=Paper= {{Paper |id=Vol-2870/paper66 |storemode=property |title=Methods of Eliminating Features from Linguistic Equations |pdfUrl=https://ceur-ws.org/Vol-2870/paper66.pdf |volume=Vol-2870 |authors=Dmitry Sitnikov,Polina Sytnikova,Andrii Kovalenko |dblpUrl=https://dblp.org/rec/conf/colins/SitnikovSK21 }} ==Methods of Eliminating Features from Linguistic Equations== https://ceur-ws.org/Vol-2870/paper66.pdf
Methods of Eliminating Features from Linguistic Equations
Dmitry Sitnikova, Polina Sytnikovaa, Andrii Kovalenkoa
a
    Kharkiv National University of Radio Electronics, Nauky Ave. 14, Kharkiv, City, 61166, Ukrain


                 Abstract
                 In this paper approaches to modelling relations between discrete linguistic features are
                 considered. Linguistic equations as a tool for describing complicated logic dependencies
                 between semantic and syntactic features have been investigated. Finite predicate equations
                 have been considered from the viewpoint of quick finding hidden dependencies in data. A way
                 to defining the tightness of links between discrete features has been suggested. For this purpose,
                 different types of substitution operators have been investigated. A class of finite predicates that
                 allows eliminating non-salient features without an increase in the size of the original formula
                 has been considered in relation with some linguistic examples. The results obtained can be used
                 not only in applied linguistic, but also in other fields where deductive inferences in knowledge
                 bases are important.

                 Keywords 1
                 Knowledge base, linguistic equations, finite predicates, logic equations, variable elimination

1. Introduction
    To formalize information on objects and processes in databases, a variety of discrete mathematics
methods are used. In cases where such information represented by discrete information features has a
complicated logic structure, in particular, to represent it formally, logic equations with Boolean
variables are used. Logic methods of pattern recognition suppose composing and solving logic
equations with variables that take on values 1 and 0, depending on whether the given object has a certain
property. Solving such equations allow either identifying the object by the available set of values for
feature variables or determine unknown properties of the given object [1]. A natural generalization of
Boolean algebra equations are finite predicate algebra equations [2] that provide the possibility of
operating with arbitrary feature variables defined on finite sets (alphabets). Using such equations for
building logic inferences in knowledge bases allows extending the possibilities of logic methods for
pattern recognition [3].
    For solving a variety of linguistic problems, some of which are describe in this paper, a solution is
suggested based on finite predicate algebra equations.
    A universal way for solving finite algebra equations is the transformation of the predicate defined
by a system of logic equations and initial variable values to the perfect disjunctive normal form [1].
Nevertheless, such a procedure implies exhaustive search for a great number of intermediate solutions,
and its practical implementation requires significant time and memory resources.
    We will show that for some quite general types of linguistic equations, when peculiarities of their
structure are taken into consideration, it is possible to develop much simpler methods their solution.
Such methods differ from, for example, heuristic algorithms [3], that suppose finding all sets of values
for semantic features, which slows down the solution finding process if the number of variables
increases and time increases exponentially.




COLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22–23, 2021, Kharkiv, Ukraine
EMAIL: dmytro.sytnikov@nure.ua (D. Sitnikov); polina.sytnikova@nure.ua (P. Sytnikova); andrey.kovalenko@nure.ua (A. Kovalenko)
ORCID: 0000-0003-1240-7900 (D. Sitnikov); 0000-0002-6688-4641 (P. Sytnikova); 0000-0003-2882-5082 (A. Kovalenko)
              ©️ 2021 Copyright for this paper by its authors.
              Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
              CEUR Workshop Proceedings (CEUR-WS.org)
2. Related Works
    The scientific field NLP deals with natural language processing. Its origin goes back to the middle
of the last century. In the last decades it has become one of the most important artificial intelligence
technologies. The application of logic methods to the solution of applied linguistic problems is now
widely spread not only in linguistic research, but also in other scientific fields related to discrete
information processing. One of the main achievements of mathematical linguistic has lately become the
application of complicated logic methods to the investigation of natural language syntax [5].
    The first stage of solving many practical problems is the construction of a mathematical model that
is often represented in the form of equations. Linguistic equations are used in many fields. For example,
in [6] the authors use linguistic equations for the description of fuzzy logic inference for solving the
problem of increasing effectiveness of electronic control detail production in the automobile industry.
In [7] linguistic equations are a basis for developing various types of fuzzy models with different types
of rules that describe relations in these models. An interesting application of NLP techniques is also
textual information processing in medical reports [8].
    A broad field of using linguistic equations has led to the development of methods and algorithms of
their solution. For example, in [9] a system of linguistic equations of a special type where each equation
can contain operations of concatenation is considered. In [10] equations with formal languages, using
all Boolean operations and concatenation have been investigated, issues of solution existence and
uniqueness being considered.
    Building a linguistic equation is always associated with the description of the set of linguistic
features related to a concrete task. In [11] a language for defining mathematical problems and its
association with natural language is analyzed by forming corresponding feature sets. In [12] the authors
have analyzed sets of linguistic features for developing a model of linguistic constructs for the analysis
of writing quality
    In several research papers Boolean algebra tools are considered as an approach to solving linguistic
equations. For example, paper [13] is devoted to solving a system of Boolean equations with the
operations of union and negation. It is determined there whether such a system has solutions.
    At present, since huge datasets that are available on the Internet, approaches to solving linguistic
problems change and require scalable methods for the analysis of data and texts. In paper [14] it is
proposed to use Big Data methods for improving ways for solving semantic problems related to natural
language texts.

3. Tightness of links between features
   In many practical tasks associated with the semantic processing of natural language information it s
not necessary to obtain all semantic feature value sets, but it is required to obtain one or several value
sets for target features that are interesting for user. Often it is necessary to find variable value sets under
predefined initial conditions represented in the form of a fixed set of values for other features. When
such problems are solved the variables that are not included in the initial conditions and are not target
ones are eliminated from the equation by the application of existence quantifiers [1].
   When knowledge bases with linguistic variables and corresponding inferences are considered
questions concerning determining the tightness of links between object features arise. Also, it is often
important to know if such links are salient. Probably a formal link between features is stronger if fewer
sets of variable values satisfy the equation. At that, if any sets of variable values satisfy the original
equation, one can conclude that there is no relation between these variables.
   Besides, when practical problems are solved, the following questions arise:
   1. How do concrete values of a given feature substituted in the logic equation affect links between
   other features?
   2. How strong is the logic dependence between two (or more) given features?
   In order to obtain an answer to the first question, it is necessary to consider the predicates (and
equations correspondingly) that after the substitution of a certain feature value are transformed into
predicates with a stronger link between features, and the predicates for which the substitution of a given
feature value leads to weakening the logic link between features.
    In order to obtain an answer to the second question, it is necessary to eliminate from the original
equation with the help of the existence quantifier all the variable except the considered ones and
investigate the resulting equation with a fewer number of variables, which describes all allowable sets
of investigated feature values.
    The mentioned procedures will be considered in the next sections.
    In order to answer the posed questions, it is necessary to consider different types of finite algebra
predicated and effective methods for eliminating variables from such equations.

4. Eliminating variables with the help of logic quantification operations and
   simplifying finite predicate formulae.

    Let predicate 𝑃 depend on variables π‘₯, 𝑦, . . . , 𝑧. Let us define the substitution operator π‘Ž(𝑃) (π‘Ž is an
element from the domain for the variable π‘₯) that is applied to the predicate 𝑃 in the following way:
                                           π‘Ž(𝑃(π‘₯, 𝑦, . . . , 𝑧) = 𝑃(π‘Ž, 𝑦, . . . , 𝑧).
    Let us call this operator a limiting one, if the following condition holds
                                         𝑃(π‘Ž, 𝑦, . . . , 𝑧) β†’ 𝑃(π‘₯, 𝑦, . . . , 𝑧)                           (1)
for any π‘₯, 𝑦, . . . , 𝑧.
    Let us call this operator a spreading one, if the following condition holds:
                                         𝑃(π‘Ž, 𝑦, . . . , 𝑧) ← 𝑃(π‘₯, 𝑦, . . . , 𝑧)                           (2)
for any π‘₯, 𝑦, . . . , 𝑧.
    Let us call this operator a shifting one, if both conditions (1) and (2) do not hold.
    Limiting operators strengthen the logic link between discrete features, spreading substitution
operators weaken such a link, shifting operators transform the link between the features in an arbitrary
way.
    Let us represent the predicate 𝑃 as follows:
                     𝑃(π‘₯, 𝑦, … , 𝑧) = π‘₯ π‘Ž1 𝑃1 (𝑦, … , 𝑧) ∨ π‘₯ π‘Ž2 𝑃2 (𝑦, … , 𝑧) ∨ … ∨ π‘₯ π‘Žπ‘› 𝑃𝑛 (𝑦, … , 𝑧).
    Then π‘Ž1 (𝑃) = 𝑃1 (𝑦, … , 𝑧)
    Obviously, the operator π‘Ž1 (𝑃) will be a limiting one, if 𝑃1 β†’ 𝑃𝑖 βˆ€π‘– = 1,2, . . . , 𝑛.
    The operator π‘Ž1 (𝑃) will be a spreading one, if 𝑃1 ← 𝑃𝑖 βˆ€π‘– = 1,2, . . . , 𝑛. The operator π‘Ž1 (𝑃) will be
a shifting one, if both conditions do not hold.
    Consider the application of the substitution operator π‘Ž1 to a predicate 𝑃(π‘₯, 𝑦), where the variables
π‘₯, 𝑦 and 𝑧 have the domains {π‘Ž1 , π‘Ž2 }, {𝑏1 , 𝑏2 } and {𝑐1 , 𝑐2 } correspondingly.
    Suppose
                                       𝑃 = π‘₯ π‘Ž1 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐2 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐1 .
    Then
                       π‘Ž1 (𝑃) = 𝑦 𝑏1 𝑧 𝑐1 = (π‘₯ π‘Ž1 ∨ π‘₯ π‘Ž2 ) ∧ 𝑦 𝑏1 𝑧 𝑐1 = π‘₯ π‘Ž1 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐1 .
    The predicate 𝑃, except for those disjuncts contained in π‘Ž1 (𝑃), one more disjunct π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐1 . It
means that the operator π‘Ž1 is a limiting one for the predicate 𝑃. In terms of the introduced definitions,
for the given example 𝑃1 = 𝑦 𝑏1 𝑧 𝑐1 , 𝑃2 = 𝑦 𝑏1 𝑧 𝑐2 ∨ 𝑦 𝑏1 𝑧 𝑐1 and, obviously, 𝑃1 β†’ 𝑃2 .
    Consider then the predicate
                                     𝑃 = π‘₯ π‘Ž1 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž1 𝑦 𝑏1 𝑧 𝑐2 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐1 .
    Then
                         π‘Ž1 (𝑃) = 𝑦 𝑏1 𝑧 𝑐1 ∨ 𝑦 𝑏1 𝑧 𝑐2 = (π‘₯ π‘Ž1 ∨ π‘₯ π‘Ž2 ) ∧ (𝑦 𝑏1 𝑧 𝑐1 ∨ 𝑦 𝑏1 𝑧 𝑐2 ) =
                             = π‘₯ π‘Ž1 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐2 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐2 .
    The operator π‘Ž1 for this predicate is a spreading one. For the given example 𝑃1 = 𝑦 𝑏1 𝑧 𝑐1 ∨ 𝑦 𝑏1 𝑧 𝑐2 ,
Π° 𝑃2 = 𝑦 𝑏1 𝑧 𝑐1 . It means 𝑃1 ← 𝑃2 .
    In the case when the predicate P, for example, is represented in the form
                                  𝑃 = π‘₯ π‘Ž1 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž1 𝑦 𝑏2 𝑧 𝑐2 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐2 .
                       π‘Ž1 (𝑃) = 𝑦 𝑏1 𝑧 𝑐1 ∨ 𝑦 𝑏2 𝑧 𝑐2 = (π‘₯ π‘Ž1 ∨ π‘₯ π‘Ž2 ) ∧ (𝑦 𝑏1 𝑧 𝑐1 ∨ 𝑦 𝑏2 𝑧 𝑐2 ) =
                             = π‘₯ π‘Ž1 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž1 𝑦 𝑏2 𝑧 𝑐2 ∨ π‘₯ π‘Ž2 𝑦 𝑏1 𝑧 𝑐1 ∨ π‘₯ π‘Ž2 𝑦 𝑏2 𝑧 𝑐2
i.e., the operator π‘Ž1 is a shifting one.
   The general method for variable elimination looks as follows [1]. Consider the finite predicate
algebra equation
                             𝑓(π‘₯1 , π‘₯2 , . . . π‘₯π‘ž , π‘₯π‘ž+1 , . . . , π‘₯𝑔 , π‘₯𝑔+1 , . . . , π‘₯𝑛 ) = 1,                               (3)
where each variable π‘₯1 , π‘₯2 , . . . , π‘₯𝑛 has the domain 𝐴𝑖 = {π‘Žπ‘–1 , π‘Žπ‘–2 , . . . , π‘Žπ‘–π‘˜π‘– }, 𝑖 = 1, 𝑛, at that, for the
system of features the laws of truthfulness should hold:
                                            π‘Ž         π‘Ž              π‘Ž
                                         π‘₯𝑖 𝑖1 ∨ π‘₯𝑖 𝑖2 ∨ … ∨ π‘₯𝑖 π‘–π‘˜ = 1, 𝑖 = Μ…Μ…Μ…Μ…Μ…       1, 𝑛.
   Also the laws of falseness should hold:
                                              π‘Ž        π‘Ž
                                           π‘₯𝑖 𝑖𝑙 ∧ π‘₯𝑖 π‘–π‘š = 0, 𝑙 β‰  π‘š, 𝑙, π‘š = Μ…Μ…Μ…Μ…Μ…Μ…        1, π‘˜π‘– .
   Suppose also that for the given values {π‘Ž1𝑗1 , π‘Ž2𝑗2 , . . . , π‘Žπ‘žπ‘—π‘ž } of the variables π‘₯1 , π‘₯2 , . . . , π‘₯π‘ž it is
necessary to compute the values of variables π‘₯𝑔+1 , . . . , π‘₯𝑛 such that the equation (3) will be true for
some values of the variables π‘₯π‘ž+1 , . . . , π‘₯𝑔 .
   Let us define this problem mathematically:
                   βˆƒπ‘₯π‘ž+1 . . . βˆƒπ‘₯𝑔 𝑓(π‘Ž1𝑗1 , . . . π‘Žπ‘žπ‘—π‘ž , π‘₯π‘ž+1 , . . . , π‘₯𝑔 , π‘₯𝑔+1 , . . . , π‘₯𝑛 ) = 1,                          (4)
which can be represented in the finite predicate language as follows:
                 π‘˜π‘ž+1               π‘˜π‘”
                βˆ¨π‘—=1  π‘Žπ‘ž+1,𝑗 . . . βˆ¨π‘—=1     π‘Žπ‘”π‘— 𝑓(π‘Ž1𝑗1 , . . . π‘Žπ‘žπ‘—π‘ž , π‘Žπ‘ž+1,𝑗 , . . . , π‘Žπ‘”,𝑗 , π‘₯𝑔+1 , . . . , π‘₯𝑛 ) = 1,
where only for the variables π‘₯𝑔+1 , . . . , π‘₯𝑛 possible sets of values should be found.
   The system of linguistic equations of the form
                                   𝑦 𝐡𝑖 = 𝑔𝑖 (π‘₯1 , π‘₯2 , . . . , π‘₯π‘š ), 𝑖 = 1, 𝑛                                                 (5)
that satisfies the condition
                             𝑔𝑖 (π‘₯1 , π‘₯2 , . . . , π‘₯π‘š ) ∧ 𝑔𝑗 (π‘₯1 , π‘₯2 , . . . , π‘₯π‘š ) = 0,                                      (6)
                              𝑖 β‰  𝑗, 𝑖, 𝑗, = 1, 𝑛
can be transformed to the following form:
                                      βˆ¨π‘›π‘–=1 𝑦 𝐡𝑖 ∧ 𝑔𝑖 (π‘₯1 , π‘₯2 , . . . , π‘₯π‘š ) = 1.                                             (7)
   Nevertheless, the algorithm of variable elimination with the help of the existence quantifier has a
high complexity if arbitrary predicates are considered.
   Suppose the predicate 𝑃(π‘₯1 , π‘₯2 , . . . , π‘₯𝑛 ) has the following form:
                𝑃 = 𝑃1 (π‘₯𝑖11 , π‘₯𝑖12 , . . . , π‘₯𝑖1𝑛 )𝑃2 (π‘₯𝑖21 , π‘₯𝑖22 , . . . , π‘₯𝑖2𝑛 ) ∧. . .∧ 𝑃𝑛 (π‘₯𝑖𝑛1 , π‘₯𝑖𝑛2 , . . . , π‘₯𝑖𝑛𝑛 ),
where
                                {π‘₯𝑖11 , π‘₯𝑖12 , . . . , π‘₯𝑖1𝑛 } ∩ {π‘₯𝑖21 , π‘₯𝑖22 , . . . , π‘₯𝑖2𝑛 } ∩. . .
                                ∩ {π‘₯𝑖𝑛1 , π‘₯𝑖𝑛2 , . . . , π‘₯𝑖𝑛𝑛 } = {π‘₯𝑗1 , π‘₯𝑗2 , . . . , π‘₯π‘—π‘š } = 𝐴.
   Suppose also we should eliminate variables the variables from the set A.
   Consider the application of the existence quantifier to the variable π‘₯𝑗1 from the set 𝐴
                                                                    𝑖   𝑖       𝑖
                                                  βˆƒπ‘₯𝑗1 (𝑃) =∨ 𝑃1 1 𝑃2 1 . . . 𝑃𝑛1 ,
                                                               𝑖1
          𝑖
where 𝑃𝑔 1 = π‘Žπ‘—1 𝑖1 (𝑃𝑔 ), 𝑔 = 1, 𝑛.
   For example, 𝑃 = 𝑃1 (π‘₯1 , π‘₯2 , π‘₯3 , π‘₯4 ) ∧ 𝑃2 (π‘₯2 , π‘₯3 , π‘₯5 ) ∧ 𝑃3 (π‘₯2 , π‘₯3 , π‘₯6 , π‘₯7 ). Let the domain for π‘₯2
consist of 3 values, and the domain for π‘₯3 from 2 values. Then
                     βˆƒπ‘₯2 (𝑃) = 𝑃1 (π‘₯1 , π‘Ž21 , π‘₯3 , π‘₯4 )𝑃2 (π‘Ž21 , π‘₯3 , π‘₯5 )𝑃3 (π‘Ž21 , π‘₯3 , π‘₯6 , π‘₯7 ) ∨
                     ∨ 𝑃1 (π‘₯1 , π‘Ž22 , π‘₯3 , π‘₯4 )𝑃2 (π‘Ž22 , π‘₯3 , π‘₯5 )𝑃3 (π‘Ž22 , π‘₯3 , π‘₯6 , π‘₯7 ) ∨
                     ∨ 𝑃1 (π‘₯1 , π‘Ž23 , π‘₯3 , π‘₯4 )𝑃2 (π‘Ž23 , π‘₯3 , π‘₯5 )𝑃3 (π‘Ž23 , π‘₯3 , π‘₯6 , π‘₯7 ) =
                           𝑖                   𝑖              𝑖
                     =∨ 𝑃1 1 (π‘₯1 , π‘₯3 , π‘₯4 )𝑃2 1 (π‘₯3 , π‘₯5 )𝑃3 1 (π‘₯3 , π‘₯6 , π‘₯7 ).
                          𝑖1
    The quantification looks as follows:
                                      𝑖 𝑖 𝑖 𝑖       𝑖 𝑖          𝑖 𝑖
          βˆƒπ‘₯𝑗2 (𝑃) (βˆƒπ‘₯𝑗1 (𝑃)) =∨ ∨ 𝑃1 1 2 𝑃2 1 2 … 𝑃𝑛1 2 , Π³Π΄Π΅ 𝑃𝑔 1 2 = π‘Žπ‘—2 𝑖2 (π‘Žπ‘—1 𝑖1 (𝑃𝑔 )), 𝑔 = 1, 𝑛.
                                       𝑖2 𝑖1
    Then for the considered example
              βˆƒπ‘₯3 (𝑃)βˆƒπ‘₯2 (𝑃) = 𝑃1 (π‘₯1 , π‘Ž21 , π‘Ž31 , π‘₯4 )𝑃2 (π‘Ž21 , π‘Ž31 , π‘₯5 )𝑃3 (π‘Ž21 , π‘Ž31 , π‘₯6 , π‘₯7 ) ∨
                       𝑃1 (π‘₯1 , π‘Ž21 , π‘Ž31 , π‘₯4 )𝑃2 (π‘Ž21 , π‘Ž31 , π‘₯5 )𝑃3 (π‘Ž21 , π‘Ž31 , π‘₯6 , π‘₯7 ) ∨
                      ∨ 𝑃1 (π‘₯1 , π‘Ž22 , π‘Ž31 , π‘₯4 )𝑃2 (π‘Ž22 , π‘Ž31 , π‘₯5 )𝑃3 (π‘Ž22 , π‘Ž31 , π‘₯6 , π‘₯7 ) ∨
                      ∨ 𝑃1 (π‘₯1 , π‘Ž23 , π‘Ž31 , π‘₯4 )𝑃2 (π‘Ž23 , π‘Ž31 , π‘₯5 )𝑃3 (π‘Ž23 , π‘Ž31 , π‘₯6 , π‘₯7 ) ∨
                      ∨ 𝑃1 (π‘₯1 , π‘Ž21 , π‘Ž32 , π‘₯4 )𝑃2 (π‘Ž21 , π‘Ž32 , π‘₯5 )𝑃3 (π‘Ž21 , π‘Ž32 , π‘₯6 , π‘₯7 ) ∨
                      ∨ 𝑃1 (π‘₯1 , π‘Ž22 , π‘Ž32 , π‘₯4 )𝑃2 (π‘Ž22 , π‘Ž32 , π‘₯5 )𝑃3 (π‘Ž22 , π‘Ž32 , π‘₯6 , π‘₯7 ) ∨
                           ∨ 𝑃1 (π‘₯1 , π‘Ž23 , π‘Ž32 , π‘₯4 )𝑃2 (π‘Ž23 , π‘Ž32 , π‘₯5 )𝑃3 (π‘Ž23 , π‘Ž32 , π‘₯6 , π‘₯7 ) =
                        =∨ ∨ 𝑃1 (π‘₯1 , π‘Ž2𝑖1 , π‘Ž3𝑖2 , π‘₯4 )𝑃2 (π‘Ž2𝑖1 , π‘Ž3𝑖2 , π‘₯5 )𝑃3 (π‘Ž2𝑖1 , π‘Ž3𝑖2 , π‘₯6 , π‘₯7 ) =
                          𝑖2 𝑖1
                                                    𝑖 𝑖               𝑖 𝑖          𝑖 𝑖
                                          =∨ ∨ 𝑃1 1 2 (π‘₯1 , π‘₯4 )𝑃2 1 2 (π‘₯5 )𝑃3 1 2 (π‘₯6 , π‘₯7 ).
                                            𝑖2 𝑖1
   It can be seen from the above example that, when the existence quantifier is applied sequentially to
the variables from the set A (i.e., to the variables common for all the predicates), the general formula
for the original predicate 𝑛𝑛 operations more. Nonetheless, there exist many problems for which the
conditions are defined by the predicate that has such a structure that the complexity of problem solving
with the help of eliminating non-salient variables and finding values of target variables is much lower
than in the general case. There exist also cases where it is possible to simplify a predicate obtained at
an intermediary stage of solving the equation. Let us consider such cases.
   Consider a particular case of the defined task, where the set A consists of one element:
          𝑃 = 𝑃1 (π‘₯1 , . . . , π‘₯π‘˜1 , π‘₯𝑙 )𝑃2 (π‘₯π‘˜1 +1 , . . . , π‘₯π‘˜2 , π‘₯𝑙 ) ∧. . .∧ 𝑃𝑛 (π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› , π‘₯𝑙 ), (8)
where
                          {π‘₯1 , . . . , π‘₯π‘˜1 } ∩ {π‘₯π‘˜1 +1 , . . . , π‘₯π‘˜2 } ∩. . .∩ {π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› } = βˆ….
   Then, as a result of the application of the existence quantifier to the variable π‘₯𝑙 , we obtain the
disjunctions of predicate conjunctions the variables of which do not intersect:
                βˆƒπ‘₯𝑙 (𝑃) =∨ 𝑃1 (π‘₯1 , . . . , π‘₯π‘˜1 , π‘Žπ‘™π‘– ) ∧. . .∧ 𝑃𝑛 (π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› , π‘Žπ‘™π‘– ) =                (9)
                                  𝑙
                                  =∨ 𝑃1𝑖 (π‘₯1 , . . . , π‘₯π‘˜1 ). . . 𝑃𝑛𝑖 (π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› ).
                                      𝑖
   Let us investigate the possibility of minimizing the obtained predicate.
   Statement 1. Let 𝑃 = 𝑃1 (π‘₯1 , . . . , π‘₯π‘˜1 ) ∧. .. ∧ 𝑃𝑛 (π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› ), 𝐺 = 𝐺1 (π‘₯1 , . . . , π‘₯π‘˜1 ) ∧. .. ∧
   𝐺𝑛 (π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› ). The implication
                                                 𝑃←𝐺                                                            (10)
holds if and only if βˆ€π‘– = 1, 𝑛 𝑃𝑖 ← 𝐺𝑖 .
   Proof. Necessity. Let 𝑃𝑖 β†’ 𝐺𝑖 βˆ€π‘– = 1, 𝑛, i.e., 𝐺𝑖 = 𝑃𝑖 ∨ πœ†π‘– . Then 𝐺 =∧ 𝐺𝑖 =∧ (𝑃𝑖 ∨ πœ†π‘– ) =∧ 𝑃𝑖 ∨
                                                                                                   𝑖     𝑖      𝑖
∧ 𝑃𝑖 𝐺𝑗 ∨∧ πœ†π‘– = 𝑃 ∨ 𝛬.
𝑖,𝑗             𝑖
    Hence the implication (10) is true.
    Sufficiency. Let the implication (10) is true. Suppose, βˆƒπ‘˜ ∈ {1. . . 𝑛} such that π‘ƒπ‘˜ β†’ πΊπ‘˜ . Then, if the
predicate π‘ƒπ‘˜ contains such an elementary conjunction πΆπ‘˜ that it is not present in the predicate πΊπ‘˜ , since
the domains for the predicates do not intersect, the predicate 𝐺 will not contain πΆπ‘˜ as well, whereas it
is present in the predicate 𝑃. In this case the implication (10) is false, which contradicts the premise.
    Consequence. Let the predicate 𝑃 satisfies the condition (8), i.e., the application of the operator
                                                                 𝑖      𝑖
βˆƒπ‘₯𝑙 (𝑃) is defined by the formula (9). Then, if βˆ€π‘˜ = 1, 𝑛 π‘ƒπ‘˜1 β†’ π‘ƒπ‘˜2 , the addend 𝑖2 is simplified and
formula (9) is minimized.
    Statement 2. Let π‘ƒπ‘ž = π‘Žπ‘™π‘ž (𝑃), 𝑃𝑔 = π‘Žπ‘™π‘” (𝑃). The implication
                                               π‘ƒπ‘ž β†’ 𝑃𝑔                                               (11)
is true for the predicate 𝑃 one of the following conditions holds:
    π‘Žπ‘™π‘ž is a shifting operator, and π‘Žπ‘™π‘” is a spreading operator;
    π‘Žπ‘™π‘ž is a limiting operator, and π‘Žπ‘™π‘” is a spreading operator;
    π‘Žπ‘™π‘ž is a limiting operator, and π‘Žπ‘™π‘” is a shifting operator.
    Proof. Necessity. Suppose the implication (11) is true. Suppose π‘Žπ‘™π‘ž is a spreading operator, and π‘Žπ‘™π‘”
is a limiting operator. Then π‘Žπ‘™π‘ž (𝑃) β†’ 𝑃, 𝑃 β†’ π‘Žπ‘™π‘” (P), which contradicts condition (11). Suppose that
π‘Žπ‘™π‘ž is a spreading operator, and π‘Žπ‘™π‘” is a shifting one. Since the substitution operators π‘Žπ‘™π‘ž and π‘Žπ‘™π‘” are
                                                                                                 π‘Ž
applied to the same variable π‘₯𝑙 , the predicate 𝑃 contains addends of the form π‘₯𝑙 π‘™π‘ž 𝐴𝑖 and
  π‘Žπ‘™π‘”
        𝑗
π‘₯𝑙          , where ∨ 𝐡𝑗 β†’βˆ¨ 𝐴𝑖 . Then π‘Žπ‘™π‘ž (𝑃) =∨ 𝐴𝑖 ∨ 𝐢; π‘Žπ‘™π‘” (𝑃) =∨ 𝐡𝑗 ∨ 𝐢, where 𝐢 does not depend on the
                    𝑗      𝑖                              𝑖                         𝑗
variable π‘₯𝑙 . Hence, 𝑃𝑔 β†’ π‘ƒπ‘ž , which contradicts the premise.
   Suppose π‘Žπ‘™π‘ž and π‘Žπ‘™π‘” are shifting operators. Then the analogous considerations demonstrate the fact
that 𝐴𝑖 and 𝐡𝑗 are different and the condition (11) does not hold.
   Let π‘Žπ‘™π‘ž is a shifting operator, and π‘Žπ‘™π‘” is a limiting operator. Then in elementary conjunctions
                            π‘Ž
containing the predicate π‘₯𝑙 𝑙𝑔 , are not present in the disjunctive normal form for the predicate P, and the
predicate 𝑃 can be presented as follows:
                                                   π‘Ž
                                           𝑃 =∨ π‘₯𝑙 π‘™π‘ž π΄π‘š ∨ 𝐡𝑙 ∨ 𝐢,
                                              π‘š            𝑙
                                                                      π‘Ž         π‘Ž
where 𝐡𝑙 contains the "recognition" of the variable π‘₯𝑙 , besides π‘₯𝑙 𝑙𝑔 and π‘₯𝑙 π‘™π‘ž , and 𝐢 does not contain
"recognitions" of this variable. Then π‘Žπ‘™π‘ž (𝑃) =∨ π΄π‘š ∨ 𝐢, π‘Žπ‘™π‘” (𝑃) = 𝐢 and π‘Žπ‘™π‘” (𝑃) β†’ π‘Žπ‘™π‘ž (𝑃), which
                                                    π‘š
contradicts the premise.
   If both operators are limiting or spreading ones, their application to the predicate 𝑃 is the same.
   Sufficiency. Follows from the first part of the proof.
                                  π‘Ž    π‘Ž     π‘Ž       π‘Ž     π‘Ž   π‘Ž           π‘Ž     π‘Ž    π‘Ž
   Example.       Let     𝑃 = π‘₯1 11 π‘₯2 21 π‘₯3 31 ∨ π‘₯1 12 π‘₯2 21 π‘₯3 33 ∨    π‘₯1 12 π‘₯2 22 π‘₯3 33 .   Then  π‘Ž21 (𝑃) =
     π‘Ž11 π‘Ž31      π‘Ž12 π‘Ž33                                                                    π‘Ž12 π‘Ž33
= π‘₯1 π‘₯3 ∨ π‘₯1 π‘₯3 is a spreading substitution operator, and π‘Ž22 (𝑃) = π‘₯1 π‘₯3 is a shifting
operator and
                                                  π‘Ž21 (𝑃) β†’ π‘Ž22 (𝑃).
               π‘Ž    π‘Ž    π‘Ž        π‘Ž    π‘Ž     π‘Ž       π‘Ž                         π‘Ž
   Let 𝑃 = π‘₯1 12 π‘₯2 21 π‘₯3 33 ∨ π‘₯1 12 π‘₯2 22 π‘₯3 33 ∨ π‘₯3 31 . Then π‘Ž11 (𝑃) = π‘₯3 31 is a limiting operator, and
            π‘Ž    π‘Ž       π‘Ž     π‘Ž       π‘Ž
π‘Ž12 (𝑃) = π‘₯1 12 π‘₯3 33 ∨ π‘₯2 22 π‘₯3 33 ∨ π‘₯3 31 is a shifting one, at that, π‘Ž11 (𝑃) β†’ π‘Ž12 (𝑃).
               π‘Ž11     π‘Ž12 π‘Ž22 π‘Ž31        π‘Ž     π‘Ž    π‘Ž                         π‘Ž
   Let 𝑃 = π‘₯1 ∨ π‘₯1 π‘₯2 π‘₯3 ∨ π‘₯1 12 π‘₯2 22 π‘₯3 33 . Then π‘Ž32 (𝑃) = π‘₯1 11 is a limiting operator, and
             π‘Ž       π‘Ž   π‘Ž
π‘Ž31 (𝑃) = π‘₯1 11 ∨ π‘₯1 12 π‘₯2 22 is a spreading operator and π‘Ž32 (𝑃) β†’ π‘Ž31 (𝑃).

5. A method of feature elimination from predicates represented in the
   disjunctive and conjunctive normal forms.
    Let us consider some types of predicate equations whose structure allows us to substantially simplify
the process of variable elimination.
    Suppose we have a model represented in the form of systems of logic equations that are written in
the disjunctive normal form where all conjunctions of different elements on the left side are equal to
zero. Then, by transforming the system to a single equation ((5)-(7)), we obtain an equation in the
disjunctive normal form. By denoting 𝐺𝑖𝑗 𝑖 th disjunction in the equation corresponding to the description
of 𝑗th object in the subject field, the following equation is obtained:
                                              𝑃 = ∨ 𝐺𝑖𝑗 .                                           (12)
                                                  𝑖,𝑗
   Then βˆƒπ‘₯𝑙 (𝑃) = ∨ (𝐺𝑖𝑗 ). The application of the quantifier βˆƒπ‘₯𝑙 (𝐺𝑖𝑗 ) does not change 𝐺𝑖𝑗 , if 𝐺𝑖𝑗 des
                    𝑖,𝑗
not contain the variable π‘₯𝑙 . Thus, the application of the quantifier in this case is equivalent to eliminating
the recognition of the given variable from the elementary conjunction. It follows from the described
properties that in the case of disjunctive normal form eliminating variables from equation (7) by the
application of the existence quantifier simplifies the given equation, since the number of recognitions
(elementary predicates with one variable that are equal to 1 if and only if the value of the variable is the
same as the given element) does not increase (very often decreases).
    Let a model be represented in the conjunctive normal forms in which every elementary disjunction
is a unary predicate. Suppose also that property (6) holds. In this case this condition means that for any
two conjunctive normal forms on the right side of the equations the following statement is true: we can
find two elementary disjunctions from different conjunctive normal forms the multiplication of which
is zero. Then for solving linguistic equation of this type it is possible to apply the existence quantifier
to the intermediary variables to eliminate them. After transforming the given system of equations to a
single logic equation we obtain an expression that is written as the disjunction of conjunctive normal
forms containing elementary conjunctions represented by unary predicates, which substantially
simplifies the process of eliminating the non-salient variables.
    Let us denote elementary disjunctions in the form of unary predicates as 𝐷𝑖𝑗 (𝑗 = 1, π‘˜). The
application of the existence quantifier to the disjunction of the conjunctive normal forms means the
application of the quantifier to this variable in every conjunctive normal form  i , for which the
following formula is true:
                                                  𝛷𝑖 = β‹€π‘˜π‘–=1 𝐷𝑖𝑗 .
    Every disjunctive normal form 𝐷𝑖𝑗 contains the disjunction of a certain number of recognition
predicates for π‘₯𝑗 . Taking into consideration the above notation, it is possible to write down the following
equation:
           βˆƒπ‘₯𝑗 𝛷𝑖 = 𝐷𝑖1 𝐷𝑖2 . . . 𝐷𝑖(π‘—βˆ’1) (βˆƒπ‘₯𝑗 𝐷𝑖𝑗 )𝐷𝑖(𝑗+1) . . . π·π‘–π‘˜ ≑ 𝐷𝑖1 𝐷𝑖2 . . . 𝐷𝑖(π‘—βˆ’1) 𝐷𝑖(𝑗+1) . . . π·π‘–π‘˜ ,
where 𝑖 = 1, 𝑇, 𝑇 is the cardinality of the subject field. If the conjunctive normal form 𝛷𝑖 does not
contain some variable π‘₯𝑐 , the application of the existence quantifier does not change 𝛷𝑖 .
    Thus, the application of the existence quantifier to the intermediary variables does not lead to any
increase in the number of recognitions. In some cases, eliminating variable with the help of the
quantifier does not change the original formula. Nevertheless, as a rule, the application of the described
method leads to a substantial decrease in the number of formula terms (recognitions). Hence, the using
of the quantifier in the considered cases does not complicate the original model.
    Let us represent a generalized method for solving systems of linguistic equations with target
variables and initial conditions.
    1. Check if the conjunctions of any 2 predicates on the right sides of equations are zeros.
    2. Represent the original system in the form of a single equation.
    3. Substitute the initial values of selected variables in the obtained equation.
    4. Eliminate all variables except for the target ones by the application of the existence quantifier.
    5. The ordered sets of values for the target variables that satisfy the equation obtained at the previous
    stage is the solution for this problem.
    Let us consider an example of solving a system of linguistic equations the right sides of which are
disjunctive normal forms. Consider the following system of logic equations:
                                     π‘Ž     π‘Ž   π‘Ž       π‘Ž      π‘Ž     π‘Ž      π‘Ž      π‘Ž
                           𝑦 𝐴 = π‘₯1 11 π‘₯2 21 π‘₯3 32 ∨ π‘₯1 12 π‘₯2 21 π‘₯3 33 ∨ π‘₯1 13 π‘₯2 23 ,
                                          π‘Ž       π‘Ž           π‘Ž   π‘Ž
                         {𝑦 𝐡 = π‘₯1 11 π‘₯2 22 ∨ π‘₯2 21 π‘₯3 31 ,                                               (13)
                                 π‘Ž          π‘Ž       π‘Ž      π‘Ž    π‘Ž
                          𝑦 𝐢 = π‘₯1 11 π‘₯221 π‘₯3 32 ∨ π‘₯1 12 π‘₯2 21 π‘₯3 32 .

where 𝑦 = {𝐴, 𝐡, 𝐢}, π‘₯1 ∈ {π‘Ž11 , π‘Ž12 , π‘Ž13 }, π‘₯2 ∈ {π‘Ž21 , π‘Ž22 , π‘Ž23 }, π‘₯3 ∈ {π‘Ž31 , π‘Ž32 , π‘Ž33 }.
    It is required for the initial condition π‘₯2 = π‘Ž21 to find values of the target feature π‘₯1 .
    Let us solve the problem step by step in accordance with the algorithm.
    1. Check the fact that the paired conjunctions of the right sides of equations are zeros.
           π‘Ž    π‘Ž     π‘Ž        π‘Ž     π‘Ž            π‘Ž     π‘Ž    π‘Ž       π‘Ž     π‘Ž            π‘Ž    π‘Ž      π‘Ž    π‘Ž
         π‘₯1 11 π‘₯2 21 π‘₯3 32 ∧ π‘₯1 11 π‘₯2 22 = 0, π‘₯1 12 π‘₯2 21 π‘₯3 33 ∧ π‘₯1 11 π‘₯2 22 = 0, π‘₯1 13 π‘₯2 23 ∧ π‘₯1 11 π‘₯2 22 = 0,
           π‘Ž    π‘Ž     π‘Ž        π‘Ž     π‘Ž            π‘Ž     π‘Ž    π‘Ž       π‘Ž     π‘Ž            π‘Ž    π‘Ž      π‘Ž    π‘Ž
         π‘₯1 11 π‘₯2 21 π‘₯3 32 ∧ π‘₯2 21 π‘₯3 31 = 0, π‘₯1 12 π‘₯2 21 π‘₯3 33 ∧ π‘₯2 21 π‘₯3 31 = 0, π‘₯1 13 π‘₯2 23 ∧ π‘₯2 21 π‘₯3 31 = 0.
    Hence, the conjunction of the right sides of the second equation is zero.
    Further,
                             π‘Ž    π‘Ž        π‘Ž         π‘Ž           π‘Ž     π‘Ž       π‘Ž          π‘Ž
                           π‘₯1 11 π‘₯2 22 ∧ π‘₯1 11 π‘₯221 π‘₯3 32 = 0, π‘₯2 21 π‘₯3 31 ∧ π‘₯1 11 π‘₯221 π‘₯3 32 = 0,
                            π‘Ž11 π‘Ž22       π‘Ž12 π‘Ž21 π‘Ž32            π‘Ž21 π‘Ž31       π‘Ž12 π‘Ž21 π‘Ž32
                          π‘₯1 π‘₯2 ∧ π‘₯1 π‘₯2 π‘₯3 = 0, π‘₯2 π‘₯3 ∧ π‘₯1 π‘₯2 π‘₯3 = 0.
i.e., the conjunction of the right sides of the second and third equations is zero. By analogy, the
conjunction of the right sides of the first and third equations is zero.
    2. Let us represent the system (13) in the form of a single equation:
                       π‘Ž     π‘Ž    π‘Ž        π‘Ž     π‘Ž    π‘Ž        π‘Ž    π‘Ž                  π‘Ž    π‘Ž      π‘Ž    π‘Ž
             𝑦 𝐴 ∧ (π‘₯1 11 π‘₯2 21 π‘₯3 32 ∨ π‘₯1 12 π‘₯2 21 π‘₯3 33 ∨ π‘₯1 13 π‘₯2 23 ) ∨ 𝑦 𝐡 ∧ (π‘₯1 11 π‘₯2 22 ∨ π‘₯2 21 π‘₯3 31 ) ∨
                                                 π‘Ž         π‘Ž       π‘Ž     π‘Ž    π‘Ž
                                     ∨ 𝑦 𝐢 ∧ (π‘₯1 11 π‘₯221 π‘₯3 32 ∨ π‘₯1 12 π‘₯2 21 π‘₯3 32 ) = 1.
    3. Substitute the initial value of the variable π‘₯2 = π‘Ž21 in the obtained equation to get the following:
                         π‘Ž     π‘Ž       π‘Ž     π‘Ž                 π‘Ž                 π‘Ž     π‘Ž       π‘Ž   π‘Ž
               𝑦 𝐴 ∧ (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 33 ) ∨ 𝑦 𝐡 ∧ (π‘₯3 31 ) ∨ 𝑦 𝐢 ∧ (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 32 ) = 1
    4. Use the quantifiers for a sequential elimination of the variables 𝑦 and π‘₯3 from the last equation:
                             π‘Ž    π‘Ž        π‘Ž    π‘Ž                 π‘Ž                  π‘Ž    π‘Ž      π‘Ž    π‘Ž
             βˆƒπ‘¦ (𝑦 𝐴 ∧ (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 33 ) ∨ 𝑦 𝐡 ∧ (π‘₯3 31 ) ∨ 𝑦 𝐢 ∧ (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 32 )) =
                          π‘Ž       π‘Ž           π‘Ž       π‘Ž           π‘Ž       π‘Ž       π‘Ž       π‘Ž       π‘Ž
                    = (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 33 ) ∨ (π‘₯3 31 ) ∨ (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 32 ) = 1.
   Further,
                              π‘Ž       π‘Ž           π‘Ž       π‘Ž           π‘Ž       π‘Ž       π‘Ž       π‘Ž       π‘Ž
                   βˆƒπ‘₯3 (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 33 ) ∨ (π‘₯3 31 ) ∨ (π‘₯1 11 π‘₯3 32 ∨ π‘₯1 12 π‘₯3 32 ) =
                                     π‘Ž        π‘Ž                π‘Ž      π‘Ž
                               = (π‘₯1 11 ∨ π‘₯1 12 ) ∨ 1 ∨ (π‘₯1 11 ∨ π‘₯1 12 ) = 1.
   We will get the identity 1 = 1. This means that for the given initial condition the feature π‘₯1 can take
on any value from its domain.
   Consider an example of solving a system of linguistic equations the right sides of which are
conjunctive normal forms. Suppose we have the following system of equations:
                                   π‘Ž       π‘Ž       π‘Ž       π‘Ž      π‘Ž
                           𝑦 𝐴 = (π‘₯1 11 ∨ π‘₯1 12 )(π‘₯2 21 ∨ π‘₯2 23 )π‘₯3 31 ,                 (14)
                                    π‘Ž       π‘Ž      π‘Ž       π‘Ž      π‘Ž
                         { 𝑦 𝐡 = (π‘₯1 11 ∨ π‘₯1 13 )(π‘₯2 21 ∨ π‘₯2 22 )π‘₯3 32 ,
                                                        π‘Ž     π‘Ž
                                               𝑦 𝐢 = π‘₯1 13 π‘₯2 23 .
where
              𝑦 = {𝐴, 𝐡, 𝐢}, π‘₯1 ∈ {π‘Ž11 , π‘Ž12 , π‘Ž13 }, π‘₯2 ∈ {π‘Ž21 , π‘Ž22 , π‘Ž23 }, π‘₯3 ∈ {π‘Ž31 , π‘Ž32 , π‘Ž33 }.
   It is required for the initial condition π‘₯3 = π‘Ž31 to find values of the target feature π‘₯2 .
   Solving the defined problem will be carried out in accordance with the suggested algorithm:
   1. Check the fact that the paired conjunctions of the right sides of the equations (14) are zeros. The
                                                                                                                         π‘Ž
   conjunction of the right-hand sides of the first and second equations is equal to zero, since π‘₯3 31 ∧
        π‘Ž
   ∧ π‘₯3 32 = 0. The conjunction of the first and third sides of the equations is zero, since
       π‘Ž      π‘Ž      π‘Ž
   (π‘₯1 11 ∨ π‘₯1 12 )π‘₯1 13 = 0. Finally, the conjunction of the right sides of the second and third equations
                      π‘Ž         π‘Ž      π‘Ž
   is zero, since (π‘₯2 21 ∨ π‘₯2 22 )π‘₯2 23 = 0.
   2. Let us represent the system (14) in the form of a single equation:
              π‘Ž       π‘Ž       π‘Ž        π‘Ž     π‘Ž              π‘Ž       π‘Ž       π‘Ž       π‘Ž       π‘Ž            π‘Ž      π‘Ž
      𝑦 𝐴 ∧ (π‘₯1 11 ∨ π‘₯1 12 )(π‘₯2 21 ∨ π‘₯2 23 )π‘₯3 31 ∨ 𝑦 𝐡 ∧ (π‘₯1 11 ∨ π‘₯1 13 )(π‘₯2 21 ∨ π‘₯2 22 )π‘₯3 32 ∨ 𝑦 𝐢 ∧ π‘₯1 13 π‘₯2 23 = 1.
   3. Substitute in the resulting equation the initial value of the variable π‘₯3 = π‘Ž31 . We get the following
   result:
                                         π‘Ž        π‘Ž       π‘Ž       π‘Ž              π‘Ž    π‘Ž
                                  𝑦 𝐴 (π‘₯1 11 ∨ π‘₯1 12 )(π‘₯2 21 ∨ π‘₯2 23 ) ∨ 𝑦 𝐢 π‘₯1 13 π‘₯2 23 = 1.
   4. Use the existence quantifiers for a sequential elimination of the variables 𝑦 and π‘₯1 from the last
   equation:
              π‘Ž        π‘Ž        π‘Ž        π‘Ž             π‘Ž    π‘Ž            π‘Ž        π‘Ž        π‘Ž        π‘Ž          π‘Ž    π‘Ž
   βˆƒπ‘¦(𝑦 𝐴 (π‘₯1 11 ∨ π‘₯1 12 )(π‘₯2 21 ∨ π‘₯2 23 ) ∨ 𝑦 𝐢 π‘₯1 13 π‘₯2 23 ) = (π‘₯1 11 ∨ π‘₯1 12 )(π‘₯2 21 ∨ π‘₯2 23 ) ∨ π‘₯1 13 π‘₯2 23 = 1,
                         π‘Ž         π‘Ž       π‘Ž        π‘Ž         π‘Ž    π‘Ž           π‘Ž        π‘Ž         π‘Ž
                 βˆƒπ‘₯1 (π‘₯1 11 ∨ π‘₯1 12 )(π‘₯2 21 ∨ π‘₯2 23 ) ∨ π‘₯1 13 π‘₯2 23 = (π‘₯2 21 ∨ π‘₯2 23 ) ∨ π‘₯2 23 = 1.
   The application of the Boolean identity π‘Ž ∨ π‘Ž = π‘Ž gives us the possibility to obtain the following
equation:
                                                 π‘Ž       π‘Ž
                                               π‘₯2 21 ∨ π‘₯2 23 = 1.                                                      (15)
   From (15) π‘₯2 can be found directly: π‘₯2 ∈ {π‘Ž21 , π‘Ž23 }.

6. A method for feature elimination from splitable predicates
    Consider a class of problems that can be described with the help of logic equations having a more
complicated structure.
    The book [3] has considered a task related to mathematical description of the Russian language
morphology, and a general approach to solving this problem has been described. This approach is
illustrated on the example of a mathematical description of noun declensions. In Ukrainian, the models
will be similar as far as mathematical formulae are concerned, although they will differ substantially
from the described ones in the sense of dependences between semantic features, and this matter should
be carefully investigated as a very prospective research field. In the English language, we do not observe
such a variety of syntactic features, but they are often replaced with special word collocations and a
variety of particles that completely change the sense of a verb. This is a great field for further research.
    For an unambiguous definition of the first letter in an ending for the main forms of words for the
substantive declension (the first letter can take on one of the letters {Π°, Π΅, Ρ‘, ΠΈ, ΠΎ, Ρƒ, Ρ‹, ю, я, _} a complete
and nonreducible set of features has been determined:π‘₯1 is the case with the values ΠΈ, Ρ€, Π΄, Π², Ρ‚, ΠΏ
(nominative,…,prepositional); π‘₯2 is the gender with the values ΠΌ, ΠΆ, с; π‘₯3 is the number (plural or
singular) Π΅ and ΠΌ; π‘₯4 is the feature of animacy with the values ΠΎ and Π½, π‘₯5 is the feature of stress with
the values Ρƒ and Π±, π‘₯6 is the sign with the values с and Π½, π‘₯7 is the last letter of the basis for the word
form with the values Π±, Π², Π³, Π΄, Π΅, ΠΆ, Π·, ΠΈ, ΠΉ, ΠΊ, Π», ΠΌ, Π½, ΠΎ, ΠΏ, Ρ€, с, Ρ‚, Ρƒ, Ρ„, Ρ…, Ρ†, Ρ‡, ш, Ρ‰, Ρ‹, ю, я; π‘₯8 is
the type of the basis of the word form with the values Ρ‚ is hard, ΠΌ is soft.
    Thus, the problem definition should describe links between the linguistic variables as follows:
                                          𝐿(π‘₯1 , π‘₯2 , . . . , π‘₯8 , 𝑦1 ) = 1.
    The first ending letter 𝑦1 and 8 semantic features π‘₯1 , π‘₯2 , . . . , π‘₯8 are interconnected with the help of
the finite predicate. Since this set of features is complete, the given equation defines the following
function:
                                           𝑦1𝜎 = 𝐹𝜎 (π‘₯1 , π‘₯2 , . . . , π‘₯8 ).                                     (16)
    The predicate 𝐹𝜎 is written in the form of finite algebra formulae and defines recognitions of the
variable 𝑦1 from the set {Π°, Π΅, Ρ‘, ΠΈ, ΠΎ, Ρƒ, Ρ‹, ю, я, _}.
    Let us illustrate the general task using the described example. An ending starts from the letter я in
word forms with a soft basis. The form should end in Π±, Π², Π΄, ΠΆ, Π», ΠΌ, Π½, ΠΏ, Ρ€, с , Ρ‚, Ρ„, having the basis
ending in Π°, Π΅, ΠΈ, ΠΉ, ΠΎ, Ρƒ, Ρ‹, ю, я, 1) for the singular a) for the feminine nominative case, b) for the
genitive case with the masculine and neuter, and animality, 2) for the plural a) in the nominative and
accusative case with inanimation and neuter gender, b) in the dative, instrumental and prepositional
cases. These rules can be written with the help of finite algebra equations as follows:
                           𝑦1я = (π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨
                                        Ρ€                    Ρ„
                           ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨
                                 Ρƒ                                                Ρ€
                           ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ π‘₯3Π΅ (π‘₯1ΠΈ π‘₯2ΠΆ ∨ π‘₯1 (π‘₯2ΠΌ ∨ π‘₯2с ) ∨
                                                                                Π΄
                           ∨ π‘₯1 π‘₯2 π‘₯4 ) ∨ π‘₯3 ((π‘₯1 ∨ π‘₯1 π‘₯4 )π‘₯2 ∨ π‘₯1 ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ )).
                                 в м о           м    и        в н с

    From the given example and the way the equations are built we can track the following structure of
the model: each addend of the given predicate consists of multipliers whose domains do not intersect.
At that each multiplier is represented either in the disjunctive normal form or has the same structure as
the entire predicate. Thus, it can be split into addends that, in their turn, consist of similar multipliers
with the domains that do not intersect. Mathematically, we can represent the predicate 𝐹𝜎 in the
following form:
                                             𝐹𝜎 = 𝐴1 ∨ 𝐴2 ∨. . .∨ 𝐴𝑛 ,                                           (17)
where each 𝐴𝑖 , 𝑖 = 1, 𝑛 can be represented as follows:
               𝐴𝑖 = 𝐴1𝑖 (π‘₯1 , . . . , π‘₯π‘˜1 ) ∧ 𝐴2𝑖 (π‘₯π‘˜1 +1 , . . . , π‘₯π‘˜2 ) ∧. . .∧ 𝐴𝑙𝑖 (π‘₯π‘˜π‘™βˆ’1 +1 , . . . , π‘₯π‘˜π‘™ ). (18)
                      𝑗
   The predicates 𝐴𝑖 , 𝑖 = 1, 𝑛, 𝑗 = 1, 𝑙 are written in the disjunctive normal form or can be represented
with the help of formulae (17), (18). We call such predicates splitable.
   In the paper [4] we consider quite a large class of predicates for which it is possible to find an
effective algorithm of eliminating variables without any increase in the size of the original formula. In
paper [4] the following properties of the existence quantifier have been considered:
   1. βˆƒπ‘₯π‘₯ π‘Ž = 1.
   2. βˆƒπ‘₯(𝑃(π‘₯) ∨ 𝑄(π‘₯)) = βˆƒπ‘₯𝑃(π‘₯) ∨ βˆƒπ‘₯𝑄(π‘₯).
   3. βˆƒπ‘₯(𝑃(π‘₯) ∧ 𝑄(𝑦) = βˆƒπ‘₯𝑃(π‘₯) ∧ 𝑄(𝑦).
   4. βˆƒπ‘¦(𝑃(π‘₯) β†’ 𝑄(𝑦)) = 𝑃(π‘₯) β†’ βˆƒπ‘¦π‘„(𝑦).
   5. βˆƒπ‘¦(𝑃(π‘₯) β†’ 𝑄(𝑦)) = 𝑃(π‘₯) β†’ βˆƒπ‘¦π‘„(𝑦).
   Suppose 𝑃𝑖 (π‘₯) ∧ 𝑃𝑗 (π‘₯) = 0, 𝑖 β‰  𝑗, 𝑖, 𝑗 = 1,2, … , π‘˜,
then
                 βˆƒπ‘¦ ((𝑃1 (π‘₯) β†’ 𝑄1 (𝑦)) ∧ (𝑃2 (π‘₯) β†’ 𝑄2 (𝑦)) ∧ … ∧ (π‘ƒπ‘˜ (π‘₯) β†’ π‘„π‘˜ (𝑦))) =
                = (𝑃1 (π‘₯) β†’ βˆƒπ‘¦π‘„1 (𝑦)) ∧ (𝑃2 (π‘₯) β†’ βˆƒπ‘¦π‘„2 (𝑦)) ∧. . .∧ (π‘ƒπ‘˜ (π‘₯) β†’ βˆƒπ‘¦π‘„π‘˜ (𝑦)).
   6. If the identity 𝑃𝑖 (π‘₯) ≑ 0 does not hold for any 𝑖 = 1,2, … , π‘˜ and 𝑃𝑖 (π‘₯) ∧ 𝑃𝑗 (π‘₯) = 0 for
   𝑖 β‰  𝑗, 𝑖, 𝑗 = 1,2, . . . , π‘˜, then:
   βˆƒπ‘₯((𝑃1 (π‘₯) β†’ 𝑄1 (𝑦)) ∧ (𝑃2 (π‘₯) β†’ 𝑄2 (𝑦)) ∧. . .∧ (π‘ƒπ‘˜ (π‘₯) β†’ π‘„π‘˜ (𝑦))) = 𝑄1 (𝑦) ∨ 𝑄2 (𝑦) ∨. . .∨ π‘„π‘˜ (𝑦).
   The above properties allow formulating rules for building a class π›₯π‘₯ of finite predicates defined on
the set of variables {π‘₯, 𝑦, . . . , 𝑧}. The subset π›₯π‘₯ of the set 𝛴 is defined as follows:
   1. All recognitions π‘₯ π‘Ž , π‘₯ 𝑏 , . . . , π‘₯ 𝑐 , (π‘Ž, 𝑏, . . . , 𝑐 are symbols from the domain for the variable π‘₯)
   belong to π›₯π‘₯ .
   2. All predicates that do not depend on the variable π‘₯ belong to π›₯π‘₯ .
   3. If the predicates 𝑃1 and 𝑃2 belong to π›₯π‘₯ , the predicate 𝑃 = 𝑃1 ∨ 𝑃2 belongs to π›₯π‘₯ .
   4. If the predicate 𝑃1 belongs to π›₯π‘₯ , and the predicate 𝑃2 does not depend on π‘₯, then the predicate
   𝑃 = 𝑃1 ∧ 𝑃2 belongs to π›₯π‘₯ .
    5. If the predicate 𝑃1 does not depend on π‘₯, and the predicate 𝑃2 belongs to π›₯π‘₯ , then the predicate
    𝑃 = 𝑃1 β†’ 𝑃2 belongs to π›₯π‘₯ .
    6. Suppose the predicates 𝑃1 , 𝑃2 , . . . , π‘ƒπ‘˜ do not depend on π‘₯; 𝑃𝑖 ∧ 𝑃𝑗 = 0 for 𝑖 β‰  𝑗, 𝑖, 𝑗 = 1,2, . . . , π‘˜,
    the predicates 𝑄1 , 𝑄2 , . . . , π‘„π‘˜ belong to π›₯π‘₯ ; then 𝑃 = (𝑃1 β†’ 𝑄1 ) ∧ (𝑃2 β†’ 𝑄2 ) ∧. . .∧ (π‘ƒπ‘˜ β†’ π‘„π‘˜ )
    belongs to π›₯π‘₯ .
    7. If the predicates 𝑃1 , 𝑃2 , . . . , π‘ƒπ‘˜ depend only on π‘₯; 𝑃𝑖 ∧ 𝑃𝑗 = 0 for 𝑖 β‰  𝑗, 𝑖, 𝑗 = 1,2, . . . , π‘˜; for any
    𝑖 = 1,2, . . . , π‘˜ the identity 𝑃𝑖 ≑ 0 is not true; the predicates 𝑄1 , 𝑄2 , . . . , π‘„π‘˜ do not depend on π‘₯; then
    the predicate 𝑃 = (𝑃1 β†’ 𝑄1 ) ∧ (𝑃2 β†’ 𝑄2 ) ∧. . .∧ (π‘ƒπ‘˜ β†’ π‘„π‘˜ ) belongs to π›₯π‘₯ .
    Eliminating features with the help of the existence quantifier gives us all ordered sets of possible
feature values for which there exists at least one allowable set of values of the other features. If we wish
to obtain sets of values of the target features that satisfy the equation irrespectively of which values we
have for the other features, the variables should be eliminated with the help of the universal quantifier.
    The property of predicates to be splitable simplifies significantly the procedure of eliminating
variables. When applying this procedure, we will use the following properties of the existence
quantifier:
    1. Addictiveness property:
    βˆƒπ‘₯𝑖 (𝐴1 ∨ 𝐴2 ∨. . .∨ π΄π‘˜ ) = βˆƒπ‘₯𝑖 𝐴1 ∨ βˆƒπ‘₯𝑖 𝐴2 ∨. . .∨ βˆƒπ‘₯𝑖 π΄π‘˜ ;
    2. The application of the existence quantifier to the conjunction of predicates when only one
    predicate depends on the variable to be eliminated is identical to the application of this quantifier to
    the given predicate, whereas the other predicates do not change:
            βˆƒπ‘₯𝑖 (𝐴1 (π‘₯1 , . . . , π‘₯π‘˜1 ) ∧. . .∧ 𝐴𝑙 (π‘₯π‘˜π‘™βˆ’1 +1 , . . . π‘₯𝑖 , . . . , π‘₯π‘˜π‘™ ) ∧. . .∧ 𝐴𝑛 (π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› )) =
              = (𝐴1 (π‘₯1 , . . . , π‘₯π‘˜1 ) ∧. . .∧ 𝐴𝑛 (π‘₯π‘˜π‘›βˆ’1 +1 , . . . , π‘₯π‘˜π‘› )) ∧ βˆƒπ‘₯𝑖 𝐴𝑙 (π‘₯π‘˜π‘™βˆ’1 +1 , . . . π‘₯𝑖 , . . . , π‘₯π‘˜π‘™ ).
    Thus, owing to the described structure of splitable predicates and the above properties of the
existence quantifier, the method of eliminating variables is significantly simplified and can be split into
the following steps:
    Step 1. Split the original predicate into addends.
    Step 2. Split the obtained addends into multipliers.
    Step 3. Select the multiplier that depends on the variable to be eliminated.
    Step 4. If this multiplier is a disjunctive normal form, eliminate the variable from it. This process
can be split into the following steps:
    a) find the recognition of this variable in every elementary conjunction;
    b) if the elementary conjunction consists of a single recognition of the given variable, then the entire
    disjunctive normal form is replaced with 1;
    c) if not, replace this recognition predicate with 1, which is identical to eliminating it from the
    formula.
    Step 5. If the addend is represented not in the disjunctive normal form but has a complex structure,
then perform all actions starting from step 1.
    Let us illustrate how the method works on the above example.
    Let
                                                                             Ρ€                    Ρ„
  𝑃 = (π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨
                Ρƒ                                            Ρ€
            ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ π‘₯3Π΅ (π‘₯1ΠΈ π‘₯2ΠΆ ∨ π‘₯1 (π‘₯2ΠΌ ∨ π‘₯2с ) ∨ π‘₯1Π² π‘₯2ΠΌ π‘₯4ΠΎ ) ∨ π‘₯3ΠΌ ((π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )π‘₯2с ∨
                                                       ∨ π‘₯1Π΄ ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ )).
    Find βˆƒπ‘₯2 (𝑃).
    a) select in the predicate 𝑃 all the addends (in this example there is a single addend)
                                                                       Ρ€                        Ρ„
      (π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨
      Ρƒ                                             Ρ€
  ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ π‘₯3Π΅ (π‘₯1ΠΈ π‘₯2ΠΆ ∨ π‘₯1 (π‘₯2ΠΌ ∨ π‘₯2с ) ∨ π‘₯1Π² π‘₯2ΠΌ π‘₯4ΠΎ ) ∨ π‘₯3ΠΌ ((π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )π‘₯2с ∨ π‘₯1Π΄ ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ )).
    b) select multipliers in the obtained addend:
                                                                                             Ρ€                Ρ„
                       (π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨
                                                                                 Ρƒ
                                    ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я )
                                    Ρ€
                 (π‘₯3Π΅ (π‘₯1ΠΈ π‘₯2ΠΆ ∨ π‘₯1 (π‘₯2ΠΌ ∨ π‘₯2с ) ∨ π‘₯1Π² π‘₯2ΠΌ π‘₯4ΠΎ ) ∨ π‘₯3ΠΌ ((π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )π‘₯2с ∨ π‘₯1Π΄ ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ )).
    c) it is obvious that only the second multiplier depends on π‘₯2 . It has a complex structure, therefore
    we should split it into addends:
                                                Ρ€
                                     π‘₯3Π΅ (π‘₯1ΠΈ π‘₯2ΠΆ ∨ π‘₯1 (π‘₯2ΠΌ ∨ π‘₯2с ) ∨ π‘₯1Π² π‘₯2ΠΌ π‘₯4ΠΎ )
                                     π‘₯3ΠΌ ((π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )π‘₯2с ∨ π‘₯1Π΄ ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ )
   d) split every addend into multipliers:
   β€’ π‘₯3Π΅ ;
                    Ρ€
   β€’ (π‘₯1ΠΈ π‘₯2ΠΆ ∨ π‘₯1 (π‘₯2ΠΌ ∨ π‘₯2с ) ∨ π‘₯1Π² π‘₯2ΠΌ π‘₯4ΠΎ );
   β€’ π‘₯3ΠΌ ;
   β€’ ((π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )π‘₯2с ∨ π‘₯1Π΄ ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ ).
   e) the first and third multipliers do not depend on π‘₯2 . Split the rest into addends to get:
   β€’ π‘₯1ΠΈ π‘₯2ΠΆ ;
          Ρ€
   β€’ π‘₯1 (π‘₯2ΠΌ ∨ π‘₯2с );
   β€’ π‘₯1Π² π‘₯2ΠΌ π‘₯4ΠΎ ;
   β€’ (π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )π‘₯2с;
   β€’ π‘₯1Π΄ ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ .
   f) the first and third addends are disjunctive normal forms. Apply the operation βˆƒπ‘₯2 (𝑃) to get:
                                    βˆƒπ‘₯2 (π‘₯1ΠΈ π‘₯2ΠΆ ) = π‘₯1ΠΈ ; βˆƒπ‘₯2 (π‘₯1Π² π‘₯2ΠΌ π‘₯4ΠΎ ) = π‘₯1Π² π‘₯4ΠΎ .
   g) the second and fourth addends should be split into multipliers to get:
          Ρ€
   β€’ π‘₯1 ;
   β€’ (π‘₯2ΠΌ ∨ π‘₯2с );
   β€’ (π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ );
   β€’ π‘₯2с .
   h) apply the operation βˆƒπ‘₯2 :
                                        βˆƒπ‘₯2 (π‘₯2ΠΌ ∨ π‘₯2с ) = 1; βˆƒπ‘₯2 (π‘₯2с ) = 1.
   i) taking into consideration the fact that all the other multipliers have not changed, we get the result
   in the following form:
                         βˆƒπ‘₯2 (𝑃) = (π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨
                                 Ρ€                  Ρ„
                            ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨
                                   Ρƒ                                      Ρ€
                              ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ π‘₯3Π΅ (π‘₯1ΠΈ ∨ π‘₯1 ∨ π‘₯1Π² π‘₯4ΠΎ ) ∨
                                     ∨ π‘₯3ΠΌ ((π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ ) ∨ π‘₯1Π΄ ∨ π‘₯1Ρ‚ ∨ π‘₯1ΠΏ )).
   We can see that eliminating variables from splitable predicates simplifies their structure, whereas
universal methods lead to an increase in the size of the original formula.
   Thus, a generalized algorithm of finding values of target variables under predefined initial conditions
from the system (5), where predicates on the right side are splitable can be described as follows:
   Step 1. Check the correctness of the model, i.e., whether conditions (6) for right sides hold.
   Step 2. Transform the system to a single equation in accordance with formula (7).
   Step 3. Substitute the initial values.
   Step 4. Eliminate the non-salient variables with the help of the existence quantifier.
   Step 5. Find the values of the target variables that satisfy the resulting equation.
   In the second example it is demonstrated how it is possible to find the dependence between some
linguistic variables if a problem is described in the form of a linguistic variable system. The second
example shows how you can find the relationship between some variables if the problem is described
by a system of equations. For example, it is necessary to express this dependence between noun gender
and particular case and number values. We have considered a relation between a noun gender and
particular values for case and number. In the proposed example we have considered the following initial
values: accusative case and singular form: π‘₯3 = Π΅ and π‘₯1 = Π².
    For simplification of complex deductions only two equations have been considered, although the
method itself is universal. The main advantage of this method lies in the fact that the original formulae
are simplified at every step.
   Consider this example. Suppose we have the following model:
                                                                              Ρ€                Ρ„    Ρ†
             𝑦1Ρ‹ = (π‘₯8Ρ‚ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7 ) ∧
                                            Ρ€
                                   ∧ (π‘₯3Π΅ π‘₯1 π‘₯2ΠΆ ∨ π‘₯3ΠΌ (π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )(π‘₯2ΠΌ ∨ π‘₯2ΠΆ )) ,
                                                                          Ρ€                Ρ„
           𝑦1ю = (π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨
                                           Ρƒ
          {             ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ π‘₯3Π΅ (π‘₯1Π΄ (π‘₯2ΠΌ ∨ π‘₯2с ) ∨ π‘₯1Π² π‘₯2ΠΆ ).
   Find values of the target variable π‘₯2 under the initial conditions: 1) π‘₯3 = Π΅; 2) π‘₯1 = Π².
   Check the correctness of the model and transform the system of equations to a single equation:
                                                                               Ρ€                   Ρ„
            (𝑦1Ρ‹ ) ∧ ((π‘₯8Ρ‚ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Ρ† ) ∧
          Ρ€
  ∧ (π‘₯3Π΅ π‘₯1 π‘₯2ΠΆ ∨ π‘₯3ΠΌ (π‘₯1ΠΈ ∨ π‘₯1Π² π‘₯4Π½ )(π‘₯2ΠΌ ∨ π‘₯2ΠΆ ))) ∨ (𝑦1ю ) ∧ ((π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨
                       Ρ€                  Ρ„                                    Ρƒ
                   ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧
                                              С д м          с     в Т
                                          ∧ π‘₯3 (π‘₯1 (π‘₯2 ∨ π‘₯2 ) ∨ π‘₯1 π‘₯2 )) = 1.
   Substitute the initial values to get:
                                                                       Ρ€                  Ρ„
  (𝑦1ю ) ∧ ((π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨
                                                Ρƒ
                                      ∨ π‘₯7ΠΎ ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ (π‘₯2ΠΆ )) = 1.
   Eliminate all the non-salient values, i.e., 𝑦1 , π‘₯7 , π‘₯8 :
                                                                               Ρ€                   Ρ„
      βˆƒπ‘¦((𝑦1ю ) ∧ ((π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨
                          Ρƒ
  ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ (π‘₯2ΠΆ ))) = ((π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨
               Ρ€                  Ρ„                                      Ρƒ
           ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ (π‘₯2ΠΆ )) = 1.
                                                                         Ρ€                  Ρ„
       βˆƒπ‘₯7 (((π‘₯8ΠΌ (π‘₯7Π± ∨ π‘₯7Π² ∨ π‘₯7Π΄ ∨ π‘₯7Π· ∨ π‘₯7Π» ∨ π‘₯7ΠΌ ∨ π‘₯7Π½ ∨ π‘₯7ΠΏ ∨ π‘₯7 ∨ π‘₯7с ∨ π‘₯7Ρ‚ ∨ π‘₯7 ) ∨ π‘₯7Π° ∨ π‘₯7Π΅ ∨ π‘₯7ΠΈ ∨
                                        Ρƒ
                      ∨ π‘₯7ΠΉ ∨ π‘₯7ΠΎ ∨ π‘₯7 ∨ π‘₯7Ρ‹ ∨ π‘₯7ю ∨ π‘₯7я ) ∧ (π‘₯2ΠΆ ))) = ((π‘₯8ΠΌ ) ∧ (π‘₯2ΠΆ )) = 1.
                                           βˆƒπ‘₯8 ((π‘₯8ΠΌ ) ∧ (π‘₯2ΠΆ )) = (π‘₯2ΠΆ ) = 1.
   Thus, the result is π‘₯2ΠΆ = 1. Hence, for the given initial values the variable π‘₯2 takes on the value {ΠΆ}.

7. Conclusions
   Logic inferences in a variety of knowledge bases can be done with the help of logic equations. The
main advantage of such models is the absence of a predefined input or output. The input and output
depend on the problem under consideration. Also, logic equations allow describing much more complex
data structures than relational databases or decision trees. The main problem is algorithmic difficulties
in solving such equations. Eliminating feature variables sometimes becomes quite a time-consuming
procedure. In this paper we have tried to show that there are quite large classes of equations that allow
us to eliminate variables without an increase in the size of the original formula. Real-world linguistic
problems very often can be solved using methods described in this paper.
   This research demonstrates the fact that for a large class of finite predicates eliminating non-salient
feature variables with the help of quantifiers. Also, the tightness of links between discrete features has
been investigated. It should be noted that the results obtained can be used not only for linguistic
problems but also for any knowledge bases with a complex structure.

8. References
[1] Y. P. Shabanov-Kushnarenko, Teoria intellekta. Matematicheskie sredstva [The theory of
    intelligence. Mathematical tools]. Visha Shkola Publs., Kharkiv,1984.
[2] Y. P. Shabanov-Kushnarenko Teoria intellekta. Tehnicheskie sredstva [The theory of intelligence.
    Technical tools]. Visha Shkola Publs., Kharkiv,1986.
[3] Y. P. Shabanov-Kushnarenko, Teoria intellekta. Problemy i perspectivy, [The theory of
    intelligence. Problems and prospects]. Visha Shkola Publs., Kharkiv,1987.
[4] D.E. Sitnikov, B. D’cruz, P.E. Sitnikova, Extracting Salient Discrete Object Features Based On
    Composing And Manipulating Logical Equations. Vestnik kharkivskogo gΠΎsydarstvennogo
    politechnicheckogo yniversiteta [Bulletin of Kharkiv State Polytechnic University] 51 (1999) 186–
    192.
[5] M. Kracht, G. Pullum, The Mathematics of Language. The Mathematical Intelligencer 28 (2006)
     74–78.
[6] S. Gebus, E. Juuso, K. LeiviskΓ€, Knowledge-based linguistic equations for defect detection
     through functional testing of printed circuit boards. Expert Systems with Applications 36.1 (2009)
     292–302.
[7] A. Isokangas, E. Juuso, Fuzzy Modelling with Linguistic Equations. University of Oulu: Control
     Engineering Laboratory Department of Process Engineering Publs (2000).
[8] K. J. Chen, P. H. Dedhia, J. R. Imbus, F. David, Schneider Thyroid Ultrasound Reports: Will the
     Thyroid Imaging, Reporting, and Data System Improve Natural Language Processing Capture of
     Critical Thyroid Nodule Features? Journal of Surgical Research 256 (2020) 557–563.
[9] A. Okhotin, O. Yakimova, Language equations with complementation: Expressive power.
     Theoretical Computer Science 416 (2012) 71–86.
[10] A. Okhotin, Decision problems for language equations. Journal of Computer and System Sciences
     76, Issues 3–4 (2010) 251–266.
[11] S. Ganji, K. Dhawan, R. Sinha, Novel textual features for language modelling of intra-sentential
     code-switching data. Computer Speech & Language 64 (2020) 101099.
[12] C.A. MacArthur, A. Jennings, Z.A. Philippakos, Which linguistic features predict quality of
     argumentative writing for college basic writers, and how do those features change with instruction?
     Reading and Writing 32 (2019) 1553–1574.
[13] A. Ionescu, E. L. Leiss, On the role of complementation in implicit language equations and
     relations. Journal of Computer and System Sciences 80.2 (2014) 457–467.
[14] G. Weikum et al, Big Data Methods for Computational Linguistics. IEEE Data Eng. Bull.
     35 (2012) 46–64.