
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

183

UDC 004.42:510.69

SEQUENT CALCULI OF FIRST-ORDER LOGICS OF PARTIAL
PREDICATES WITH EXTENDED RENOMINATIONS AND

COMPOSITION OF PREDICATE COMPLEMENT

Mykola Nikitchenko[0000-0002-4078-1062], Oksana Shkilniak[0000-0003-4139-2525], Stepan
Shkilniak[0000-0001-8624-5778]

Taras Shevchenko National University of Kyiv, 01601, Kyiv, Vladimirskaya, 60.

Досліджено нові класи програмно-орієнтованих логік – чисті першопорядкові логіки часткових квазіарних предикатів з
розширеними реномінаціями та композицією предикатного доповнення. Описано відношення логічного наслідку в
таких логіках, для цих відношень побудовано числення секвенційного типу. Наведено базові секвенційні форми цих
числень та умови замкненості секвенцій. Для пропонованих числень доведено теореми коректності, теореми про
існування контрмоделей та теореми повноти.

Ключові слова: логіка, частковий предикат, логічний наслідок, секвенційне числення, коректність, повнота.

Исследованы новые классы программно-ориентированных логик – чистые первопорядковые логики частичных квазиарных
предикатов с расширенными реноминациями и композицией предикатного дополнения. Описаны отношення логического
следствия в таких логиках, для этих отношений построены исчисления секвенциального типа. Приведены базовые
секвенциальные формы этих исчислений и условия замкнутости секвенций. Для предложенных исчислений доказаны
теоремы корректности, теоремы о существовании контрмоделей и теоремы полноты.

Ключевые слова: логика, частичный предикат, логическое следствие, секвенциальное исчисление, корректность, полнота.

We study new classes of program-oriented logical formalisms – pure first-order logics of quasiary predicates with extended
renominations and a composition of predicate complement. For these logics, various logical consequence relations are specified and
corresponding calculi of sequent type are constructed. We define basic sequent forms for the specified calculi and closeness
conditions.
The soundness, completeness, and counter-model existence theorems are proved for the introduced calculi.

Key words: logic, partial predicate, logical consequence, sequent calculus, soundness, completeness.

Introduction

Many different logic systems have been created (see, for example, [1]), which are used with success in computer
science and programming. Usually, the classical logic of predicates [2] and special logics based on it are employed for
this purpose. However, classical logic has fundamental limitations, which complicates its use. This brings to the fore
the problem of building new, software-oriented logics. Such are the logics of partial quasiary predicates, built on the
basis of a compositional-nominative approach common to logic and programming [3]. A number of different classes of
quasiary predicate logics are described, in particular, in [3–6].

To solve a number of problems that arise in information and software systems, it is necessary to develop
efficient proof searching procedures. Such procedures are provided by Gentzen-style sequent calculi. These calculi
formalize the fundamental concept of logical consequence. A number of sequent calculi for different classes of
program-oriented logics have been developed (see, e.g., [4–6]). The purpose of this work is to construct sequent calculi
for new classes of such logics — pure first-order logics of quasiary predicates with extended renominations and the
composition of the predicate complement. A characteristic feature of these logics is the presence of a special non-
monotonic operation (composition) of the predicate complement � . Operations of this type have been used in
extensions of Floyd-Hoare program logics [7, 8] in the case of partial pre- and post-conditions. The logics of partial
predicates with the composition of the predicate complement are proposed in [9], they are called LC. Propositional LCs
are described in detail in [9], renominative and pure first-order LCs are considered in [10] and [11], various
relationships of logical consequence in LC are investigated in [12].

Pure first-order logics of quasiary predicates are called LQ (logics of quantifier level). Their defining feature is
the presence of quantification compositions. LQ with extended renominations and predicate-indicators of the presence
of value for variables is called L

Q, L
Q with the composition of the predicate complement is called L

QС. A number of
sequent calculi in L

Q and in L
QС are constructed in the paper, and the theorems of soundness and completeness are

proved for such calculi. The main emphasis is on the construction of sequential numbers in L
QС.

Concepts that are not defined in this paper are interpreted in the sense of [6, 9, 12]. To facilitate reading, we
provide the necessary definitions for further presentation.

1. Composition systems and languages of pure first-order logics

184

Let VA be a set of all V-A-nominative sets and {T, F} is a set of Boolean values. We define V-A-quasiary
predicate as a partial many-valued function Q : VA ® {T, F}. The set of values which many-valued predicate Q yields
on argument (data) dVА is denoted Q[d].

Let V be a set of names (variables) and A be a set of values. V-A-nominative set is defined as a partial single-
valued function d : V ® A. Nominative sets can be presented in the form [v1a1,...,vnan,...], where vіV, aіA, vі  vj

when і  j.
For nominative sets we define the parametric operation ||–Z of deleting components with names from Z  V as

follows: d ||–Z = {v ad | vZ}.

The parametric operation of extended renomination 1 1

1

,..., , ,...,
 ,..., , ,...,r :n m

n

v v u u
x x  

VА® VA, where vi, xi, uj V, is specified [5] as

1 1

1

,..., , ,...,
 ,..., , ,...,r ()n m

n

v v u u
x x d  

1 1{ ,..., , ,..., }|| 
n mv v u ud 1 1[(),..., ()] n nv d x v d x . In particular, r () || . x

xd d

We use a special symbol V that denotes the absence of the variable value; d(xі) means that a component
with the name vі is absent.

A simpler notation for sequences y1,..., yn will be used: y . Thus, instead of 1 1

1

,..., , ,...,
 ,..., , ,...,r  

n m

n

v v u u
x x , we will write ,

,r 
v u
x .

Traditional renomination r
v
x [2–4] is a special case of extended renomination ,

,rv u
x  .

Statement 1. Given d(z), we obtain , , , ,
 , , , ,r () r ()  v u y v u y
x z xd d and , , ,

 , , ,r () r ()  v u z v u
x xd d .

Successive renominations , , , , , ,
 , , , , , ,r та ru s w t v s z t
x a y c    can be represented [5] by one renomination denoted

, , , , , ,

 , , , , , ,r    �u s w t v s z t
x a y c ;

we call it the convolution of , , ,
, , ,r  

u s w t
x a and , , ,

 , , ,r  
v s z t
y c . For any dVA we get , , , , , , , , , , ,

 , , , , , , , , , , ,r () r ()      �u s w t v s z t u s v w z t
x a y c p q yd d .

In this paper we study many-valued predicates of relational type – R-predicates [3, 6], denoted as mappings from
VA to the set of Boolean values {T, F}. Each R-predicate Q can be defined by its truth domain T(Q) = {d | TQ[d]} and

falsity domain F(Q) = {d | FQ[d]}. We specify the undefinedness domain of R-predicate Q as () () ()Q T Q F Q   .

We call R-predicate Q monotone if d1  d2  Q[d1]  Q[d2].
A name хV is unessential for R-predicate Q, if for any d1, d2 VA we have: d1 ||–х = d2 ||–х  Q[d1] = Q[d2].
Q is a partial single-valued R-predicate (P-predicate), if T(Q)F(Q) = ;
Q is a total R-predicate (T-predicate), if T(Q)F(Q) =

VA;
Q is a total single-valued R-predicate (TS-predicate), if T(Q)F(Q) =  and T(Q)F(Q) =

VA.
We can define 4 constant R-predicates T, F, ,К  as follows:

T(F) = F(T) = () ()T F  К К ; T(T) = F(F) = T() = F() = VА.

Q is a partial constant P-predicate, if F(Q) =  or T(Q) = .
We will denote classes of V-A-quasiary R-predicates, P-predicates, T-predicates, and TS-predicates PrV–A, PrPV–

A, PrTV–A, and PrTS V–A respectively. The class PrTSV–A is degenerate: all TS-predicates, except constant T and F, are
non-monotonic.

Basic compositions. Basic compositons of L
Q are negation , disjunction , extended renomination ,

,R ,v u
x 

existential quantifier x, and 0-ary variable assignment predicate Ez. Basic compositons of L
QС additionally contain

the composition of predicate complement � .
Logical connectives  are  defined by the truth and falsity domains of the respective predicates:

T(P) = F(P); F(P) = T(P); T(PQ) = T(P)T(Q); F(PQ) = F(P)F(Q).

We specify the composition of extended renomination ,
,R :v u V A V A

x Pr Pr 
 ® as , ,

, ,R ()[] [r ()] v u v u
x xP d P d .

The predicate Ez indicates whether a component zV has a value in a given data:
T(Ez) = {d | d(z)}; F(Ez) = {d | d(z)}.

Predicates Ez are total, sinle-valued, and non-monotonic.

We define the quantifier xP : V A V APr Pr ® as follows:
T(xP) = { | || ()}x

a A
d d x a T P


  ; F(xP) = { | || ()}x

a A
d d x a F P


  .

Specific non-monotonic 1-ary composition of predicate complement � is specified as:

() () () () () ()T P P T P F P T P F P     � ; ()  �F P .

Thus, the sets of basic compositions for L
Q and L

QС are CQ = {, , ,
,R ,

v u
x x, Ex} and CQC = {, , ,

,R ,
v u
x x,

,��Ex} respectively.

Statement 2. Compositions , , ,
,R ,v u

x  xP preserve totality and monotonicity of predicates.

Therefore, classes PrPV–A, PrTV–A, PrTSV–A are closed under compositions CQ. At the same time, we have

Statement 3. QPrV–A  Q� PrPV–A; QPrTV–A  Q � К .

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

185

Classes PrTV–A and PrTSV–A are not closed under � . Therefore, LC do not make sense for T-predicates and TS-
predicates. Due to nonclosedness of PrTSV–A and PrTV–A under ,� duality [6] of classes PrPV–A and PrTV–A and
degeneration of PrTSV–A, we will further consider only logics of R-predicates and P-predicates.

We obtain composition systems (VA, PrV–A, CQ), (VA, PrPV–A, CQ), (VA, PrV–A, CQC), (VA, PrPV–A, CQC). They
define pure first order composition algebras A

Q = (VA, PrV–A, CQ), A
QC = (VA, PrV–A, CQC), A

QP = (VA, PrPV–A, CQ),
A

QCP = (VA, PrPV–A, CQC); here A
QP and A

QCP are subalgebras of algebras A
Q and A

QC.
The main properties of propositional compositions and quantifiers, unrelated to renominations, correspond to

those of classical logical connectives and quantifiers (see [3]).
Theorem 1. The operation of extended renomination has the following basic properties:
R) R(P) = P;

RI) , , ,
, , ,R () R () z v u v u

z x xP P – identical renomination can be eliminated;

RU) , , ,
, , ,R () R () z v u v u

y x xP P for unessential for predicate Р name zV;

R) if d(z) then , , , ,
, , , ,R ()() R ()()  v u y v u y

x z xP d P d and , , ,
, , ,R ()() R ()()  v u z v u

x xP d P d ;

RR) , , , ,
, , , ,R (R ()) R ()    v z u t v z u t

y x y xP P – convolution of renominations; here , , , ,
, , , ,R ()() (())v z u t u t v z

y x x yP d P r d    � ;

R) , ,
, ,R () R ()   v u v u

x xP P – R-distributivity;

R) , , ,
, , ,R () R () R ()    v u v u v u

x x xP Q P Q – R- distributivity;

R �) , ,
, ,R () R () � �v u v u

x xQ Q – R � - distributivity.

Theorem 2. The properties related to renomination and quantification compositions are the following:

Ren) if name z is unessential for P, then R ()   y
zyP z P – renaming of a quantifier name;

Rs) , ,
, ,R () R ()   v u v u

x xy P yP if { , , }y v x u – simple (limited) R- distributivity;

R) , ,
, ,R () R (),    v u v u y

x x zyP z P if name z is unessential for P and { , , }z v x u – - distributivity;

UR) , , , ,
, , , ,R () R ()  y v u y v u

z x z xy P P if { , }y z x – unessentiality of upper names in renominations.

Statement 4. Properties of renomination of variable assignment predicates:
, ,
, ,R () F;  v u z

x Ez , ,
, ,R () v u z

x y Ez Ey ; ,
,R () , v u

x Ez Ez if { , }.z v u

Quantifier elimination is based on the next properties:

Theorem 3. , ,
, ,(R ())

u w x
v yT P  T(Ey)  ,

,(R ()) u w
vT xP and ,

,(R ()) u w
vF xP  T(Ey)  , ,

, ,(R ())
u w x
v yF P .

Languages of L
QC. An alphabet of the language of L

QС consists of a set of names (variables) V, a set of

predicate symbols Ps, and a set of basic compositions’ symbols Cs = {, , ,
, ,

v u
xR ,��x, Ex}. We define inductively the

set of formulas (denoted Fr):
– each рPs and each Ex is a formula; formulas of such forms are called atomic;

– if , Fr, then Fr, Fr, ,
, ,v u

xR Fr xFr, � Fr .

We specify a set VT
  V of total unessential names (unessential for any рPs) and extend it [3, 6] to formulas:

 : Fr2V.
If х(), then (see [3, 6]) х is unessential for . Tuple  = (V, VT, Cs, Ps) is called the extended logic signature.

We call a formula primitive, if it is atomic or has a form ,
, ,

v u
xR p where рPs, there are no identical

renominations in ,
,

v u
xR and { , } ()  v u p .  is a СF-formula (constant free), if  does not contain symbols of 0-

ary compositions (Ex in the case of the language of L
QС). Formulas of the form ,

,
v u
xR are called R-formulas.

Interpretations. We interpretate the language of the L
QC on composition systems CS = (VA, PrV–A, CQC).

Symbols in Cs are interpretated as corresponding compositions, symbols Ex – as variable assignment predicates Ex. We
specify a total single-valued mapping I : Ps ® PrV–A and extend it to formulas: I : Fr ® PrV–A:

I() = (I()), I() = (I(), I()), , ,
, ,() R (()),   v u v u

x xI R I I(х) = х(I()), () (())  � �I I .

Let the tuple J = (CS, , I) be an interpretation of the language of L
Q (further shorten to J = (A, I)).

Given interpretation J and formula , we define value of  in J (denoted J) by induction on the structure of
.

Name xV is unessential for a formula, if it is unessential for J for any interpretation J.
Classes of interpretations of the language are called semantics. For L

QС we have a general class of R-
interpretations – semantics RС. Specifying of subalgebras of P-predicates leads to a subclass of P-interpretations –
semantics PС.

186

For L
Q we have a general class of R-interpretations – semantics R. For subalgebras of P-predicates, T-

predicates, TS-predicates we obtain semantics P, T, TS. Only semantics P will be considered.
Let us call constant formulas that are always interpreted as constant predicates. We can distinguish T-formulas,

F- formulas, - formulas. For example, Ex  Ex is a T- formula, , ,
, , () 

v u z
xR Ez is a F- formula, �Ez is a - formula.

Let formulas that are always interpreted as total predicates (in particular, Ez, T- formulas and F- formulas) be
denoted ; formulas with F(J) =  for any J (in particular, all formulas �) be denoted F; formulas with
T(J) =  for any J (in particular, all formulas  �) be denoted T.

The language of L
Q is defined similarly (omitting everything related to symbols ��).

Un-formulas. Let , , , ,
, , , , ()  x v u w z

x y tR be R-formula such as { , } ()  u w , and  is not a symbol Ez. Let us call Rs-

form of an R-formula , , , ,
, , , , ()  x v u w z

x y tR the R-formula obtained from , , , ,
, , , , ()  x v u w z

x y tR by all possible simplifications of

external renomination based on properties R, RI, RU. We will call Rs-formulas Rs-forms of R-formulas.
Statement 5. If  is a Rs-form of an R-formula , then J = J for all interpretations J.

Let Un  V be a set of indefinite names. Each Rs-formula can be presented in the form of , , , ,
, , , , 

r z x u w
s v yR , where

{ , , , } , { , , }  r s y u Un x v w Un . Let us call , ,
, , 

z x w
vR an Un-form of the formula , , , ,

, , , , 
r z x u w
s v yR .

Primitive Un-formulas have a form of ,
, ,

z x
vR p where { , }  x v Un , pPs.

Let us call formulas  and  Un-equivalent (denoted  Un ), if for any J = (A, І) and dVA ||–Un we have
J (d) = J (d).

Statement 6. If  is an Un-form of a formula , then  Un .

Un-form , ,
, , 

z x w
vR can be obtained transforming an Rs-formula , , , ,

, , , , 
r z x u w
s v yR according to R. Hence

Statement 7. Given zUn, then , , , ,
, , , ,   �v u y v u y

x z Un xR R and , , ,
, , ,

v u z v u
x Un xR R   � .

2. Logical consequence relation
A number of various logical consequence relations can be defined on the sets of formulas of the languages of

L
Q and L

QC. Among them are the relations defined in the languages of LQ [12, 6]: P|=IR, P|=T, P|=F, P|=TF, R|=TF.
For the simplicity sake, we will omit symbol  in the names of relations.
Firstly, let us specify a logical consequence relation for two sets of formulas in interpretation J.
Let , ,   Fr and J be an interpretation. We denote:

()


 JT as T(J), ()


 JF as F(J), ()


 JT as T(J), ()


 JF as F(J).

 is an IR-consequence of  in interpretation J (denoted  J|=IR ), if T(J)  F
(J) = .

 is a T-consequence of  in interpretation J (denoted  J|=T ), if T(J)  T
(J).

 is an F-consequence of  in interpretation J (denoted  J|=F ), if F(J)  F
(J).

 is TF-consequence of  in interpretation J (denoted  J|=TF ), if  J|=T  and  J|=F .
The corresponding logical -consequence relations in semantics  are defined as follows:


|= , if  J|=  for arbitrary J.

Here  denotes one of the semantics: R, P, RС, PС. There are 8 logical consequence relations in each of L
Q

and L
QC:

P|=IR, P|=T, P|=F, P|=TF; R|=IR, R|=T, R|=F, R|=TF ;
Pс|=IR, Pс|=T, Pс|=F, Pс|=TF; Rс|=IR, Rс|=T, Rс|=F, Rс|=TF .

Some of them are degenerate, some of the relations coincide (see [12]). For instance:
Statement 8. If  and  consist of CF-formulas that do not contain ,� then 

R|IR  and 
Rс|IR .

At the same time, Ez, Ez J|=IR  та  J|=IR Ez, Ez for each J. Therefore, Rс|=IR and R|=IR are degenerate.

Example 1. For any Fr and JRС we have () ,JF  � () ,JT   � T(J)  ()� JT = (J),

F(J)  () � JF = (J). Hence 
Rc|=F � and  � Rс|=T ; however,  Rс|T � and  � Rс|F .

There are 5 distinct non-degenerate relations in L
Q: P|=IR, P|=T, P|=F, P|=TF, R|=TF .

In L
QС, we obtain 7 distinct non-degenerate relations: Pс|=IR, Pс|=T, Pс|=F, Pс|=TF, Rс|=T, Rс|=F, Rс|=TF .

The Hasse diagrams for those relations are shown below (we use an arrow  instead of symbol ):

P|=T Rc|=T  Pc|=T

� � � � �
R|=TF  P|=TF P|=IR Rc|=TF  Pc|=TF Pс|=IR

� � � � �
P|=F Rс|=F  Pс|=F

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

187

At the same time, for the relation Pс|=IR it is impossible to make a decomposition � � ([12]). Such a
decomposition requires to specify explicitly an undefinedness domain, which leads to the more general irrefutability
logical consequence relation under the conditions of undefinedness |=IR

 ([9]). For the latter relation, sequent calculi of
propositional, renominative and first order levels are constructed [9–11].

In [12], there are introduced logical consequence relations under the conditions of undefinedness Pс|=T
, Pс|=F

,
Rс|=T

, Rс|=F
; the theorem of elimination of the conditions of undefinedness is proved which allows to express them by

relations Pc|=T, Pc|=F, Rc|=T, Rc|=F.
Logical consequence relations on pairs of formulas induce respective logical equivalence relations.
We define a -equivalence relation in interpretation J as follows:  J , if  J|=  and  J|= .
A logical -equivalence relation in semantics  is defined as follows: 

 , if 
|=  and 

|= .
Note the importance of the relation J TF:  JTF   T(J) = T(J) and F(J) = F(J)  J = J .

Equivalent transformations in L
Q та L

QС are based on the equivalence and substitution of equivalent theorems.
Theorem 4. Let ' be obtained from formula  by substitution of 1, ..., n instead of 1, ..., n. If 1

 1,
..., n

 n, then 
 ' (here  denotes one of the following: RTF, PTF, PIR, RсTF, PсTF, PсIR).

Theorem 5. Let  TF , then we have: ,  |=   ,  |= ;  |= ,    |=, .

Let TF denote one of the relations of the TF type, and |= denote an arbitrary logical consequence relation.
Let us consider properties of logical consequence relations.
M) If   ,    and  |=

 , then  |=  – monotonicity.
Theorem 6. The following basic properties of formula decomposition hold:
L) ,  |=   ,  |= ; R)  |= ,    |= , ;
L) ,  |=   ,  |=  and ,  |= ; R)  |= ,    |= , , ;
L) (),  |=   , ,  |= ; R)  |= , ()   |= ,  and  |= , .
For the relations of the IR type, additionally hold (and do not hold for the relations of the types T, F, TF):
L) ,  |=IR    |=IR , . R)  |=IR ,   ,  |=IR .
Let с#|=T denote Pс|=T or Rc|=T; с#|=F denote Pc|=F, Rc|=T, Rc|=F; с#|=TF denote Pс|=TF or Rc|=TF.
Theorem 7. The following properties of decomposition for � formulas hold:

� LT) , � �с#|=T   
с#|=T , , ; � RT) 

с#|=T , � �  , 
с#|=T  and , 

с#|=T ;

 � RF) 
с#|=F , �  , , 

с#|=F ;  � LF) , � �
с#|=F   

с#|=T ,  and 
с#|=T , .

Theorem 8. The following properties of elimination for � � formulas hold:
 � El) 

с#|=T , �  
с#|=T ; � El) , � �с#|=F   

с#|=F .
Statement 9. The properties that guarantee the specified logical consequence relation:

#) | ,c
FC    � � ; #) , |c

TC     � � .

Composition � has different properties on truth and falsity domains of predicates inducing different properties
of decomposition for � formulas for the relations of the types T and F and making impossible to formulate a joint
property for the relations of the TF type. Therefore, for relations с#|=TF decomposition for � � is possible for с#|=T and
с#|=F only separately.

Thus, sequent calculi for relations с#|=TF aggregate calculi for relations с#|=T and с#|=F.
We will concentrate on the relations P|=IR, P|=T, P|=F, P|=TF, R|=TF in L

Q and Pс|=T, Pс|=F, Rс|=T, Rс|=F in L
QС.

Let us consider properties R, RI, RU, RR, R, R, R �� for predicates. Each of the properties R
induces 4 corresponding properties RL, RR, RL, RR for a logical consequence relation, depending on the position
of a formula or its negation (either in the left or in the right side of the relation). R induces the following 8 properties:

R1) , ,
, , (),v u y

x zR    |= , Ez  , ,
, , (),v u y

xR     |= , Ez;  |= , , ,
, , (),v u y

x zR Ez    |= , , ,
, , (), ;v u y

xR Ez  

R1) , ,
 , , (), v u y
x zR  |= , Ez  , ,

 , , (),  v u y
xR  |= , Ez;  |= , , ,

 , , (), v u y
x zR Ez   |= , , ,

, , (), ;v u z
xR Ez  

R2) , ,
, , (),v u z

xR     |= , Ez  ,
, (),v u

xR    |= , Ez;  |= , , ,
, , (),v u z

xR Ez     |= , ,
, (), ;v u

xR Ez 

R2) , ,
, , (),v u z

xR     |= , Ez  ,
, (),v u

xR    |= , Ez;  |= , , ,
, , (),v u z

xR Ez     |= , ,
, (), ;v u

xR Ez 

Properties of  elimination in Ez and in ,
,R () v u

w Ez and renomination properties of variable assignment

predicates are the following:
E) Ez,  |=    |= , Ez;  |= , Ez  Ez,  |= ;

, ,
R E , ,¬) (), | | (),v u v u

w wR Ez R Ez            ; , ,
, ,| (), (), |v u v u

w wR Ez R Ez           ;
,

E ,R) (), | , | , де { , };v u
xR Ez Ez z v u           ,

,| , () | , , де { , }v u
xR Ez Ez z v u          ;

, ,
Ev , ,R) (), | , | ;v u z

x yR Ez Ey          , ,
, ,| , () | ,v u z

x yR Ez Ey         .

Let us specify properties of quantifier elimination, E-distribution and primary definition:

188

L) х,  |=   (), , x
zR Ez |=  given zfu(, , х));

RL) ,
, (),   v u

wR x |=   , ,
, , (), ,  v u x

w zR Ez |=  given ,
,(, , ())    v u

wz fu R x ;

R)  |= х,   , Ez |=  (), x
zR given zfu(, , х));

RR)  |=
  ,

, (),   v u
wR x  , Ez |=

  , ,
, , (),  v u x

w zR given ,
,(, , ())    v u

wz fu R x ;

vR) , Ey |= х,   , Ey |= х, (), x
yR ;

RvR) , Ey |=
,
,, ()  v u

wR x  , Ey |= ;

vL) х, Ey,  |=   , (), ,    x
yx R Ey |= ;

RvL) ,
, (), ,   v u

wR x Ey |=   , , ,
, , ,(), (), ,      v u v u x

w w yR x R Ey |= ;

Ed)  |=    |= , Ey and Ey,  |= ; Ev)  |=   Ez,  |= , де zfu(, ).

Let us describe the properties that guarantee the specified logical consequence relation:
С) ,  |= ,  – holds for all introduced logical consequence relations.

The following properties additionally guarantee the specified logical consequence relation:
СL) , , 

P|=T ; , , 
Pс|=T ;

СR) 
P|=F , , ; 

Pс|=F , , ;
СLR) , , 

P|=TF , , .
Various properties which guarantee the specified logical consequence relation can be obtained from properties of

constant and partial constant predicates: properties C� , C� and

CF) , ,
, , *(), |    v u z

xR Ez – holds for all introduced logical consequence relations.

Finally, we can specify the conditions that guarantee a certain logical consequence relation:
С) there exists formula  such that:  and  –  |=*  for every introduced relation;
СL) there exists formula  such that:  and  – guarantees 

P|=T  and 
Pс|=T ;

СR) there exists formula  such that:  and  – guarantees 
P|=F  and 

Pс|=F ;
СLR) there exist formulas ,  such that: ,  and ,  – guarantees 

P|=TF ;

СF) there exists formula , ,
, , ()  v u z

xR Ez – guarantees  |=*  for every introduced relation;

C)� � – guarantees 
Pс|=F  and 

Rс|=F ;

C)�  � – guarantees 
Pс|=T  and 

Rс|=T .

3. First order sequent calculi
Sequent calculi formalize logical consequence relations between sets of formulas. We construct calculi in the

style of semantic tableau, so, we will treat sequents as finite sets of formulas signed (marked, indexed) by symbols |–
and –| . Sequents are denoted |– –|, in abbreviated form . Formulas from  (they are signed by |–) are called T-
formulas, formulas from  (they are signed by –|) are called F-formulas.

Sequent calculus is constructed in such a way that a sequent |––| is derivable   |= .
For a set of signed formulas  = |––|, let us introduce sets of defined and undefined names (val-variables and

unv-variables): val(|––|) = {xV | Ex}; unv(|––|) = {xV | Ex}.
Also we specify a set of undistributed names for : ud() = nm() \ (val()  unv()).
The derivation in sequent calculi has the form of a tree, the vertices of which are sequents; such trees are called

sequent trees. A sequent  is derivable if there is a closed sequent tree with the root . A sequent tree is closed if every
its leaf is a closed sequent.

Sequent calculus is defined by basic sequent forms and closure conditions for sequents.
Closed sequents are axioms of the sequent calculus. A closedness |––| must guarantee  |= .
Rules of sequent calculus are called sequent forms. They are syntactical analogues of the semantic properties of

the corresponding logical consequence relations and have a form of



 or
  


.

For the relations P|=IR, P|=T, P|=F, P|=TF, R|=TF in L
Q we have calculi С

QIR, С
QT, С

QF, С
QTF, С

QTFR.
For the relations Pс|=T, Pс|=F, Rс|=T, Rс|=F in L

QС we obtain calculi С
QСT, С

QСF, С
QCTR, С

QСFR.

Closure conditions for sequents. Closure conditions for a sequent |––| correspond to conditions that
guarantee a certain logical consequence relation:

– calculus С
QIR: condition C  CF (guarantees 

P|=IR );
– calculus С

QT: condition C  CF  CL (guarantees 
P|=T );

– calculus С
QF: condition C  CF  CR (guarantees 

P|=F );
– calculus С

QTF: condition C  CF  CLR (guarantees 
P|=TF );

– calculus С
QTFR: condition C  CF (guarantees 

R|=TF );

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

189

– calculus С
QCT: condition C  CF  CL C� (guarantees 

Pc|=T );
– calculus С

QCF: condition C  CF  CR C� (guarantees 
Pc|=F );

– calculus С
QCTR: condition C  CF C� (guarantees 

Rc|=T );
– calculus С

QCFR: condition C  CF C� (guarantees 
Rc|=F ).

The conditions C, CF, CL, CR, CLR, C , C� � were specified earlier.

Basic sequent forms for the calculi С
QT, С

QF, С
QTF, С

QTFR. Properties of logical consequence relations
induce the corresponding sequent forms. Let us specify basic forms for the calculi С

QT, С
QF, С

QTF, С
QTFR. Their

basic forms are the same, the difference is in closure conditions for sequents.
Simplification forms (condition for the forms of type RU: у()):

|–R |

|

,

(),




 

 R
; –|R |

|

,

(),




 

 R
; |–R |

|

,

(),




 

  R
; –|R |

|

,

(),




 

  R
;

|–RI
,

| ,

, ,
| , ,

(),

(),
 

 

 

 

v u
x

z v u
z x

R

R
; –|RI

,
| ,

, ,
| , ,

(),

(),
 

 

 

 

v u
x

z v u
z x

R

R
; |–RI

,
| ,

, ,
| , ,

(),

(),
 

 

  

  

v u
x

z v u
z x

R

R
–|RI

,
| ,

, ,
| , ,

(),

(),
 

 

  

  

v u
x

z v u
z x

R

R
;

|–RU
,

| ,

, ,
| , ,

(),

(),
 

 

 

 

v u
x

y v u
z x

R

R
; –|RU

,
| ,

, ,
| , ,

(),

(),
 

 

 

 

v u
x

y v u
z x

R

R
; |–RU

,
| ,

, ,
| , ,

(),

(),
 

 

  

  

v u
x

y v u
z x

R

R
; –|RU

,
| ,

, ,
| , ,

(),

(),
 

 

  

  

v u
x

y v u
z x

R

R
;

|–R1
, ,

| , , |

, ,
| , , |

(), ,
,

(), ,

v u y
x

v u y
x z

R p Ez

R p Ez
   

  




 where pPs; –|R1

, ,
| , , |

, ,
| , , |

(), ,
,

(), ,

v u y
x

v u y
x z

R p Ez

R p Ez
   

  




 where pPs;

|–R1
, ,

| , , |

, ,
| , , |

(), ,
,

(), ,

v u y
x

v u y
x z

R p Ez

R p Ez
   

  

 

 
 where pPs; –|R1

, ,
| , , |

, ,
| , , |

(), ,
,

(), ,

v u y
x

v u y
x z

R p Ez

R p Ez
   

  

 

 
 where pPs;

|–R2
,

| , |

, ,
| , , |

(), ,
,

(), ,

v u
x

v u z
x

R p Ez

R p Ez
  

   




 where pPs; –|R2

,
| , |

, ,
| , , |

(), ,
,

(), ,

v u
x

v u z
x

R p Ez

R p Ez
  

   




 where pPs;

|–R2
,

| , |

, ,
| , , |

(), ,
,

(), ,

v u
x

v u z
x

R p Ez

R p Ez
  

   

 

 
 where pPs; –|R2

,
| , |

, ,
| , , |

(), ,
,

(), ,

v u
x

v u z
x

R p Ez

R p Ez
  

   

 

 
 where pP.

Forms of equivalent transformations:

|–RR
, ,

| , ,

, ,
| , ,

(),

(()),
  

  

 

 

v z u t
y x

v z u t
y x

R

R R
; –|RR

, ,
| , ,

|

(),

(()),
  



 

 

v z u t
y x

v w
x y

R

R R
;

|–RR
, ,

| , ,

, ,
| , ,

(),

(()),
  

  

  

  

v z u t
y x

v z u t
y x

R

R R
; –|RR

, ,
| , ,

, ,
| , ,

(),

(()),
  

  

  

  

v z u t
y x

v z u t
y x

R

R R
;

|–R
,

| ,

,
| ,

(),

(),
 

 

  

 

v u
x

v u
x

R

R
; –|R

,
| ,

,
| ,

(),

(),
 

 

  

 

v u
x

v u
x

R

R
;

|–R
,

| ,

,
| ,

(),

(),
 

 

 

  

v u
x

v u
x

R

R
; –|R

,
| ,

,
| ,

(),

(),
 

 

 

  

v u
x

v u
x

R

R
;

|–R
, ,

| , ,

,
| ,

() (),

(),
  

 

   

 

v u v u
x x

v u
x

R R

R
; –|R

, ,
| , ,

,
| ,

() (),

(),
  

 

   

 

v u v u
x x

v u
x

R R

R
;

|–R
, ,

| , ,

,
| ,

(() ()),

(),
  

 

    

  

v u v u
x x

v u
x

R R

R
; –|R

, ,
| , ,

,
| ,

(() ()),

(),
  

 

    

  

v u v u
x x

v u
x

R R

R
.

Forms of  elimination in formulas Ey and ,
, () v u

xR Ez :

|–E |

|

,

,






 

Ez

Ez
; –|E |

|

,

,






 

Ez

Ez
; |–RE

,
| ,

,
| ,

(),

(),
 

 



 

v u
x

v u
x

R Ez

R Ez
; –|RE

,
| ,

,
| ,

(),

(),
 

 



 

v u
x

v u
x

R Ez

R Ez
.

Renomination simplification for variable assignment predicates (condition for |–RE та –|RE: { , }z v u):

|–RE |

,
| ,

,

(),


 



v u
x

Ez

R Ez
; –|RE |

,
| ,

,

(),


 



v u
x

Ez

R Ez
; |–REv |

, ,
| , ,

,

(),


 



v u z
x y

Ey

R Ez
; –|REv |

, ,
| , ,

,

(),


 



v u z
x y

Ey

R Ez
.

Decomposition forms:

| |

|

,

,




 

 
; |  |

|

,

,




 

 
;

190

| | |

|

, ,

,
 



   

 
; | | |

|

, ,

,
 



  

 
;

| | |

|

, ,

(),
 



  

  
; | | |

|

, ,

(),
 



   

  
;

Forms of quantifier elimination:

| | |

|

(), ,

,
 



 

  

x
zR Ez

x
; | | |

|

(), ,

,
 



  

  

x
zR Ez

x
;

|–R
, ,

| , , |

,
| ,

(), ,

(),
  

 

 

  

v u x
w z

v u
w

R Ez

R x
; –|R

, ,
| , , |

,
| ,

(), ,

(),
  

 

  

   

v u x
w z

v u
w

R Ez

R x
;

|v
| | |

| |

, , (),

, ,
  

 

    

  

x
yx Ey R

x Ey
; |v

 | | |

| |

, , (),

, ,
  

 

   

  

x
yx Ey R

x Ey
;

|–Rv
, , ,

| , | , , |

,
| , |

(), (), ,

(), ,
    

  

     

   

v u v u x
w w y

v u
w

R x R Ey

R x Ey
; –|Rv

, , ,
| , | , , |

,
| , |

(), (), ,

(), ,
    

  

   

  

v u v u x
w w y

v u
w

R x R Ey

R x Ey
.

Let us call forms |–R, –|R, |–, –| – T-forms; forms –|v, |–v, –|Rv, |–Rv – F-forms. Conditions for

|–, –|: zfu(, x); conditions for |–R, –|R:
,
,(, ())v u

wz fu R x    ; condition for F-form: Ey does not belong

to .
Auxiliary forms of E-distribution Ed and primary definition of Ev:

| |, ,
Ed

  



Ex Ex
; Ev | ,  



Ez
 given zfu().

Basic sequent forms for the calculus С
QIR. Forms |–R, –|R, |–RI, –|RI, |–RU, –|RU, |–R1, –|R1, |–R2, –|R2,

|–RR, –|RR, |–R, –|R, |–R,–|R, |–RE, –|RE, |–REv, –|REv, |, |, |, |–R, |v, –|Rv, Ed, Ev with addition of:

| |

|

,

,




 

 
; |  |

|

,

,




 

 
.

Basic sequent forms for the calculi С
QCT and С

QCTR. Their basic forms are the same, the difference is in
closure conditions for sequents. To the specified above sequent forms we add forms of the type R � and forms of

decomposition of
| T� and

| T � :

|–R
,

| ,

,
| ,

(),

(),

v u
x

v u
x

R

R
 

 

 

 

�

�
; –|R

,
| ,

,
| ,

(),

(),

v u
x

v u
x

R

R
 

 

 

 

�

�
;

|–R
,

| ,

,
| ,

(),

(),

v u
x

v u
x

R

R
 

 

  

  

�

�
; –|R

,
| ,

,
| ,

(),

(),

v u
x

v u
x

R

R
 

 

  

 

�

�
;

| T� ||

|

, ,

,




  

 �
;

| T � | |

|

, ,

,
 



   

 �
.

Basic sequent forms for the calculi С
QCF and С

QCFR. Their basic forms are the same, the difference is in
closure conditions for sequents. We take the sequent forms for calculi С

QCT and С
QCTR replacing forms

| T� and
| T �

by
| F� and

| F � :

| F� | |

|

, ,

,
 



   

  �
;

| F � ||

|

, ,

,




  

  �
.

Forms of types R, RІ, RU, R are auxiliary, they are used every time the specified situation arises.
Forms Ed and Ev are also specific; all the other basic sequents are main forms.

The main property of sequent forms. Let |= be one of the introduced logical consequence relations.

Theorem 9. 1. Let | |

| |

 

 

 

 
 be a basic sequent form. Then: a)  |=    |= ; b)  |    | .

2. Let | | | |

| |

    

 

   

 
 be a basic sequent form. Then: a)  |=  and  |=    |= ; b)  |  or  |    | .

Procedure of construction of a sequent tree. The main action during the process of derivation (construction of
a sequent tree) is decomposition or simplification of a formula choosen from the sequent. We treat sequents as sets of

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

191

signed formulas, so we will not add there another copy of a formula that may happen to be obtained at some stage of
derivation.

Let us describe all stages of the procedure for a given finite sequent .
We start from the root. On the initial stage primary distribution of names is performed: we obtain all the

possible distributions of names from ud() to defined and undefined by applying Ed-form. This leads to a tree of a
height h = |ud()| with root  and m = 2h descendants. If val() = , we use Ev-form to perform primary definition for
a descendant sequent 0 with val(0) = : 0 is enriched with formula |–Ez such that zfu(), so sequent 0, |–Ez is
obtained. As a result, the set of defined names is not empty for all descendants of  which guarantees applicability of
F-forms.

Let us describe derivation of an unclosed sequent leaf ; this implies building a finite subtree with node . We
activate all non-primitive formulas in the sequent . A corresponding main form is applied to each active formula.
During the process, every time the situation arise, appropriate auxiliary forms R, RI, RU, R are used for
simplifications.

Forms R are applied to primitive formulas and their negations. After that, all primitive formulas in the sequent
and their negations become Un-formulas, where Un is a set of all unv-variables of formulas in sequents in the path from
root to the current sequent.

Resulting formula(s) become(s) passive after application of a main form and implicated simplifications: at this
stage main forms can not be used on them.

Let us take a look at main forms’ application. At first, we use all the forms except F-forms. With each
application of T, a new (absent in the path from root to the current sequent) zVT is taken. F-forms are applied after T-
forms. F-form should be used repeatedly for each defined у of formulas in the path from  to the current sequent.

When no active formulas are left on the current stage, we need to check every sequent leaf  on closedness. If
all the leaves are closed sequents, we obtained a finite closed tree: the procedure ended positively.

If a sequent leaf  is unclosed, it has to be checked whether  is a final sequent.
Unclosed sequent node  is called final, if there is no applicable form to it or no new (differing from formulas on the

path from  to ) formula can be obtained using applicable forms. It signals that the sequent tree has an unclosed path (from
root to the current final sequent, all its nodes are unclosed sequents): the derivation process ended negatively.

Thus, during construction of a sequent tree the following cases are possible:
1) construction procedure is completed positively; we obtained a finite closed tree;
2) construction procedure is completed negatively; we obtained a finite unclosed tree. Such tree has at least one

unclosed path, all nodes of which are unclosed sequents.
3) construction procedure is not completed; we obtained an infinite unclosed tree. König's lemma [2] states that

such tree has at least one infinite path. All its nodes should be unclosed sequents, otherwise this path would finish.
Hence, there is an infinite unclosed path in the tree.

Let us see the differences in the construction of a sequent tree for a given countable sequent .
The process also has its stages and starts from the root . There is a finite set of available on the current stage

formulas (see [4, 6]); forms can be applied only to these formulas. In the beginning a pair of first formulas from the lists
of T-formulas and F-formulas of the sequent  is available (and one of the lists can be empty).

Every stage starts with an access step for all unclosed sequents: another pair from the lists of T-formulas and F-
formulas of a sequent is added to the set of available formulas. Let  be a sequent obtained in the beginning of a stage
after adding a pair of new available formulas. Stage distribution of names is performed next: we obtain all the possible
distributions of names from ud() to defined and undefined by applying Ed-form. This leads to a subtree of a height
|ud()| with root  and k = 2|ud()| descendants. If val() = , we use Ev-form to perform primary definition for a
descendant sequent 0 with val(0) =  and obtain a sequent 0, |–Ez.

Forms’ application is not different from the finite sequent case.
When no active formulas are left on the current stage, every sequent leaf  is checked on closedness. If all the

leaves are closed sequents, we obtained a finite closed tree: the procedure ended positively. Otherwise begin the next
stage. For a sequent tree for a countable sequent the notion of a final node does not make sense, thus only two
outcomes are possible:

1) procedure is completed positively; we obtained a finite closed tree;
2) procedure is not completed; we obtained an infinite unclosed tree with an infinite unclosed path: every

formula of the sequent  will appear in this path and become available.

The soundness theorem. It has the same formulation for all introduced calculi. Let the logical consequence
relations P|=IR, P|=T, P|=F, P|=TF, R|=TF, Pс|=T, Pс|=F, Rс|=T, Rс|=F correspond to the calculi С

QIR, С
QT, С

QF, С
QTF, С

QTFR,
С

QСT, С
QСF, С

QCTR, С
QСFR respectively. We obtain

Theorem 10 (soundness). Let sequent |––| is derivable in C
Q#. Then  |= .

If |––| is derivable in a calculus C
Q#, then a finite closed tree was constructed for |––|. For any node of this

tree |––| we have  |= . For leaves it is implied from the notion of a closed sequent. By Theorem 9, sequent forms
preserve logical consequence relation. Hence, for the root |––| we also have that  |=  holds.

192

4. The counter-model existence theorems. The completeness theorem
The completeness of sequent calculi is traditionally proved on the basis of theorems of the existence of a

counter-model for the set of formulas of an unclosed path in the sequent tree. In this case a method of Hintikka (model)
sets is used ([4]). Let us apply this method for the calculi C

QCTR and C
QCFR.

Theorem 11. Let  be an unclosed path in the derivation tree constructed in C
QCTR for a sequent |––|; let Н be

the set of all specified formulas of this path. Then there exist an interpretation A = (S, I) and data VS such that:
НT) |–Н  T(A) and –|Н  T(A).

Theorem 12. Let  be an unclosed path in the derivation tree constructed in C
QCFR for a sequent |––|; let Н be

the set of all specified formulas of this path. Then there exist an interpretation B = (S, I) and data VA such that:
НF) |–Н  F(B) and –|Н  F(B).
Let (A, ) be called T-counter-model and let (B, ) be called F-counter-model for a sequent |––|.
Let us define a set Un = {ynm(Н) | –|EyН} and call it a set of undefined names of the set Н. Let us specify

W = nm(Н) \ Un. The primary definition gives the condition W = {ynm(Н) | |–EyН}.
Theorems 11 and 12 are proved in the same style. We continuously apply forms to sequents of the path  while

we can: in the end, every non-primitive formula of the path (or its negation) will be decomposed or simplified. All the
sequents of the path  are unclosed, therefore the closure condition does not hold: C  CF  C� for С

QCTR and
C  CF C� for С

QCFR. Thus, for the set Н the following correctness conditions hold:

НС) there is no formula  such that |–Н and –|Н;

НCF) there is no formula , ,
, , () 

v u z
xR Ez such that , ,

| , , ()   v u z
xR Ez H ;

HC)� there is no formula  such that | H � – for the set Н from theorem 11;

HC)� there is no formula  such that | H � – for the set Н from theorem 12.

We can move from lower to higher node of the path  after applying a certain sequent form, therefore the
corresponding conditions for transition for Н should hold. In particular:

НR1) –|EzН and , , , ,
| , , | , ,() ()v u y v u y

x z xR p H R p H       ; –|EzН and , , , ,
| , , | , ,() ()v u y v u y

x z xR p H R p H       ;

НR1) –|EzН and , , , ,
| , , | , ,() ()v u y v u y

x z xR p H R p H         ;

–|EzН and , , , ,
| , , | , ,() ()v u y v u y

x z xR p H R p H         ;

НR2) –|EzН and , , ,
| , , | ,() ()v u z v u

x xR p H R p H       ;

–|EzН and , , ,
| , , | ,() ()v u z v u

x xR p H R p H       ;

НR2) –|EzН and , , ,
| , , | ,() ()v u z v u

x xR p H R p H         ;

–|EzН and , , ,
| , , | ,() ()v u z v u

x xR p H R p H         ;

НE) |–EzН  –|EzН; –|EzН  |–EzН;

НRE)
, ,

| , | ,() () ;      v u v u
x xR Ez H R Ez H , ,

| , | ,() () ;      v u v u
x xR Ez H R Ez H

НRE) given { , }z v u we have: ,
| , |() ;    v u

xR Ez H Ez H ,
| , |() ;    v u

xR Ez H Ez H

НREv)
, ,

| , , |() ;    v u z
x yR Ez H Ey H , ,

| , , |() ;    v u z
x yR Ez H Ey H

Let us call the set of signed formulas Н for which the conditions of correctness НС, НCF, HC ,� the specified
above conditions of transition and the condition Н � T apply, an RTС-model set.

Let us call the set of signed formulas Н for which the conditions of correctness НС, НCF, HC ,� the specified

above conditions of transition and the condition Н � F apply, an RFС-model set.
Conditions Н � T and Н � F are defined as follows:

Н � T) | H � �  –|Н and –|Н; | H � �  |–Н or |–Н;

Н � F) | � � H  –|Н or –|Н; |  � � H  |–Н and |–Н.

Let us obtain a counter-model using the RTС-model set Н. Let S be a set such that |S| = |W|. We need to take an
injective VS with its domain W; such  is a bijection W® S.

|–Ex  Н gives xW, then ExА () = T, therefore T(ExА); –|Ex  Н gives xW, then (x), therefore T(ExА).
Let us specify basic values of predicates: we define values of atomic formulas, primitive Un-formulas and their

negations on  in interpretation A as follows:
– |– рН  T(рA); –| рН  T(рA); |–рН T(pA); –|pН  T(pA);

– , ,
| , ,() (());v u v u

x x AR p H T R p     , ,
| , ,() (());v u v u

x x AR p H T R p    

– , ,
| , ,() (());v u v u

x x AR p H T R p       , ,
| , ,() (()).v u v u

x x AR p H T R p      

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

193

In the same way we can obtain a counter-model using the RFС-model set Н. S and  are defined similarly.
|–Ex  Н gives xW, then ExА () = T, therefore F(Ex B); –|Ex  Н gives xW, then (x), therefore F(Ex B).
We specify basic values of predicates, defining values of atomic formulas, primitive Un-formulas and their negations

on  in interpretation B as follows:
– |– рН  F(рB); –| рН  F(рB); |–рН  F(pB); –|pН  F(pB);

– , ,
| , ,() (());v u v u

x x BR p H F R p     , ,
| , ,() (());v u v u

x x BR p H F R p    

– , ,
| , ,() (());v u v u

x x BR p H F R p       , ,
| , ,() (()).v u v u

x x BR p H F R p      
For atomic formulas, primitive Un-formulas and their negations, statements of theorem 11 and theorem 12 hold

basing on the definitions above.
We will prove the condition НR1 for both interpretations A and B.

Let –|EzН and , ,
| , , () .  v u y

x zR p H Condition –|EzН gives zW, then (z), therefore , , , ,
 , , , ,r () r ().    v u y v u y
x x z

By НR1 we have , ,
| , , () .   v u y

xR p H Whence , ,
 , ,(())  v u y
x AT R p , , ,

 , ,(()) v u y
x z AT R p and , ,

 , ,(()),  v u y
x BF R p

, ,
 , ,(()) v u y
x z BF R p .

Let –|EzН and , ,
| , , () .  v u y

x zR p H Condition –|EzН gives zW, then (z), therefore , , , ,
 , , , ,r () r ().    v u y v u y
x x z

By НR1 we have , ,
| , , () .   v u y

xR p H Whence , ,
 , ,(())  v u y
x AT R p , , ,

 , ,(()) v u y
x z AT R p and , ,

 , ,(()),  v u y
x BF R p

, ,
 , ,(()) v u y
x z BF R p .

The proof will be similar for the conditions НR1, НR2, НR2 and НE, НRE .

The rest can be proved by the usual way by induction on the formula structure.
We will illustrate it for Н � T (theorem 11) and Н � F (theorem 12).

Let | H � � . By Н � T we have –|Н and –|Н. By induction hypothesis we have T(A) and

T(A) = F(A), whence (A). However (A) = ()� � AT , therefore  ()� � AT .

Let | H � � . Be Н � T we have |–Н or |–Н. By induction hypothesis we have T(A) or

T(A) = F(A), whence (A). However (A) = ()� � AT , therefore  ()� � AT .

Let | � � H . By Н � F we have –|Н or –|Н. By induction hypothesis we have F(B) or

F(B) = T(B), whence (B). However (B) = () (),   � � �B BT F therefore  () � � BF .

Let |  � � H . By Н � F we have |–Н and |–Н. By induction hypothesis we have F(B) and

F(B) = T(B), whence (B). However (B) = () ()   � � �B BT F , therefore  () � � BF .

The counter-model existence theorems for the calculi C
QСT and C

QСF can be formulated and proved similarly.
As calculi C

QСT and C
QСF formalize relations Pс|=T and Pс|=F, all the predicates A and B need to be single-valued.

Additional correctness conditions should be specified for the set Н:
НСL) there is no formula  such that |–, |–Н (case of derivation in C

QСT);
НСR) there is no formula  such that –|, –|Н (case of derivation in C

QСF).
The counter-model existence theorems for the calculi C

QT and C
QF can be formulated and proved similarly to

theorems 11 and 12: conditions HR , H R , � � Н � T, Н � F and HC , HC ,� ��� should be omitted, conditions

НСL and НСR added instead.
Let us specify the counter-model existence theorems for the calculi C

QTFR, C
QTF and C

QIR.
Theorem 13. Let  be an unclosed path in the derivation tree constructed in C

QTFR for a sequent |––|; let Н be
the set of all specified formulas of this path. Then there exist interpretations A = (S, IA), B = (S, IB) and data VS such
that conditions НT and НF hold.

We will call such (A, ) and (B, ) T-counter-model and F-counter-model for |––|.

Theorem 14. Let  be an unclosed path in the derivation tree constructed in C
QTF for a sequent

|––|; let Н be the set of all specified formulas of this path. Then there exist interpretations A = (S, IA), B = (S, IB) and
data VS such that conditions НT and НF hold.

We will call such (A, ) and (B, ) TP-counter-model and FP-counter-model for |––|.

In the proofs of theorems 13 and 14 the conditions HR , H R , � � Н � T, Н � F and HC , HC ,� ��� are

omitted; the following correctness condition НСLR is added for theorem 14:
НСLR) there are no formulas  and  such that |–, |–Н and –|, –|Н.
Obviously, НСLR  НСL  НСR. One should make clear the choice of a counter-model in this situation. For TP-

counter-model , violation of the condition НСL (there is a formula  such that |–Н and |–Н) gives A() = T
and A() = T, therefore A() = F, and ambiguity for A . For FP-counter-model  violation of the condition НСR,

194

(there is a formulda  such that –|Н and –|Н) gives B() = F and B() = F, therefore B()= T, and ambiguity
for B .

Thus, should we have the condition НСLR, in the case of violation of НСL we choose the FP-counter-model,
and in the case of violation of НСR we choose the TP-counter-model; we can choose any of the two counter-models if
both conditions НСL and НСR hold.

Theorem 15. Let  be an unclosed path in the derivation tree constructed in C
QIR for a sequent |––|; let Н be

the set of all specified formulas of this path. Then there exist interpretation A = (S, I) and data VS such that:
НС) |–Н  A() = T and –|Н  A() = F.
We will call such (A, ) IR-counter-model for |––|.
Theorems of the existence of a counter-model for the considered sequent calculi allow us to prove the

completeness theorem. It has the same formulation for all these calculi. Let the logical consequence relations P|=IR, P|=T,
P|=F, P|=TF, R|=TF, Pс|=T, Pс|=F, Rс|=T, Rс|=F correspond to the calculi С

QIR, С
QT, С

QF, С
QTF, С

QTFR, С
QСT, С

QСF,
С

QCTR, С
QСFR respectively. We obtain

Theorem 16 (completeness). Let  |= . Then sequent |––| is derivable in C
Q#.

Let us prove for relation Rc|=T and calculus C
QCTR (for more similar proofs see [4, 11]).

Assume that 
Rс|=T , but sequent |––| is not derivable. In this case a sequent tree for |––| is not closed. Thus,

an unclosed path  exists in this tree. Let H be the set of all signed formulas of this path. By Theorem 11, there is a T-
counter-model (A, ): |–Н  T(A) and –|Н  T(A).

By |––|  Н for all  we have T(A), for all Ψ we have T(ΨA). Whence T(A) and T(A),
therefore T(A)  T(A) does not hold. This contradicts to  A|=T , so it contradicts to 

Rс|=T .

Conclusion
We have studied new classes of program-oriented logical formalisms – pure first-order logics of quasiary

predicates with extended renominations and a composition of predicate complement. Such operations are used in
various versions of the Floyd-Hoare program logic with partial pre- and post-conditions. We have considered
composition systems and languages of these logics, specified various logical consequence relations and described
properties of formulas decomposition and quantifier elimination.

Properties of logical consequence relations form a semantic base for construction of corresponding calculi of
sequent type. We have defined basic sequent forms for the specified calculi and closeness conditions, and illustrated the
process of derivation (building a sequent tree). The soundness, completeness, and counter-model existence theorems
are proved for the introduced calculi.

References
1. ABRAMSKY, S., GABBAY, D. and MAIBAUM, T. (editors). (1993–2000). Handbook of Logic in Computer Science. Oxford University Press.
2. KLEENE, S. (1967) Mathematical Logic. New York.
3. NIKITCHENKO, M. and SHKILNIAK, S. (2013). Applied logic. Кyiv: VPC Кyivskyi Universytet (in ukr).
4. SHKILNIAK, S. (2013). Spectrum of sequent calculi of first-order composition-nominative logics. Problems in Progamming. No 3. P. 22–37

(in ukr).
5. NIKITCHENKO, M., SHKILNIAK, O. and SHKILNIAK, S. (2014). First-order composition-nominative logics with generalized renominations.

Problems in Progamming. № 2–3. P. 17–28 (in ukr).
6. NIKITCHENKO, M., SHKILNIAK, O. and SHKILNIAK, S. (2016). Pure first-order logics of quasiary predicates. Problems in Progamming.

No 2–3. P. 73–86 (in ukr).
7. HOARE, C. (1969). An axiomatic basis for computer programming, Comm. ACM 12(10). P. 576–580.
8. APT, K. (1981). Ten years of Hoare’s logic: a survey – part I, ACM Trans. Program. Lang. Syst. 3(4). P. 431–483
9. NIKITCHENKO, M., SHKILNIAK, O., SHKILNIAK, S. and MAMEDOV, T. (2019). Propositional logics of partial predicates with composition

of predicate complement. Problems in Progamming. No 1. P. 3–13 (in ukr).
10. NIKITCHENKO, M., SHKILNIAK, O. and SHKILNIAK, S. (2019). Program Logics of Renominative Level with the Composition of Predicate

Complement. Proceedings of the 15th International Conference on ICT. CEUR Workshop, Kherson, Ukraine. Vol. 2393. P. 603–616.
11. NIKITCHENKO, M., SHKILNIAK, O., SHKILNIAK, S. and MAMEDOV, T. (2019). Completeness of the First-Order Logic of Partial Quasiary

Predicates with the Complement Composition. Computer Science Journal of Moldova, vol. 27, No 2 (80). P.162–187.
12. SHKILNIAK, O. (2019). Relations of logical consequence of logics of partial predicates with composition of predicate complement. Problems in

Progamming. No 3. P. 11–27 (in ukr).

Про авторів:

Нікітченко Микола Степанович,
доктор фізико-математичних наук, професор,
завідувач кафедри теорії та технології програмування.
Кількість наукових публікацій в українських виданнях – понад 220, в т.ч.
кількість наукових публікацій у фахових виданнях – понад 120.
Кількість наукових публікацій в зарубіжних виданнях – понад 50.
Scopus Author ID: 6602842336;
h-індекс (Google Scholar): 15 (13 з 2015).
http://orcid.org/0000-0002-4078-1062,

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

195

Шкільняк Оксана Степанівна,
кандидат фізико-математичних наук, доцент,
доцент кафедри інтелектуальних програмних систем.
Кількість наукових публікацій в українських виданнях – понад 80, в т.ч.
кількість наукових публікацій у фахових виданнях – понад 40.
Кількість наукових публікацій в зарубіжних виданнях – 17.
Scopus Author ID: 57190873266;
h-індекс (Google Scholar): 5 (3 з 2015).
http://orcid.org/0000-0003-4139-2525,

Шкільняк Степан Степанович,
доктор фізико-математичних наук, професор,
професор кафедри теорії та технології програмування.
Кількість наукових публікацій в українських виданнях – понад 200, в т.ч.
кількість наукових публікацій у фахових виданнях –понад 110.
Кількість наукових публікацій в зарубіжних виданнях – 35.
Scopus Author ID: 36646762300;
h-індекс (Google Scholar): 8 (6 з 2015).
http://orcid.org/0000-0001-8624-5778.

Місце роботи авторів:

Київський національний університет імені Тараса Шевченка,
01601, Київ, вул. Володимирська, 60.

Тел.: (044) 5213345.
E-mail: me.oksana@gmail.com,

nikitchenko@unicyb.kiev.ua,
sssh@unicyb.kiev.ua.

