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JlocmikeHO HOBI KJIacH IIPOTPaMHO-OPi€HTOBAaHMX JIOTIK — YHUCTI HEPIIONOPSIKOBI JIOTIKM YaCTKOBUX KBa3iapHHUX NPEIHUKATIB 3
PO3IIMPEHIUMH PEHOMIHAIIIMH Ta KOMIO3HLIE NPEIMKATHOTO JOMOBHEHHs. ONHMCAaHO BiJHOUICHHS JIOTiYHOI'O HACIIIKy B
TaKMX JIOTIKaX, JUId LUX BiJHOLIEHb 1MOOYJOBAHO YUCIEHHSA CEKBEHUiitHOro Tumy. HaBeneno 6a3oBi cexBeHMUiiHI Gopmu mux
YHCIICHb T4 YMOBH 3aMKHEHOCTI CeKBEHILi#. [l MPOMOHOBAaHMX YHCIICHb JOBEAECHO TEOPEMH KOPEKTHOCTi, TEOPEMH MpO
iCHYBaHHS KOHTPMO/IeJIeii Ta TeOpEMH MOBHOTH.

KirouoBi ciioBa: jiorika, 4aCTKOBHUiI IPEIUKAT, JTOTIYHUI HACIIIIOK, CEKBEHIIIITHE YHCIICHHS, KOPEKTHICTh, IOBHOTA.

HccenenoBansl HOBBIE KJIACCHI MPOrPaMMHO-OPUEHTUPOBAHHBIX JIOTHK — YHCTHIE TIEPBOMOPSIKOBBIE IOTUKH YaCTHYHBIX KBAa3HAPHBIX
NPEMKATOB C PACIIMPEHHBIMH PEHOMHHAIMAMU U KOMIIO3MIIMEH MpeTMKaTHOro JonoyiHeHus.. OnucaHbl OTHOIIEHHS JIOTHYECKOTO
CIENCTBHSl B TaKHX JIOTHKAaX, JUISI 9THX OTHOLICHWH IHOCTPOCHBI HCYUCICHUS CEKBEHLIMANbHOrO THIA. [IpuBeneHBl 0a3oBble
CEeKBEHIMAIbHbIe (DOPMBI 3TUX HCUHMCICHHH U YCIOBUS 3aMKHYTOCTU CEKBEHIHMH. J[JIs NpeIo:KEHHBIX HCUHCICHHH JOKa3aHbI
TEOpeMbl KOPPEKTHOCTHU, TEOPEMBI O CYIIECTBOBAHIN KOHTPMOENEH 1 TeOPEeMBbI OIHOTHL.

KittoueBeie cioBa: JIOrvKa, YaCTUYHBIN NpeauKaT, JJOrH4YECKOE CICACTBUE, CEKBEHINAJIBHOC HCYHUCIICHUE, KOPPEKTHOCTD, IOJIHOTA.

We study new classes of program-oriented logical formalisms — pure first-order logics of quasiary predicates with extended
renominations and a composition of predicate complement. For these logics, various logical consequence relations are specified and
corresponding calculi of sequent type are constructed. We define basic sequent forms for the specified calculi and closeness
conditions.

The soundness, completeness, and counter-model existence theorems are proved for the introduced calculi.

Key words: logic, partial predicate, logical consequence, sequent calculus, soundness, completeness.

Introduction

Many different logic systems have been created (see, for example, [1]), which are used with success in computer
science and programming. Usually, the classical logic of predicates [2] and special logics based on it are employed for
this purpose. However, classical logic has fundamental limitations, which complicates its use. This brings to the fore
the problem of building new, software-oriented logics. Such are the logics of partial quasiary predicates, built on the
basis of a compositional-nominative approach common to logic and programming [3]. A number of different classes of
quasiary predicate logics are described, in particular, in [3—6].

To solve a number of problems that arise in information and software systems, it is necessary to develop
efficient proof searching procedures. Such procedures are provided by Gentzen-style sequent calculi. These calculi
formalize the fundamental concept of logical consequence. A number of sequent calculi for different classes of
program-oriented logics have been developed (see, e.g., [4—6]). The purpose of this work is to construct sequent calculi
for new classes of such logics — pure first-order logics of quasiary predicates with extended renominations and the
composition of the predicate complement. A characteristic feature of these logics is the presence of a special non-
monotonic operation (composition) of the predicate complement []. Operations of this type have been used in
extensions of Floyd-Hoare program logics [7, 8] in the case of partial pre- and post-conditions. The logics of partial
predicates with the composition of the predicate complement are proposed in [9], they are called LC. Propositional LCs
are described in detail in [9], renominative and pure first-order LCs are considered in [10] and [11], various
relationships of logical consequence in LC are investigated in [12].

Pure first-order logics of quasiary predicates are called L¢ (logics of quantifier level). Their defining feature is
the presence of quantification compositions. L with extended renominations and predicate-indicators of the presence
of value for variables is called L,9, L,¢ with the composition of the predicate complement is called L ,92€. A number of
sequent calculi in L,¢ and in L,9 are constructed in the paper, and the theorems of soundness and completeness are
proved for such calculi. The main emphasis is on the construction of sequential numbers in L, €.

Concepts that are not defined in this paper are interpreted in the sense of [6, 9, 12]. To facilitate reading, we
provide the necessary definitions for further presentation.

1. Composition systems and languages of pure first-order logics
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Let "4 be a set of all V-4-nominative sets and {7,F} is a set of Boolean values. We define V-A4-quasiary
predicate as a partial many-valued function Q : "A® {T, F}. The set of values which many-valued predicate Q yields
on argument (data) de’4 is denoted Q[d].

Let V be a set of names (variables) and A4 be a set of values. V-4-nominative set is defined as a partial single-
valued function d: V'® A. Nominative sets can be presented in the form [vi—ay,...,v4—>a,,...], where v.eV, a;eA, v;#v;
when i #j.

For nominative sets we define the parametric operation ||_; of deleting components with names from Zc V' as
follows: d|.z= {vi> aed|veZ}.

The parametric operation of extended renomination r V;’ e "4A® VA, where v, x;, u; €V, is specified [5] as

r;‘ """ i elm(d)=d || iy O V1 > d(X)),0,v, > d(x,)]. In particular, i d)y=d]._,

We use a special symbol L¢ V that denotes the absence of the variable value; d(x;)T means that a component
with the name v; is absent.

Vn U

A simpler notation for sequences yy,..., ¥, will be used: y . Thus, instead of r , we will write ;'i .

Traditional renomination r. [2-4] is a special case of extended renomination r!*" .

Statement 1. Given d(z)T, we obtain 12" (d) =12"" (d) and L' (d)=r12" (d).
Successive renominations Z;fl Ta rg 2: jl can be represented [5] by one renomination denoted r’ § o [;Eff ;
we call it the convolution of 152" and r2:27" . For any de’d we get 1227 (1277 (d) =122 21 (d) .

In this paper we study many-valued predicates of relational type — R-predicates [3, 6], denoted as mappings from
"4 to the set of Boolean values {7, F}. Each R-predicate O can be defined by its truth domain 7(Q) = {d | T O[d]} and
falsity domain F(Q) = {d | FeQ[d]}. We specify the undefinedness domain of R-predicate Q as L (Q)=T(Q)U F(Q).
We call R-predicate Q monotone if d; cd, = QO[d,] < O[d-].

A name xeV is unessential for R-predicate Q, if for any d,,d, €"4 we have: d,||..=d,|.. = O[d;] = O[d-].

Q is a partial single-valued R-predicate (P-predicate), if T(Q)NF(Q)=J;

Q is a total R-predicate (T-predicate), if T(Q)UF(Q) ="4;

Q is a total single-valued R-predicate (7S-predicate), if T(Q)NF(Q)=2 and T(Q)UF(Q) ="4

We can define 4 constant R-predicates T, F, K, Y as follows:

T(F)=FT)=T(K)=FK)=0; T(T)=FF)=T(")=F(X)="4
Q is a partial constant P-predicate, if F(Q) = or T(Q) = .
We will denote classes of V-4-quasiary R-predicates, P-predicates, T-predicates, and TS-predicates Pr’ ™, PrP"”

4 Pr7", and PrT7S " respectively. The class Pr7S" ™ is degenerate: all TS-predicates, except constant T and F, are
non-monotonic.

Basic compositions. Basic compositons of L,¢ are negation —, disjunction v, extended renomination Rt .,

existential quantifier Ix, and O-ary variable assignment predicate Ez. Basic compositons of L, additionally contain
the composition of predicate complement [J .
Logical connectives — are v defined by the truth and falsity domains of the respective predicates:
I(—P) = F(P); F(=P) = TI(P); T(PvQ) = T(P)VT(Q); F(PvQ)=F (P)ﬂF (D).
We specify the composition of extended renomination RV Yapr e Y as RV ‘i(P) [r;gl (d)].
The predicate Ez indicates whether a component ze /" has a value in a given data:
T(Ez)={d|d(z)}}; F(Ez)={d|d(2)T1}.
Predicates Ez are total, sinle-valued, and non-monotonic.
We define the quantifier 3xP: P’ ® Pr’™* as follows:
TExP)=U{d|d|., x> aeT(P)}; FAxP)=N{d|d|_, vxt>aeF(P)}.
acA ac4

Specific non-monotonic 1-ary composition of predicate complement [] is specified as:
T{P)= L(P)=T(P)UF(P) :T(P)r\F(P) ; FOP)=O.

Thus, the sets of basic compositions for L C2and L, are C o=1{V, Rr ‘i, Ix, Ex} and Cipc = {—,Vv R; ‘i, x,
ULEx} respectively.

Statement 2. Compositions —, v, R}, 3xP preserve totality and monotonicity of predicates.

Therefore, classes PrP" ™, PrT", Pr7S" are closed under compositions C Lo- At the same time, we have

Statement 3. QePr’ ™ =100 ePrP"™; QePrT"* = 1Q0=K.
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Classes PrT" and PrTS" are not closed under [J . Therefore, LC do not make sense for T-predicates and T'S-
predicates. Due to nonclosedness of Pr7S"* and PrT"* under [, duality [6] of classes PrP"* and PrT"* and
degeneration of Pr7S" ™, we will further consider only logics of R-predicates and P-predicates.

We obtain composition systems ("4, Pr'™, C,), ("4, PrP"™, C\p), ("4, Pr"™*, Cip0), ("4, PrP"™, C c). They
define pure first order composition algebras 4,2 = ("4, Pr'™*, C.p), 4,°“ = ("4, P"*, Cipc), 4,27 = ("4, PrP"™, C\yp),
A9 = (VA, PrP" C 'Loc); here 4 P and 4,97 are subalgebras of algebras 4 2 and 4,°€.

The main properties of propositional compositions and quantifiers, unrelated to renominations, correspond to
those of classical logical connectives and quantifiers (see [3]).

Theorem 1. The operation of extended renomination has the following basic properties:

R)R(P)=P;

R.D) Rg’j (P)= R;i (P) - identical renomination can be eliminated;

R, U) R;‘;i (P)= R?ﬁ (P) for unessential for predicate P name zeV;
R 1) ifd2)T then RUTI(P)(d)=RLTI(P)(d) and RET (P)(d) =Ry (P)(d);

x,1,z
R.R) RL7(RY(P))=R7 o' (P) —convolution of renominations; here R27 o2 (P)(d) = P(r¥{ (17 (d));
R,—) R (=P)=—RL(P) —R—-distributivity;
R,v) RIT(PvQ)=RIT(P)VRI(Q) - Rv-distributivity;
R,0) R (UQ) = URL(Q) —R, [ - distributivity.
Theorem 2. The properties related to renomination and quantification compositions are the following:
Ren) if name z is unessential for P, then JyP =3zR}(P) — renaming of a quantifier name;

R,3s) PRI (P)=RIT(FP) if y ¢ {v,X,u} —simple (limited) R3- distributivity;
R,3) RIT(3yP)=3zRYT o) (P), if name z is unessential for P and z ¢ {V, X, it} — 3- distributivity;

UR,) HRITT(P)=RIIT(P) if y & {z, X} — unessentiality of upper names in renominations.

z,x, L
Statement 4. Properties of renomination of variable assignment predicates:
RUT (E2)=F; RYTS(E2)=Ey; Ry (Ez)=Ez, if z¢{v,u}.

Quantifier elimination is based on the next properties:
Theorem 3. T(RLT(P)) N T(Ey) = T(RYY(xP)) and F(RIT(3xP)) N T(Ey) < F(RET(P)).

v,Ly v,Ly

Languages of L,2¢. An alphabet of the language of L,9“ consists of a set of names (variables) ¥, a set of
predicate symbols Ps, and a set of basic compositions’ symbols Cs = {—, v, R;‘f, UL)3x, Ex}. We define inductively the
set of formulas (denoted Fr):

— each pePs and each Ex is a formula; formulas of such forms are called atomic;

—if @, WeFr, then —®eFr, vO¥YeFr, R(® € Fr, 3x®eFr, O e Fr.

We specify a set Vrc V of total unessential names (unessential for any pePs) and extend it [3, 6] to formulas:
v:Fr—2".

If xev(D), then (see [3, 6]) x is unessential for ®. Tuple £ =(V, V', Cs, Ps) is called the extended logic signature.

We call a formula primitive, if it is atomic or has a form Rf’f p, where pePs, there are no identical

X,

renominations in R;’f and {v,u}Nv(p)=. ® is a CF-formula (constant free), if ® does not contain symbols of 0-

ary compositions (Ex in the case of the language of L,9%). Formulas of the form R;’KCD are called R-formulas.

Interpretations. We interpretate the language of the L, on composition systems CS = ("4, Pr'*, C 'LOC)-
Symbols in Cs are interpretated as corresponding compositions, symbols Ex — as variable assignment predicates Ex. We
specify a total single-valued mapping / : Ps® Pr’ and extend it to formulas: / : Fr® Py’

1(=®) = ~([(®)), (VDY) =vU(@), [(¥)), I(R}I®)=Ry(I(D)), [ExD)=Ix(U(D)), I(D)= (D).

Let the tuple J = (CS, , ) be an interpretation of the language of L ¢ (further shorten to J = (4, I)).
Given interpretation J and formula @, we define value of ® in J (denoted @) by induction on the structure of

Name xeV is unessential for a formula®, if it is unessential for @, for any interpretation J.

Classes of interpretations of the language are called semantics. For L9 we have a general class of R-
interpretations — semantics | RC. Specifying of subalgebras of P-predicates leads to a subclass of P-interpretations —
semantics | PC.
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For L,? we have a general class of R-interpretations — semantics | R. For subalgebras of P-predicates, 7-
predicates, TS-predicates we obtain semantics , P, ; 7, ; T'S. Only semantics | P will be considered.
Let us call constant formulas that are always interpreted as constant predicates. We can distinguish r-formulas,

- formulas, | - formulas. For example, Ex v —Ex is a - formula, R;fi (Ez) is a p- formula, 0 Ez is a |- formula.

Let formulas that are always interpreted as total predicates (in particular, Ez, - formulas and p- formulas) be
denoted &,; formulas with F(®,) = for any J (in particular, all formulas [J® ) be denoted J; formulas with
T(®,) = D for any J (in particular, all formulas —1® ) be denoted .

The language of L, is defined similarly (omitting everything related to symbols L[I).

Un-formulas. Let Rg;?ff (®) be R-formula such as {u,w} < v(®), and ® is not a symbol Ez. Let us call Rs-

form of an R-formula R;%{fi((b) the R-formula obtained from R;’;:?f”f((b) by all possible simplifications of

external renomination based on properties R, R I, R, U. We will call Rs-formulas Rs-forms of R-formulas.
Statement 5. If = is a Rs-form of an R-formula ‘P, then =; =¥, for all interpretations J.

Let UncV be a set of indefinite names. Each Rs-formula can be presented in the form of R, ‘f ’Z’IVCD , Where

S, s

=l

7.5, 7,1} < Un, {X,v,w}"Un=@ . Letus call R;'"'® an Un-form of the formula R]757® .
Primitive Un-formulas have a form of RZ'} p, where {X,v}NUn=, pePs.

Let us call formulas ¥ and E Un-equivalent (denoted ¥ ~, 2), if for any J=(4, /) and de 4 |l.vn We have

¥, (d)=E,(d).
Statement 6. If ¥ is an Un-form of a formula @, then @ ~;;, V.

7LZ,X0H,

Un-form RZ7'7® can be obtained transforming an Rs-formula R

v

@ according to R, T. Hence

= =

Statement 7. Given ze Un, then R ® [, Ry ® and R I® 0, RO .

X,L1,z X

=l o=

2. Logical consequence relation
A number of various logical consequence relations can be defined on the sets of formulas of the languages of
L,%and L %€ Among them are the relations defined in the languages of L2[12, 6]: PIIIR, P|:T, PIZF, P|:TFa R|:TF_
For the simplicity sake, we will omit symbol ; in the names of relations.
Firstly, let us specify a logical consequence relation for two sets of formulas in interpretation J.
LetZ,T', Ac Frand J be an interpretation. We denote:
eﬂZT(GJ) as T°(Z)), e(]EF(GJ) as F1'(2)), eUZT(GJ) as T°(Z)), eUXF(GJ) as FY(Z)).
A is an IR-consequence of T in interpretation J (denoted T jj=zA), if T(T)NF(A)=.
A is a T-consequence of I in interpretation J (denoted I j=rA), if T (L)< T7(A)).
A is an F-consequence of I in interpretation J (denoted I' jj=¢A), if F/(A)cF(T)).
A is TF-consequence of T in interpretation J (denoted I j=7+A), if T JJ=rAand I" j=¢A.
The corresponding logical t-consequence relations in semantics o, are defined as follows:
%= A, if T j|=; A for arbitrary Jea.
Here a denotes one of the semantics: R, | P, |RC, , PC. There are 8 logical consequence relations in each of L 2
and L,
R|:T» R|:F9 R|:TF;
Re_  Rej_  Re
= =R

P_ P_ P_ P_ . R_
|_1R9 |_T9 |_F9 |_TF9 |_1R9

Pe_ Pc_  Pey_ Pc_ . Rc —
|_1R9 |_T9 |_F9 |_TF9 | —TF-

Some of them are degenerate, some of the relations coincide (see [12]). For instance:

Statement 8. If I" and A consist of CF-formulas that do not contain [J, then I" R|¢,R Aand T Rc|¢m A.

At the same time, £z, —Ez =z X 1a X )= Ez,—Ez for each J. Therefore, Rc|:1R and R|:1R are degenerate.

Example 1. For any ®<Fr and Je,RC we have F(UD,)=0, T(HIP,)=J, T(®)zTD,)=L(D)),

F(®) g F(-[1®,)=1(®D,). Hence T™=; 1® and ~1d *|=;A; however, ® |z, 1® and —1® |z, .

=IR>

There are 5 distinct non-degenerate relations in L 2 = C =0 F=r P M=

c . ‘o - P P, P P R R R
In L, 9, we obtain 7 distinct non-degenerate relations: *|=p, “|=r, 7=, “I=1r, *I=1, =, *=1r.
The Hasse diagrams for those relations are shown below (we use an arrow — instead of symbol C):

Pl=r Mer - T
0 0 0 O 0
R|:TF - P|:TF P|:IR RC|:TF - PC|:TF Pc|:IR
0 0 0 0 0
l=r F=p o M=
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At the same time, for the relation "“|=j it is impossible to make a decomposition [J®[ ([12]). Such a
decomposition requires to specify explicitly an undefinedness domain, which leads to the more general irrefutability
logical consequence relation under the conditions of undefinedness |=;z" ([9]). For the latter relation, sequent calculi of
propositional, renominative and first order levels are constructed [9-11].

In [12], there are introduced logical consequence relations under the conditions of undefinedness =7, "|=/",
Rel=/*, ®=¢"; the theorem of elimination of the conditions of undefinedness is proved which allows to express them by
relations “|=7, *“|=5, *|=7, *|=.
Logical consequence relations on pairs of formulas induce respective logical equivalence relations.
We define a t-equivalence relation in interpretation J as follows: @ ~. ¥, if ® jJ=¥ and ¥ ,|=, @.
A logical t-equivalence relation in semantics a is defined as follows: @ *~ W, if ® “|=, ¥ and ¥ %=, ®.
Note the importance of the relation ; ~pw: @ j~7p ¥ < T(®)) =T(¥,) and F(D))=F(¥)) < O,=Y,.
Equivalent transformations in L, 9 ta L, 9 are based on the equivalence and substitution of equivalent theorems.
Theorem 4. Let @' be obtained from formula @ by substitution of ¥y, ..., ¥, instead of @, ..., ®,. If O, *~, V|,

vy @,%~, ¥, then ®%~,d’ (here *~, denotes one of the following: “~7z, “~zr, T~ “~rr, Pomrp, Pomip).

Theorem 5. Let ® ~z='¥, then we have: @,T =A< WV, T [=A; T=EA O < T=A VY.

Let ~7+ denote one of the relations of the 7F type, and |=. denote an arbitrary logical consequence relation.
Let us consider properties of logical consequence relations.

M) fT'c A, AcX and I" =, A, then A |=. X — monotonicity.

Theorem 6. The following basic properties of formula decomposition hold:

—) — D, = A O, T = A; ) [[F A, ——D S T = A, O

vp) OV, T =A< O, T = Aand W, T [=.A; VR T[=A, VWY S T =A, 0, Y,

—vp) ~(OVY), I = A < -0, -, T |- A —VR) I'= A, =(PVY) S TI= A, —D and T'|= A, Y.
For the relations of the /R type, additionally hold (and do not hold for the relations of the types 7, F, TF):
—1) =D, T |FrA < T |2 A, ©. —) T [ERA, @ < @, T =z A.

RC|_ RL‘|_ . c#|_

Let “|=; denote =7 or ®|=5; “*|=r denote "|=p, *|=r, *|=r; “I=1r denote =z or *|=r.

Theorem 7. The following properties of decomposition for [J® formulas hold:
0ur) DO,T=7A & T ¥=rA, @, —®; Or) T9=rA 0Pl & @,T “=7A and —@,T “=7A;
—0rp) T9=pA, 00 < T, 0, -0 “=pA; —0p) DT =rA < I'=rA,® and T ““=rA, 0.
Theorem 8. The following properties of elimination for [!®L formulas hold:

—0g) T=rA, 00 < T%=A; Om) DO, = A < T¥=¢A.
Statement 9. The properties that guarantee the specified logical consequence relation:
COHT Y=, 0D,A; C—)T,~1® “=, A.

Composition [J has different properties on truth and falsity domains of predicates inducing different properties
of decomposition for [J® formulas for the relations of the types 7 and F' and making impossible to formulate a joint
property for the relations of the TF type. Therefore, for relations ““=7; decomposition for J®L[ is possible for “|=; and
“|= only separately.

Thus, sequent calculi for relations “|=7 aggregate calculi for relations ““=; and ““|=p.

We will concentrate on the relations “|=p, *|=r, “|=r, “|=1r, "=+ in L,¢ and *|=r, *|=p, =1, *|=F in L, 9.

Let us consider properties R;, R,;I, R,U, RjR, R;—, R;v, R UL for predicates. Each of the properties R, *

induces 4 corresponding properties Rx*;, R#p, —R*, —R* for a logical consequence relation, depending on the position

of a formula or its negation (either in the left or in the right side of the relation). R, T induces the following 8 properties:
Rt RT(D), T = A Ez & RIT(D),TEAEz; TRART(D),Ez < Tl=A R (D), Ez;

s N5 1z

=R T1) =RY2(D), T = A Ez & =R (@), T = A Ez; TR A, —RY(D), Ez < Tl= AR T (D), Ez;
Ri12) RUTI(®), T = A Bz RIYT(D),T=AEz; TEARTI(P),Ez < T[=A R (D), Ez;

—R(12) =Ry T (D), T |5 A Bz =RV (D), T = A Ez; T= A —RIT (D), Bz < Tl=0 ARy (D), Ez;
Properties of — elimination in —Fz and in —Rg,‘i (Ez) and renomination properties of variable assignment

predicates are the following:
—g) Ez, = A S T A Ez; T= A —Ez < Ez = A

“pup) BRI (ED) T, A & Tl=, RYI(E2),A; Tl=, =RV (E2),A < RYI(E2).Tl=, A;
R, RIV(E2) Tl A & EoTl= A, ge zg 7,i); Tl AR (E2) o Tl AEz ge z¢ {7}
R )R (E2)T = A & EyT= & Tl AR (E2) o Tl AEy.

Let us specify properties of quantifier elimination, E-distribution and primary definition:
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) IO, T = A & R (D), Ez,T'|=.A given zefu(T, A, IxD));
3Ryp) R;ﬁ (@xD),I" = A < RI(D),Ez,T|=.A given z € fu(T,A, R;ﬁ (IxD)) ;

w, 1,z
—FR) T = —3xD,A < TLEz|=— R (D),A given zefu(T, A, IxD));
—3RR) [ == R (IxD),A < T, Ez|=.—RLTH(D),A given z e fu(l, AR (Fxd)) ;

L,z
Ivp) T, Ey[=. 3@, A < T, Ey = 3x®, Rj(D),A;

IRV T Ey = AR (@) < TLEy|=;

—3vy) =D, Ey, T [= A <& —3x®@, R (D), Ey, T |5 A;

—3R,v) =Ry (3x®), Ey, T’ [=.A < =R (IxD),—RT (D), Ey, T |= A,

w,L,y
Ed)T'|=.A © T'|=AEy and Ey,I'|=.A; Ev)I'=.A & Ez I'|=A, ne zefu(l, A).
Let us describe the properties that guarantee the specified logical consequence relation:
C) ®,I'|=. A, ® — holds for all introduced logical consequence relations.
The following properties additionally guarantee the specified logical consequence relation:
CL) ®,—®, T F|=1A; @, D, T |=7A;
CR)TP|=p A, @, —®; TH=pA, D, ~D;
CLR) ®, -, T =1z A, ¥, - .
Various properties which guarantee the specified logical consequence relation can be obtained from properties of
constant and partial constant predicates: properties Cll , C— and

CF) R;’fj (Ez),I" |=. A —holds for all introduced logical consequence relations.

Finally, we can specify the conditions that guarantee a certain logical consequence relation:
C) there exists formula @ such that: ®el" and @A — T |=« A for every introduced relation;
CL) there exists formula ® such that: ®el" and —® el — guarantees I'“|=7A and T "|=7 A;
CR) there exists formula @ such that: ® €A and —®eA — guarantees I |=; A and I'“|=¢ A;
CLR) there exist formulas @, W such that: ®, -® eIl and ¥, =¥ €A — guarantees I P|:Tp A;

CF) there exists formula Ry} (Ez) €T — guarantees I'[=- A for every introduced relation;
C) 0® e A — guarantees I *|=rA and T *|=; A;
C—l) ~1® T — guarantees I *|=7A and I *|=;A.

3. First order sequent calculi

Sequent calculi formalize logical consequence relations between sets of formulas. We construct calculi in the
style of semantic tableau, so, we will treat sequents as finite sets of formulas signed (marked, indexed) by symbols |-
and ;. Sequents are denoted | I"_A, in abbreviated form X. Formulas from I" (they are signed by ) are called 7-
formulas, formulas from A (they are signed by ) are called F-formulas.

Sequent calculus is constructed in such a way that a sequent | I"_A is derivable < I'|=A.

For a set of signed formulas £ = T" A, let us introduce sets of defined and undefined names (val-variables and
unv-variables): val( . I'_A) = {xeV|Exel'}; unv( I _A) = {xeV|ExeA}.

Also we specify a set of undistributed names for X: ud(X) = nm(Z)\ (val(X) O unv(X)).

The derivation in sequent calculi has the form of a tree, the vertices of which are sequents; such trees are called
sequent trees. A sequent X is derivable if there is a closed sequent tree with the root 2. A sequent tree is closed if every
its leaf is a closed sequent.

Sequent calculus is defined by basic sequent forms and closure conditions for sequents.

Closed sequents are axioms of the sequent calculus. A closedness | I"_A must guarantee I" |= A.

Rules of sequent calculus are called sequent forms. They are syntactical analogues of the semantic properties of
2 A

. . . z
the corresponding logical consequence relations and have a form of a or

For the relations =5, “|=r, *|=r, *|=1r, %|=1r in L,¢ we have calculi C,?* C, ¢, ¢,9F, ¢ 9", C 9™
For the relations ™=, *|=p, ®=r, ®|=p in L, 9 we obtain calculi C, 2", C 9, C %R C 2k

Closure conditions for sequents. Closure conditions for a sequent [ I' /A correspond to conditions that
guarantee a certain logical consequence relation:

— calculus C, 2% condition Cv CF (guarantees r? =R A);

— calculus C,9": condition Cv CFvCL (guarantees I'“|=7A);

— calculus C,?F: condition Cv CFvCR (guarantees re |=rA);

— calculus C,9™: condition CvCFvCLR (guarantees I'|=7zA);

— calculus C,°™®. condition Cv CF (guarantees FR|=TFA);
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—calculus C;
—calculus C;

9CT. condition Cv CFvCLvC—] (guarantees I

9¢F, condition Cv CFvCRvCI (guarantees

PU|:TA);
r PC|:F A);

—calculus C,2“™: condition Cv CFvC—] (guarantees I'*|=;A);
— calculus C,2“"*; condition CvCFvCl (guarantees I'®|=¢A).
The conditions C, CF, CL, CR, CLR, C-J, CJ were specified earlier.

Basic sequent forms for the calculi C,2", C,2*, C.2™, C,2™™®. Properties of logical consequence relations
induce the corresponding sequent forms. Let us specify basic forms for the calculi C 0T ¢, % 9 ¢ "R Their
basic forms are the same, the difference is in closure conditions for sequents.

Simplification forms (condition for the forms of type R, U: yev(®)):

(I) > R (I) >
- R(CD) SR B R(CD) SR
PR e f;fg(q))’z ; Rl — o f;f,;(q))’z ;
CRET(®).X JRCI(®@),2
R (®),% LRE(@),3
Ry T RU ——
el (@) JRET(D).E
R™Y(p), | Ez,%
R, T1 E zti(p) ‘ , where pePs;
|—Rx 1,z (p)’ - EZ,Z
RV (p), Bz,
=R LTI E = i 1L (P).- , where pePs;
RA -4 (p)7 - EZ
,  Ez, %
‘R, T2 = qui(p) a , where pePs;
\7Rx 1, 1(p), . Ez,X
—|R‘ Ez, %
—R, 12 = l(p) a , where pePs;
—|RV A i( ), 4 Ez,%

Forms of equlvalent transformations:
LRI (@),2

‘Rl v z i,
Ry (R (D)), s’
e R @)
T SRR (@),
ﬁR” i (®),2
FRi= u;
RV (—®),T
R S{COS
T RV HESHh
. |7R§,ﬁ((1>)VR;Vﬁ(‘P),Z_
U RI@veE
Ry CARII(@) VR (P)).E
Sl RI(DVY),E

- —D,2 DX
=R ———— R ———
—|R(CD) Z —.R(CD) 2
VD), Y R (D), X
‘_‘RLI zviu( ) ’|_| lI vau( ) ’
LRI (D), 2 RE(D),2
o xlj(@),Z . o fi(d)),E .
| _‘RJ- SRRT) 2 L AT 2
R, 1 (D),2 J—RIT T(D),Z
RIY Ez, X%
JRiT1 al ”i(p) al , Where pePs;
ij_z(p): |EZ;
RI"Y Ez, X%
—R, 11 il iii(p) a , where pePs;
RA 1,z (p)5 - EZ,
a ,  Ez,Z
R, 12 = ;;Z(p) : , where pePs;
- R?:L:L (p), . Ez,X
RV (p),  Ez,X
—R; 12 - ;;Z(p) = , where peP.
| _'R)?,’J_:J_ (p)a . Ez,X
,|RL - yJZ_ ljvlj_(q))z
N RX (R, (D)), y’
g R @)
: | —RYE RV (D)), SR
—|R” D), 2
Ry A2 (),
RV o L (=D), ¥’
_ R;’" D), %
,|—|RJ_—| % 5
R (D), 2
LRUT(@)VRIT(Y),E
,|RLV — - 5

,|—|R 1V

Forms of — elimination in formulas —Ey and —R."} (Ez) :

FR1E

- Rfvﬁ (CD v \P)’z
L(RYT (D) VR (W)),2
AR (@VY),E

(R (Ez),E
lﬁR_;’j (E2),%’

R (Ez),%
7| ﬁR;qj (Ez),T’

- R1E

Renomination simplification for variable assignment predicates (condition for . R,E ta R E: z & {v,u} ):

7‘Ez,2 ) FEZ,Z )
By T CELE
EZ )y EZ )y
RE — 2 RE ——=
R‘u(E)Z R‘u(E)Z
Decomposmon forms:
D, T
= ﬁﬁcp Sk

- Ey,Z L Ey,Z
RUEV — Ry — e s
RV (E2),E LRI (Ez),E
(I) z
o ﬁﬁcp SR

Copyright © 2020 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).
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LD, X I ) L0, W, 2
24 ; Ve e
L OVY, X HUAVA )
‘__|q), |__|\P, 2 _‘—|(D, E _‘—|\P, Z
Y v ;
(P VvY), X A(OVvY), T
Forms of quantifier elimination:
RA(D),, Ez, X ‘ 34 =R} (D), Ez, X .
- EX B D, T
RI™(®), _ Ez,% —RV(D), _ Ez,X
‘_ZlRL = W,L%zﬁ( ) = . ,‘—ElRL - W,L%zl?( ) |- 3
LR (ExD), 2 LR (3xD), 2
= _—3x®,, Ey, —R(D), X _ 5y Ix®, _Ey, R (D), £ .
: O, _Ep, T - 30, _Ey,r
R _oRLT (Fx®), R (D), | Ey,T . Ry A R (3x®), R (D), | Ey,T
FoARLV Vi > HARLY Vi
Ry (Gx D), | Ey,E LRI (3x®D), Ey,X

Let us call forms | 3R, —3R,, | 3, =3 — Ir-forms; forms _Iv, | —3v, JR,v, | ~IR, v — Jp-forms. Conditions for
3, —3: zefu(X, 3xD); conditions for | IR, —IR,: z € fu(Z, R;ﬁ (3xD)); condition for Ip-form: Ey does not belong
to X.
Auxiliary forms of E-distribution Ed and primary definition of Ev:
Ex X Ex,X Ez, ¥

Ed /& A Ev =
)

Basic sequent forms for the calculus C,¢**. Forms | R, R, RI, RI, RU, RU, R, T1, R T1, R T2, R 12,
|,RR, ,‘RR, ‘,R—|, ,‘R—|, |,RV,,‘R\/, ‘,RJ_E, ,|RJ_E, ‘,RJ_EV, ,|RJ_EV, Vs |V, |_El, |,E|RJ_, _‘E'V, ,‘HRJ_V, Ed, Ev with addition of:
LD, % LD, %
@, % e

given zefu(X).

‘__l

Basic sequent forms for the calculi C,2" and C,2“™®. Their basic forms are the same, the difference is in

closure conditions for sequents. To the specified above sequent forms we add forms of the typeR [l and forms of

decomposition of |—D . and 7‘5 o

LORT(@).E LRI (@),
‘7 1 N— b ,l 1™ UE— N
R 10 ®).2 (R (O®),E
L URT(®).2 IRV (D)%
R T’ ,|—|RJ_—| \717—’
LR (D)2 JRET(UD),Z
,|cDa 5 _‘(I)n by ‘7(1), by ‘7—|(I), >
Ur — =7 < > 0 .
=T 0ok T 0o,y

Basic sequent forms for the calculi €, 2 and C,2"®. Their basic forms are the same, the difference is in
closure conditions for sequents. We take the sequent forms for calculi C 9T and € 2°™F replacing forms O and e

by U and ]

F .
7‘(1), > 7|_|(D, by . ‘7(1)7‘ ﬁ(Da )

0,z

S D, 4
Forms of types R, RI, RU, R, T are auxiliary, they are used every time the specified situation arises.
Forms Ed and Ev are also specific; all the other basic sequents are main forms.

The main property of sequent forms. Let |=. be one of the introduced logical consequence relations.

A_K
Theorem 9. 1. Let =—'— be a basic sequent form. Then: a) A|=. K & T'|=.A; b) Tz A < A=K

A
A_K X Z .
2. Let % be a basic sequent form. Then: a) A |=. K and X |=.Z < T'|=.A; b) A= Kor X[ Z < T A.
R

Procedure of construction of a sequent tree. The main action during the process of derivation (construction of
a sequent tree) is decomposition or simplification of a formula choosen from the sequent. We treat sequents as sets of
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signed formulas, so we will not add there another copy of a formula that may happen to be obtained at some stage of
derivation.

Let us describe all stages of the procedure for a given finite sequent X.

We start from the root. On the initial stage primary distribution of names is performed: we obtain all the
possible distributions of names from ud(X) to defined and undefined by applying Ed-form. This leads to a tree of a
height / = [ud(Z)| with root X and m = 2" descendants. If val(Z) = &, we use Ev-form to perform primary definition for
a descendant sequent X, with val(Zy) =: Z, is enriched with formula | Ez such that zefi(X), so sequent X, £z is
obtained. As a result, the set of defined names is not empty for all descendants of ¥ which guarantees applicability of
Fp-forms.

Let us describe derivation of an unclosed sequent leaf 1; this implies building a finite subtree with node n. We
activate all non-primitive formulas in the sequent 1. A corresponding main form is applied to each active formula.
During the process, every time the situation arise, appropriate auxiliary forms R, R I, R, U, R;T are used for
simplifications.

Forms R, T are applied to primitive formulas and their negations. After that, all primitive formulas in the sequent
and their negations become Un-formulas, where Un is a set of all unv-variables of formulas in sequents in the path from
root to the current sequent.

Resulting formula(s) become(s) passive after application of a main form and implicated simplifications: at this
stage main forms can not be used on them.

Let us take a look at main forms’ application. At first, we use all the forms except Jg-forms. With each
application of 31, a new (absent in the path from root to the current sequent) ze V7 is taken. Jg-forms are applied after 31-
forms. Jg-form should be used repeatedly for each defined y of formulas in the path from X to the current sequent.

When no active formulas are left on the current stage, we need to check every sequent leaf Q on closedness. If
all the leaves are closed sequents, we obtained a finite closed tree: the procedure ended positively.

If a sequent leaf 2 is unclosed, it has to be checked whether Q is a final sequent.

Unclosed sequent node Q is called final, if there is no applicable form to it or no new (differing from formulas on the
path from X to QQ) formula can be obtained using applicable forms. It signals that the sequent tree has an unclosed path (from
root to the current final sequent, all its nodes are unclosed sequents): the derivation process ended negatively.

Thus, during construction of a sequent tree the following cases are possible:

1) construction procedure is completed positively; we obtained a finite closed tree;

2) construction procedure is completed negatively; we obtained a finite unclosed tree. Such tree has at least one
unclosed path, all nodes of which are unclosed sequents.

3) construction procedure is not completed; we obtained an infinite unclosed tree. Konig's lemma [2] states that
such tree has at least one infinite path. All its nodes should be unclosed sequents, otherwise this path would finish.
Hence, there is an infinite unclosed path in the tree.

Let us see the differences in the construction of a sequent tree for a given countable sequent X.

The process also has its stages and starts from the root X. There is a finite set of available on the current stage
formulas (see [4, 6]); forms can be applied only to these formulas. In the beginning a pair of first formulas from the lists
of T-formulas and F-formulas of the sequent X is available (and one of the lists can be empty).

Every stage starts with an access step for all unclosed sequents: another pair from the lists of 7-formulas and F-
formulas of a sequent is added to the set of available formulas. Let 1 be a sequent obtained in the beginning of a stage
after adding a pair of new available formulas. Stage distribution of names is performed next: we obtain all the possible
distributions of names from ud(n) to defined and undefined by applying Ed-form. This leads to a subtree of a height
lud(m)| with root n and k=2"“"V descendants. If val(n) = @, we use Ev-form to perform primary definition for a
descendant sequent 1y with val(n,) = & and obtain a sequent 1, | £z.

Forms’ application is not different from the finite sequent case.

When no active formulas are left on the current stage, every sequent leaf Q is checked on closedness. If all the
leaves are closed sequents, we obtained a finite closed tree: the procedure ended positively. Otherwise begin the next
stage. For a sequent tree for a countable sequent the notion of a final node does not make sense, thus only two
outcomes are possible:

1) procedure is completed positively; we obtained a finite closed tree;

2) procedure is not completed; we obtained an infinite unclosed tree with an infinite unclosed path: every
formula of the sequent X will appear in this path and become available.

The soundness theorem. It has the same formulation for all introduced calculi. Let the logical consequence
relations “|=p, *1=1, T =5, C1=1r, K=rm T=n Tl=r *=r ®=F correspond to the caleuli €, 9%, .97, ¢, ¢, ¢ O™, C O,
o ,C 9T ¢ CCTR ¢ OCFR respectively. We obtain

Theorem 10 (soundness). Let sequent | ' A is derivable in C,*. Then T'|=, A.

If | T_A is derivable in a calculus C,%", then a finite closed tree was constructed for | T A. For any node of this
tree | A K we have A|=.K. For leaves it is implied from the notion of a closed sequent. By Theorem 9, sequent forms
preserve logical consequence relation. Hence, for the root | I A we also have that I" |=. A holds.
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4. The counter-model existence theorems. The completeness theorem

The completeness of sequent calculi is traditionally proved on the basis of theorems of the existence of a
counter-model for the set of formulas of an unclosed path in the sequent tree. In this case a method of Hintikka (model)
sets is used ([4]). Let us apply this method for the calculi C,9“™® and C 9.

Theorem 11. Let ¢ be an unclosed path in the derivation tree constructed in C,°“™® for a sequent | " |A; let H be
the set of all specified formulas of this path. Then there exist an interpretation A = (S, ) and data 8<”S such that:

Hyp) ®cH = 3€T(®, ) and DeH = 52 T(D,).

Theorem 12. Let g be an unclosed path in the derivation tree constructed in C,9“"* for a sequent 1I4A; let H be
the set of all specified formulas of this path. Then there exist an interpretation B= (S, /) and data 5’4 such that:

Hp) . ®eH = 8¢ F(®p) and _DeH = 5eF(Dp).

Let (4, 8) be called T-counter-model and let (B, 8) be called F-counter-model for a sequent | I"_A.

Let us define a set Un= {yenm(H)| EycH} and call it a set of undefined names of the set H. Let us specify
W=nm(H)\ Un. The primary definition gives the condition W= {yenm(H) |, EyeH}.

Theorems 11 and 12 are proved in the same style. We continuously apply forms to sequents of the path ¢ while
we can: in the end, every non-primitive formula of the path (or its negation) will be decomposed or simplified. All the
sequents of the path ¢ are unclosed, therefore the closure condition does not hold: CvCFv C— for C,2™® and
CVvCFvCl for C,2“"R Thus, for the set H the following correctness conditions hold:

HC) there is no formula ® such that . ®eH and | OeH;

HCF) there is no formula R (Ez) such that R (Ez)e H ;

HC—1) there is no formula ® such that | /D € H — for the set H from theorem 11;

HCU) there is no formula @ such that |[/® € H — for the set H from theorem 12.

We can move from lower to higher node of the path ¢ after applying a certain sequent form, therefore the
corresponding conditions for transition for H should hold. In particular:

HR 1) [EzeHand  R;7(p)eH = | R\ (p)eH; [EzeH and R}’ (p)eH = R (p)eH;
H-R,T1) \EzeH and |7—|RU"7"" (p)eH = |7—|R§fj (p)eH,;

X, 1,z

EzeH and —RV" Y (pye H = 4 —J?;fj (p)eH,;

X, 1,z

HR,12) EzeH and FR;’fj(p) eH = FR;’T (p)eH,;

_FzeH and 7‘R;’i’j (peH = | R;’f (p)eH,
H-R,12) \EzeH and |7—|R§fj (p)eH = \—_‘R;i (p)eH;

_FzeH and 7‘—|R§fj (p)eH = 7‘—1R;’f (p)eH,;
H—g) | —EzeH = \FzeH; —~FzeH = EzeH,
Hopee) | —RU(E2) e H = (RYI(Ez)eH;  —RIT(Ez)eH = |_RV(Ez)eH;
HR ) given z ¢ {v,u} wehave: R{(Ez)e H = | EzeH; |R]/(Ez)eH = _EzeH,

%1
HR g, ) ‘_R;i’; (Ez2)eH = | EyeH, _lR;’f:; (Ez)eH = _|EyeH,

Let us call the set of signed formulas H for which the conditions of correctness HC, HCF, HC—J, the specified

above conditions of transition and the condition H[] 1 apply, an Rrc-model set.
Let us call the set of signed formulas A for which the conditions of correctness HC, HCF, HCLJ, the specified

above conditions of transition and the condition H—[] ¢ apply, an Rpc-model set.
Conditions H[] 1 and H—[]  are defined as follows:

Hpoo) WP eH = ®eHand —®eH, D‘DCDGH =  ®eHor —~DPeH,
H—[ ) Q_—DCDEH = beHor —PeH,; D‘—D(DEH = ®eHand | ~DeH.

Let us obtain a counter-model using the Ry--model set H. Let S be a set such that |S] = |¥]. We need to take an
injective 8e”S with its domain #¥; such & is a bijection W® .
Ex € H gives xe W, then Ex, (3) = T, therefore deT(Ex,); 4Ex € H gives x¢ W, then 5(x)1, therefore ¢ T(Ex,).

Let us specify basic values of predicates: we define values of atomic formulas, primitive Un-formulas and their
negations on 0 in interpretation 4 as follows:

—peH=03eT(py); \peH=0¢T(py); —peH =0€T(—p,); —peH = deT(—p,);
- Rl(p)eH= 8eT(R(p),); RI(p)eH = 3¢T(R(p),);
~ R (p)eH= 8eT(=R(p),): _—R I (p)eH= d&T(-RI(p),).
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In the same way we can obtain a counter-model using the Ry-model set H. S and 6 are defined similarly.

Ex € H gives xe W, then Ex, (8) = T, therefore de F(Ex 5); 4Ex € H gives x¢ W, then 8(x) T, therefore 6 F(Ex g).

We specify basic values of predicates, defining values of atomic formulas, primitive Un-formulas and their negations
on § in interpretation B as follows:

—peH = 8¢F(pp); | peH = 8eF(py); —peH = 8¢l (—pp); —peH = deF(—pp);

- Ri(p)eH= 8¢ F(R[(p)y); (Ri1(p) e H= 8eF(R [ (p)y);

- R (p)eH= 82 F(-RY(p)y) —Ri(p)e H= 8 F(=RI(p),).

For atomic formulas, primitive Un-formulas and their negations, statements of theorem 11 and theorem 12 hold

basing on the definitions above.
We will prove the condition HR T1 for both interpretations 4 and B.

Let \FzeHand R;iyz (p) € H. Condition \EzeH gives z¢ W, then 3(z) T, therefore r;:iyl ®)= rii’z (d).

By HR 11 we have | R}"” (p)e H. Whence 8eT(R;"” (p),), 8eT(RY"".(p),) and 8¢ F(R," " (p)y),
52 F(RE(p)y)

Let .EzeH and 7‘Rw’y (p) € H. Condition EzeH gives z¢ W, then 5(z) 1, therefore rziﬁ &) =127 (d).

x,1,z x,1,z
By HR,T1 we have 7‘R?i’#(p) € H. Whence 8¢T(R." (p),), 8¢T(RL"”(p),) and &€ F(RL"’ (p)y),
Se F(RYTL(P)s) -
The proof will be similar for the conditions H—R, 11, HR; 12, H—R T2 and H—g, H— ¢ .
The rest can be proved by the usual way by induction on the formula structure.

We will illustrate it for H] 1 (theorem 11) and H—[] ¢ (theorem 12).
Let [[l®eH . By H[jr we have ®eH and —PeH. By induction hypothesis we have 5¢7(®,) and

o8¢ I(—D,) = F(d,), whence e L(D,4). However L(D,) =T (D ,), therefore 5 T (LD ;).

Let UU®eH . Be HJr we have | ®eH or | —®eH. By induction hypothesis we have 8e7(®,) or
e I(—D,) = F(D,), whence ¢ L(D,). However L(D,) =T'(LD ,), therefore 6¢ T (LD ).

Let [J-4/®eH. By H-[r we have [ ®eH or —~®eH. By induction hypothesis we have 5eF(®p) or
e F(—®p) = T(D;), whence d¢ L(Dg). However L(Dp) =T D,) = F(1D,), therefore d¢ F(-UdD,).

Let UHl®eH. By H-[f we have | ®eH and | ~®eH. By induction hypothesis we have 6¢F(®p) and
3¢ F(—®Dp) = T(D;), whence e L(Dg). However L(Dp) =T(LD,) = F(1D,), therefore de [F(—1D,).

The counter-model existence theorems for the calculi C,9“" and C,9“" can be formulated and proved similarly.
As caleuli C, 9" and C, 9 formalize relations ” ‘I=rand P “I=F, all the predicates @, and @z need to be single-valued.

Additional correctness conditions should be specified for the set H:

HCL) there is no formula ® such that | ®, —®eH (case of derivation in C,°“");

HCR) there is no formula 9 such that |9, —9eH (case of derivation in C,9).

The counter-model existence theorems for the calculi C,9" and C, 2" can be formulated and proved similarly to
theorems 11 and 12: conditions HR [, H-R [0, HO 1, H=0 ¢ and HCU, HCII should be omitted, conditions
HCL and HCR added instead.

Let us specify the counter-model existence theorems for the calculi C ' OTF R, C,9F and C 9%,

Theorem 13. Let @ be an unclosed path in the derivation tree constructed in C,™* for a sequent 1 T4A; let H be
the set of all specified formulas of this path. Then there exist interpretations A4 = (S, I,), B = (S, I5) and data €S such
that conditions Hy and Hy hold.

We will call such (4, 8) and (B, 5) T-counter-model and F-counter-model for | I"_A.

Theorem 14. Let ¢ be an unclosed path in the derivation tree constructed in C,°™ for a sequent
1IA; let H be the set of all specified formulas of this path. Then there exist interpretations 4 = (S, 1), B = (S, Iz) and
data 8€”S such that conditions Hy and Hy hold.

We will call such (4, 8) and (B, 8) T -counter-model and F"-counter-model for A

In the proofs of theorems 13 and 14 the conditions HR U, H=R, 0, H[ r, H=[ r and HCU, HCII are
omitted; the following correctness condition HCLR is added for theorem 14:

HCLR) there are no formulas @ and 3 such that | @, —®eH and 8, —3eH.

Obviously, HCLR < HCL v HCR. One should make clear the choice of a counter-model in this situation. For 7"~
counter-model 3, violation of the condition HCL (there is a formula ® such that . ®eH and | ~DeH) gives D408)=T
and —® ,(8) = T, therefore @ ,(8) =F, and ambiguity for @, . For F’-counter-model 1 violation of the condition HCR,
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(there is a formulda § such that | SeH and —3eH) gives 95(8) = F and —3;(8) = F, therefore 8;(8)= 7, and ambiguity
for 9;.
Thus, should we have the condition HCLR, in the case of violation of HCL we choose the F'-counter-model,

and in the case of violation of HCR we choose the 7°-counter-model; we can choose any of the two counter-models if
both conditions HCL and HCR hold.

Theorem 15. Let g be an unclosed path in the derivation tree constructed in C, 2% for a sequent 1T A; let H be
the set of all specified formulas of this path. Then there exist interpretation 4 = (S, /) and data §€"S such that:

Hp) 1 ®eH = ®(8)=Tand PeH = Oy0)=F.

We will call such (4, 8) IR-counter-model for | I"_A.

Theorems of the existence of a counter-model for the considered sequent calculi allow us to prove the
completeness theorem. It has the same formulation for all these calculi. Let the logical consequence relations =5, “|=r,
PC| PC|

"= TFme NEm TEn MEn En lFr correspond to the caleuli C, 9%, €97, €%, C,°", ", C,°“, C,°,
C 2R €, 2R respectively. We obtain

Theorem 16 (completeness). Let I' |=. A. Then sequent | I A is derivable in C |9,

Let us prove for relation *|=; and calculus C,2“™® (for more similar proofs see [4, 11]).

Assume that T *“|=;A, but sequent | A is not derivable. In this case a sequent tree for , I A is not closed. Thus,
an unclosed path g exists in this tree. Let H be the set of all signed formulas of this path. By Theorem 11, there is a 7-
counter-model (A4,8): | PeH = 5 T(D,) and | DeH = 5 T(D,).

By [ I AcH for all ®eI" we have deT(D,), for all YeA we have 6 T(¥,). Whence 6eT(I',) and 53¢ 7(A,),
therefore T(I" ;) = T(A,) does not hold. This contradicts to I" /=7 A, so it contradicts to I *|=7A.

Conclusion

We have studied new classes of program-oriented logical formalisms — pure first-order logics of quasiary
predicates with extended renominations and a composition of predicate complement. Such operations are used in
various versions of the Floyd-Hoare program logic with partial pre- and post-conditions. We have considered
composition systems and languages of these logics, specified various logical consequence relations and described
properties of formulas decomposition and quantifier elimination.

Properties of logical consequence relations form a semantic base for construction of corresponding calculi of
sequent type. We have defined basic sequent forms for the specified calculi and closeness conditions, and illustrated the
process of derivation (building a sequent tree). The soundness, completeness, and counter-model existence theorems
are proved for the introduced calculi.
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