing the next activities:

- forming request of searching in domain area through domain artifacts in repository;

- organizing search procedure and defining matching criterion;

- merging domain knowledge with software development artifacts.

Related papers and practical research

Involving Domain engineering into software artifacts reuse started in the end of the previous century. Reuse
researches performed in two directions. Research laboratories of big companies accumulated practical achievements in
this area. Scientific research directed to development of an analytical approaches.

As a result of research laboratories practices analysis shows that the next factors slowed the process of software
artifacts reuse:

Successful search of software development artifacts in Motorola practices was limited because it was some
difference rules using meta-information while preparing information about software artifacts and its further reuse during
search.

IBM focused on architectural solutions reuse. As a procedure of architectural solutions adoption for future
projects is quite complicated, architectural solutions may contain errors or rigid design characteristics.

Hewlett-Packard developer teams make some free procedure of adoption software development life
cycle process including extra processes for preparing high — quality software development artifacts ready for the
further reuse.

Table 1 Summarizing results of research laboratories IBM, Motorola and Hewlett-Packard companies.

Table 1. Level of coverage requirements of software artifacts reuse in application engineering

Appietion i repicemerts bt ol o I
Formal apparatus of software artifacts reuse + + —
Formal apparatus of software artifacts semantic similarity - + -
Providing maturity level of software development lifecycle processes - - +

Analysis of scientific papers devoted to domain engineering development pointed that there is a list of factors
that slow the development of software artifacts reuse in domain engineering:

1. Absence of the common concept and complex approach of software artifacts reuse information that is based
on gathering information while domain analysis and its further reuse in application engineering processes [1-4].

2. Existing approaches of software artifacts reuse estimation do not contain formal apparatus of choosing the
best software development artifact from the set of possible ones. [5-8].

3. Complex of tasks needed to be solved for software artifact reuse usually performed by means of different
software development tools that use different formats of data representation. Inaccurate data transition between formats
can be a cause of their partially lost or appearing some not expected elements [9-12].

4. Absence of formal methods allowing synchronizing domain models structure when initial information about
domain analysis is changed (text, audio, video, web-site etc.) [13—16].

5. Difficulty to collaborate results of software models processing in text and graphical representation [17—19].

6. Absence of formal approaches of preparation and reuse meta-information about software development
artifacts [20-22].

165

Proposed approach

Proposed approach is grounded on collaboration of knowledge about problem domain that were accumulated in
domain analysis procedure [23] and improvement of requirement analysis procedures. The aim of improvement
requirement analysis procedure is to spread information about Use Case Diagram and design communication diagram
that satisfy the requirements and store the semantics of requirement specification.

From domain analysis artifacts, controlled vocabulary is used. Requirement analysis of artifacts consists of
requirement specification and Use Case Diagram.

Proposed approach is based on performing transformation from Use Case to Communication Diagram,
transforming whole structure of Use Case. Graph representation of UML diagram is chosen. Initial information for
transformation is prepared composing all graph paths from textual representation (XMI) of UML diagram. The concept
of “text to model” transformation is proposed in paper [24].

Data flow of the proposed approach is represented in the figure 1.

Doman Application
analvsis engineering

®

[Desigh] requirement :
controlled e Design
| vocabulary) (Spedification) I +ransformation
| ’_l_ rules using
Desigh)|[Pesion Use graph
domain Case representation

diagram
models) ﬁ >

obtain its
analytical
representation
|
Prepare
requirement
specification

Transformation

Prepare

obtain
communication
diagram
skeleton

communication

diagram
structure
|

obtain
resulting
diagram

Figure 1. Data flow of the proposed approach

166

where

where

In order to solve this task propose the next denotations:

Graph representation of Use Case Diagram, that consider data streams

SM = {path,, path,,..., path,},n =| SM e case |

use_case

path = (esg,,esg,,....esd,)

esg = (ob,,link,0b,)
OblaobZ € {p:aac}
link € {l,I(include), I (extends),(inh)}

SM

use _case

path, —path in the Use Case Diagram representing one data stream (path in graph),

— denotation of whole Use Case Diagram,

esg — elementary sub-graph, describing two directly linked objects Ob1 and Ob2 by means of link.

Objects (ob) in notation of Use Case Diagram can be the next type a — actors; p — precedents; C — comments.

Links in Use Case diagram can be the next types — I(include) — include, I(extends) — extends, I(inh) — inheritance.

SMcom = {pathla pathza"'ﬂ pathn}on =| SMCOm ‘

path = (esg,,esg,,...,esg,)

esg = (ob,,m,ob,)
ob,,ob, € {a,c,obj}

SM

co

ob,,ob, -

., — Communication Diagram,

Communication Diagram objects,

m — Communication Diagram message.

Denote transformation operation from Use Case Diagram to Communication one as: SM

TRANS

SM TRANS

use _case

=

SM

com?

ini

y SM,,, as:

where ————> is a set of transformations rules, which are applied when Use Case diagram is transformed into

communication one.
A set of domain entities in controlled vocabulary (ConVoc)

where path

ConVoc = {c,¢,,...,c,},n =|ConVoc .

A set of Use Case diagram precedents is:

Puseicase = {pl’ p2"“’ pk}

p=(W,W,,...,w,),peP,

use _case

Let define the transformation rules using proposed denotations.

In order to perform transformation from Use case to Communication diagrams.

Transformation rules represented in the paper [25] are used. Grounding on these rules, it is proposed rule for
transforming whole Use Case diagram into communication one.
Rules for obtaining skeleton of communication diagram

PATH
path

use _case

use _case

TRANS PATH o

TRANS p athcom

TRANS

€500 case > €5Ucom
TRANS = {trans,trans, }

trans, : (a,1, p) —> (a,m,obj)
trans, : (p,.. p,) — (obj,.m,obj,)

use _case

B

— path in Use Case Diagram,

167

pathcom — path in Communication Diagram,
€S0,ee case — €lementary sub-graph in Use Case Diagram,
€50.,m — elementary sub-graph in Communication Diagram,

0bj — Communication Diagram object.
After performing such a transformation, the next task is to give a name for obtained objects. Denote named
objects as obj(name). The rule of naming object is written in the following way:
ConVocn p={w=c|we p,c e Convoc}
ConVocn p # < — obj(name) =ConVoc N p 1)
The last transformation task is to optimize Communication Diagram structure by means of applying

“self-message” rule. Self-message is the message that is outcomes and incomes to the same communication diagram

object.
if obj, = obj, in(obj,,m,obj,)
then (obj,,m, obj,) — (obj, m(self),obj)

Graphically such communication diagram fragment (figure 2,a) is changed to the next (figure 2,b).

.0bj -0bj

b

A, _ .0bj r(self)

a

Figure 2. “Self-message” optimization rule: a — obtained communication diagram fragment;
b — optimized communication diagram fragment

Describe the steps of the proposed approach of communication diagram designing that based on Use Case
diagram (application engineering artifact) and controlled vocabulary (domain analysis artifact).
1. Compose of a problem domain controlled vocabulary.

2. Design Use case diagrams from requirement specification.
3. Obtain a skeleton of communication diagram from the Use Case using proposed transformation rules

SM,, TN gy

use _case

4. Fill communication diagram skeleton by means of objects names using.
5. Entities from controlled vocabulary in Use Case diagram using (1).
6. Optimize structure of communication diagram using self-message rule.

Case study
Consider example of Use case diagram for visualizing data of accounting reports. Report settings are stored in
profiles. Reports visualized in using graphics. Graphics are obtained considering time settings. Use Case Diagram is

represented in the figure 3.

168

time setting
pS

setting of diagram
representation parametres
p2 -

<<include>> (i rlmclude)Z

<<indlude>> I(include)1 -
saving profile
p7

BExport data
from Excel
p8

changing profile

Marking max,
min and media
p6

Figure 3. Use case diagram of visualizing accounting reports

Analytical representation of this diagram is prepared using approach represented in [24]. A set of Path is
containing from six elements. Some part of paths are duplicated. Analytical representation of Use case diagram contains
the initial information for designing of communication diagram structure.

chain, = (a,l,, p,)

chain, = chain,(p,,l;, p,) chain, =chain,(p,,l,, p;)

path, = chain,(p,,l(include),, p,)
path, = chain, (p,,I(include),, p;)

chain, = chain,(p,,l,, p,) chain, =chain,(p,,l,, p,)

chain, = chain,(p,,l,, p,) chain, =chain,(p,,l,, p)

chain, = chain,(p,,ls, p,) chain, =chainy(p,.l,, p,)

path, = chain,(p,,l,, pg)
path, = chainy(p ,I , pg)
path; = chain,(p,,ly, py)
path, = chain,(p,, s, Pg)

Expression (2) represents example of transformation Use case diagram path into communication one.

pathl(usefcase) = (al’ll’ pl)a(pl’lz’ p3)a(ppl(inCIUde)l’ pz)
path, ..., = (&,m,,0bj,),(0bj,,m,,obj,),(0bj,,m,,0bj,) - (2
obj, = profile,obj, = profile, obj, ="to define"
The note according to transformation rule names of different objects can be the same. It is pointed to the fact that
the diagram needs the further optimization. Name of object “to define” points, that in order to define the name of

communication diagram object the information from domain knowledge is used. After designing all paths of
communication diagram, its skeleton is composed (figure 4).

169

:Profile Profile

:Profile 2
o |

—
‘Profile :Profile

3
:Graphic
S 8
. .| — —
:Graphic Bxcel

Figure 4. Unoptimized “skeleton” of the Communication Diagram

After performing sequence of Communication Diagram refinement (implementing self-object messaging rule)
obtain diagram that is represented in figure 5 and 6.

(@)
1, :Profile
|T_| l7
-——
<<
<5
S :Graphic
5 8
:Graphic Excel

Figure 5. First- step of communication diagram skeleton optimization (Object profile is optimized)

0O
|| || Lo | :profile

fot @

8
:Graphic :Excel
<

Figure 6. Refined Communication Diagram

The next step is to complete diagram structure by problem domain entities and their properties (figure 7).
Performing this step it is defined, which data streams can be organized in parallel.

170

Profile

Visualization term 5 —7>
Diagram type : ‘Graphic Excel
Data source

L
<

¢

3l 22 1
. <
3 :Data
|
24

Figure 7. Communication Diagram that is complicated from domain knowledge

Conclusion

Known “model to model” transformation approaches do not use the whole structure of initial diagram. It may be
cause of losing some information or performing additional efforts of domain analytics to organize the structure of
resulting diagram. From the other hand, such approaches require additional time and efforts.

Proposed approach aimed to designing of Communication Diagram from Use Case one. It is grounded on usage
of whole Use Case diagram structure while transformation operation is performed. Such a fact allows saving Use Case
semantics after transformation. As proposed approach implements vertical transformation, resulting diagram
complicated by information about problem domain from domain knowledge.

Further research

It is planned to design formal approach allowing reuse domain knowledge while designing different types of
UML diagrams in Software Product Line.

References

1. Hooper J.W., & Chester R.O. (1991). Software reuse: guidelines and methods. Springer Science & Business Media.

2. Marshall J.J., & Downs R.R. (2008, July). Reuse readiness levels as a measure of software reusability. In IGARSS 2008-2008 IEEE
International Geoscience and Remote Sensing Symposium (Vol. 3, pp. 111-1414). IEEE.

3. Smith M., & Sodhi J. (1994). Marching Towards a Software Reuse Future. ACM SIGAda Ada Letters, 14(6), 62-72.

4. Vieira M., Madeira H., Cruz S., Costa M., & Cunha J.C. (2011, June). Integrating GQM and Data Warehousing for the Definition of Software
Reuse Metrics. In 2011 IEEE 34th Software Engineering Workshop (P. 112-116). IEEE.

5. Maga C., & Jazdi N. (2009, June). Concept of a domain repository for industrial automation. In Proceedings of the First International Workshop
on Domain Engineering.

6. Komissarchik J., & Komissarchik E. (2008). U.S. Patent N 7,454,430. Washington, DC: U.S. Patent and Trademark Office.

7. Van der Meij L., Isaac A., & Zinn C. (2010, May). A web-based repository service for vocabularies and alignments in the cultural heritage
domain. In Extended Semantic Web Conference (P. 394-409). Springer, Berlin, Heidelberg.

8. Dwyer M.B., Hatcliff J., Robby R., Pasareanu C.S., & Visser W. (2007, May). Formal software analysis emerging trends in software model
checking. In 2007 Future of Software Engineering (P. 120-136). IEEE Computer Society.

9. Whalen M., Cofer D., Miller S., Krogh B.H., & Storm W. (2007, July). Integration of formal analysis into a model-based software development
process. In International Workshop on Formal Methods for Industrial Critical Systems (P. 68—84). Springer, Berlin, Heidelberg.

10. Qin W., Rajagopalan S., & Malik S. (2004, June). A formal concurrency model based architecture description language for synthesis of
software development tools. In ACM SIGPLAN Notices (Vol. 39, N 7, P. 47-56). ACM.

11. Fraser M.D., & Vaishnavi V.K. (1997). A formal specifications maturity model. Communications of the ACM, 40(12), 95-104.

12. Satyananda T.K., Lee D., Kang S., & Hashmi S.I. (2007, August). Identifying traceability between feature model and software architecture in
software product line using formal concept analysis. In 2007 International Conference on Computational Science and its Applications (ICCSA
2007) (P. 380-388). IEEE.

13. Markopoulos P. (2013). A compositional model for the formal specification of user interface software (Doctoral dissertation).

14. Bjorner D. (2019). Domain analysis and description principles, techniques, and modelling languages. ACM Transactions on Software
Engineering and Methodology (TOSEM), 28(2), 1-67.

15. Cao L., Liu J.,, Wang Q., Jiang C., & Zhang L. (2019). An efficient structural uncertainty propagation method based on evidence domain
analysis. Engineering Structures, 194, 26-35.

16. Rabiser R., Schmid K., Eichelberger H., Vierhauser M., Guinea S., & Griinbacher P. (2019). A domain analysis of resource and
requirements monitoring: Towards a comprehensive model of the software monitoring domain. Information and Software Technology, 111,
86-109.

17. Df'silva V., Kroening D., & Weissenbacher G. (2008). A survey of automated techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7), 1165-1178.

18. Ouimet M., & Lundqvist K. (2007). Formal software verification: Model checking and theorem proving. Embedded Systems Laboratory
Technical Report ESL-TIK-00214, Cambridge USA.

19. Ammann P., & Black P. E. (1999, October). Abstracting formal specifications to generate software tests via model checking. In Gateway to the
New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No. 99CH37033) (Vol. 2, P. 10-A). IEEE.

171

20. Bennion M., & Habli I. (2014, May). A candid industrial evaluation of formal software verification using model checking. In Companion
Proceedings of the 36th International Conference on Software Engineering (P. 175-184). ACM.

21. Jetley R., Iyer S.P., & Jones P. (2006). A formal methods approach to medical device review. Computer, 39(4), 61-67.

22. Broy M., Kriiger LH., & Meisinger M. (2007). A formal model of services. ACM Transactions on Software Engineering and Methodology
(TOSEM), 16(1), 5.

23. Chebanyuk O. & Palahin O. (2019) Domain Analysis Approach. International journal “Informational Content and Processing”. Volume 6,
Number 2, 2019, 3-20.

24. Chebanyuk O. (2018) An Approach of Text to Model Transformation of Software Models. In Proceedings of the 13th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), 432-439 (Bunanns ingekcyerbes y SCOPUS)

25. Chebanyuk E. (2014) An approach to class diagram designing. Proceedings of the 2st International Conference on Model-Driven Engineering
and Software Development, 7-9 January 2014 y. Portugal, Lisbon. 579-583.

Jlitepatypa

—_

Hooper J.W., & Chester R.O. (1991). Software reuse: guidelines and methods. Springer Science & Business Media.

2. Marshall JJ., & Downs R.R. (2008, July). Reuse readiness levels as a measure of software reusability. In IGARSS 2008-2008 IEEE

International Geoscience and Remote Sensing Symposium (Vol. 3, pp. I11-1414). IEEE.

Smith M., & Sodhi J. (1994). Marching Towards a Software Reuse Future. ACM SIGAda Ada Letters, 14(6), 62—72.

4. Vieira M., Madeira H., Cruz S., Costa M., & Cunha J.C. (2011, June). Integrating GQM and Data Warehousing for the Definition of Software
Reuse Metrics. In 2011 IEEE 34th Software Engineering Workshop (P. 112-116). IEEE.

5. Maga C., & Jazdi N. (2009, June). Concept of a domain repository for industrial automation. In Proceedings of the First International Workshop
on Domain Engineering.

6. Komissarchik J., & Komissarchik E. (2008). U.S. Patent N 7,454,430. Washington, DC: U.S. Patent and Trademark Office.

7. Van der Mejj L., Isaac A., & Zinn C. (2010, May). A web-based repository service for vocabularies and alignments in the cultural heritage
domain. In Extended Semantic Web Conference (P. 394-409). Springer, Berlin, Heidelberg.

8. Dwyer M.B., Hatcliff J., Robby R., Pasareanu C.S., & Visser W. (2007, May). Formal software analysis emerging trends in software model
checking. In 2007 Future of Software Engineering (P. 120-136). IEEE Computer Society.

9. Whalen M., Cofer D., Miller S., Krogh B.H., & Storm W. (2007, July). Integration of formal analysis into a model-based software development
process. In International Workshop on Formal Methods for Industrial Critical Systems (P. 68-84). Springer, Berlin, Heidelberg.

10. Qin W., Rajagopalan S., & Malik S. (2004, June). A formal concurrency model based architecture description language for synthesis of
software development tools. In ACM SIGPLAN Notices (Vol. 39, N 7, P. 47-56). ACM.

11. Fraser M.D., & Vaishnavi V.K. (1997). A formal specifications maturity model. Communications of the ACM, 40(12), 95-104.

12. Satyananda T.K., Lee D., Kang S., & Hashmi S.I. (2007, August). Identifying traceability between feature model and software architecture in
software product line using formal concept analysis. In 2007 International Conference on Computational Science and its Applications (ICCSA
2007) (P. 380-388). IEEE.

13. Markopoulos P. (2013). A compositional model for the formal specification of user interface software (Doctoral dissertation).

14. Bjorner D. (2019). Domain analysis and description principles, techniques, and modelling languages. ACM Transactions on Software
Engineering and Methodology (TOSEM), 28(2), 1-67.

15. Cao L., Liu J.,, Wang Q., Jiang C., & Zhang L. (2019). An efficient structural uncertainty propagation method based on evidence domain
analysis. Engineering Structures, 194, 26-35.

16. Rabiser R., Schmid K., Eichelberger H., Vierhauser M., Guinea S., & Griinbacher P. (2019). A domain analysis of resource and
requirements monitoring: Towards a comprehensive model of the software monitoring domain. Information and Software Technology, 111,
86-109.

17. Dfsilva V., Kroening D., & Weissenbacher G. (2008). A survey of automated techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7), 1165-1178.

18. Ouimet M., & Lundqvist K. (2007). Formal software verification: Model checking and theorem proving. Embedded Systems Laboratory
Technical Report ESL-TIK-00214, Cambridge USA.

19. Ammann P., & Black P. E. (1999, October). Abstracting formal specifications to generate software tests via model checking. In Gateway to the
New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No. 99CH37033) (Vol. 2, P. 10-A). IEEE.

20. Bennion M., & Habli I. (2014, May). A candid industrial evaluation of formal software verification using model checking. In Companion
Proceedings of the 36th International Conference on Software Engineering (P. 175-184). ACM.

21. Jetley R., Iyer S.P., & Jones P. (2006). A formal methods approach to medical device review. Computer, 39(4), 61-67.

22. Broy M., Kriiger L.H., & Meisinger M. (2007). A formal model of services. ACM Transactions on Software Engineering and Methodology
(TOSEM), 16(1), 5.

23. Chebanyuk O. & Palahin O. (2019) Domain Analysis Approach. International journal “Informational Content and Processing”. Volume 6,
Number 2, 2019, 3-20.

24. Chebanyuk O. (2018) An Approach of Text to Model Transformation of Software Models. In Proceedings of the 13th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), 432-439 (Buganus innexcyerscs y SCOPUS)

25. Chebanyuk E. (2014) An approach to class diagram designing. Proceedings of the 2st International Conference on Model-Driven Engineering

and Software Development, 7-9 January 2014 y. Portugal, Lisbon. 579-583.

W

Received 02.03.2020

Information about the authors:

Chebanyuk Olena Viktorivna,

PhD, associate professor of software engineering department,

PhD, associate professor.

Number of publications — approximately 75.

Publications in Ukrainian journals — 35.

Publications in foreign journals — 35.

PP Hirsh index=4, Scopus — 1.

https://orcid.org/0000-0002-9873-6010 (ORCID name Elena Chebanyuk),

172

Palahin Olexander Vasyliovych,
Doctor of Sciences, Academician of National Academy of Sciences of Ukraine,
Deputy director of Glushkov Institute of Cybernetics, head of department 205.
Publications in Ukrainian journals — 290.
Publications in foreign journals — 45.
H-index: Google Scholar — 15, Scopus — 3.

http://orcid.org/0000-0003-3223-1391,

Markov Krassimir K.,

Professor Dr.

Number of publications: more than 135; 5 monographs.

PP Hirsh index — 11.

https://orcid.org/0000-0001-5041-1498 (ORCID name Krassimir Markov)
WoS ResearcherlD L-6845-2018.

Authors’ place of work:

National Aviation University,

03058 ave. Lubomira Guzara 1,

Phone: 044-406-76-41,

E-mail: chebanyuk.elena@gmail.com (chebanyuk.elena@ithea.org)

V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine

40, Academician Glushkov Avenue, Kyiv, 03187, Ukraine

Institute of Information Theories and Applications, Sofia, 1000, P.O. Box 775, Bulgaria.

E-mail: markov@ithea.org

173

