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Abstract
In this research, we analyze the potential of Feature
Density (FD) as a way to comparatively estimate
machine learning (ML) classifier performance prior
to training. The goal of the study is to aid in solving
the problem of resource-intensive training of ML
models which is becoming a serious issue due to
continuously increasing dataset sizes and the ever
rising popularity of Deep Neural Networks (DNN).
The issue of constantly increasing demands for
more powerful computational resources is also af-
fecting the environment, as training large-scale ML
models are causing alarmingly-growing amounts of
CO2 emissions. Our approach is to optimize the
resource-intensive training of ML models for Nat-
ural Language Processing to reduce the number of
required experiments iterations. We expand on pre-
vious attempts on improving classifier training ef-
ficiency with FD while also providing an insight
to the effectiveness of various linguistically-backed
feature preprocessing methods for dialog classifica-
tion, specifically cyberbullying detection.

1 Introduction
One of the challenges in machine learning (ML) has always
been estimating how well different classification algorithms
will perform with a given dataset. Although there are classi-
fiers that tend to be highly effective on a variety of different
problems, they might be easily outperformed by others on a
dataset specific scale. As it is difficult to identify a classifier
that would perform best with every kind of dataset [Michie et
al., 1995], it comes down to the user (researcher, or ML prac-
titioner) to determine experimentally, which classifier could
be appropriate based on their knowledge of the field and pre-
vious experiences.

A common way when estimating the performance of dif-
ferent classifiers is to select a variety of possible classifiers
to experiment on and train them using cross-validation to
aid in getting the best possible average estimations of their
performances. With a sufficiently small dataset and using a
computationally efficient algorithm, this approach works very
well. Even though it is possible to get accurate estimations of

the classifier performance this way, it is multiple times more
costly.

Previously, there have been some attempts to estimate the
performance of a ML model before any training. One pro-
posal to this problem is using meta-learning and training a
model using dataset characteristics to estimate classifier per-
formance [Gama and Brazdil, 1995]. Another approach is
extrapolating results from small datasets to simulate the per-
formance using larger datasets [Basavanhally et al., 2010].

The importance of resolving this issue comes not only from
the increased computational requirements, but also from its
environmental effect. This is directly caused by the increased
popularity of the fields of Artificial Intelligence (AI) and ML.
Training classifiers on large datasets is both time consuming
and computationally intensive while leaving behind a notice-
able carbon footprint [Strubell et al., 2019]. To move towards
greener AI [Schwartz et al., 2019], it is necessary to inspect
the core of ML methods and find potential points of improve-
ment. In order to save computational power and reduce emis-
sions, it would be useful to roughly estimate classifier perfor-
mance prior to training.

The ability to estimate classifier performance before the
training would also have important practical implications. In
dialog agent applications, one of the areas where the need
for this is becoming more urgent is in forum moderation,
specifically the detection of harmful and abusive behaviour
observed online, known as cyberbullying (CB). The number
of CB cases has been constantly growing since the increase
of the popularity of Social Networking Services (SNS) [Hin-
duja and Patchin, 2010; Ptaszynski and Masui, 2018]. The
consequences of unattended cases of online abuse are known
to be serious, leading the victims to self mutilation, or even
suicides, or on the opposite, to attacking their offenders in
revenge. Being able to roughly estimate which classifier set-
tings can be rejected, would make the process of implemen-
tation of automatic cyberbullying detection for various lan-
guages and social networking platforms more efficient.

To contribute to that, we conduct an in-depth analysis of
the effectiveness of FD proposed previously by [Ptaszynski et
al., 2017] to comparatively estimate the performance of dif-
ferent classifiers before training. We also analyze the effec-
tiveness of various linguistically-backed feature preprocess-
ing methods, including lemmas, Named Entity Recognition
(NER) and dependency information-based features, with an
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application to automatic cyberbullying detection.

2 Previous Research
2.1 Classifier Performance Estimation
[Gama and Brazdil, 1995] proposed that classifier perfor-
mance could be estimated by training a regression model
based on meta-level characteristics of a dataset. The charac-
teristics used included simple measures like number of exam-
ples and number of attributes, statistical measures like stan-
dard deviation ratio and various information based measures
like class entropy. These measures are defined in the STAT-
LOG project [King et al., 1995].

This meta-learning approach was taken further by [Ben-
susan and Kalousis, 2001] who introduced the Landmark-
ing method, using learners themselves to characterize the
datasets. This means using computationally non-demanding
classifiers, like Naive Bayes (NB), to obtain important in-
sights about the datasets. The method outperformed the pre-
vious characterization method and had moderate success in
ranking learners.

Later, [Blachnik, 2017] improved on the Landmarking
method by proposing the use of information from instance
selection methods as landmarks. These instance selection
methods are most commonly used for cleaning the dataset
reducing it size by removing redundant information. They
discovered that the relation between the original and reduced
datasets can be used as a landmark to lower the error rates
when predicting classifier performance.

Another approach to predicting classifier performance is to
extrapolate results from a smaller dataset to simulate the per-
formance of a larger dataset. [Basavanhally et al., 2010] at-
tempted to predict classifier performance in the field of com-
puter aided diagnostics, where data is very often limited in
quantity. Their experiments showed that using a repeated ran-
dom sampling method on small datasets to make predictions
on a larger set tended to have high error rates and should not
be generalized as holding true when large amounts of data be-
come available. Later, [Basavanhally et al., 2015] improved
this method by utilizing it together with cross-validation sam-
pling strategy, which resulted in lower error rates.

In the field of NLP, [Johnson et al., 2018] applied the ex-
trapolation method to document classification using the fast-
Text classifier. They discovered that biased power law model
with binomial weights works as a good baseline extrapolation
model for NLP tasks.

Instead of concentrating on meta information of the dataset
or performance simulation, our research directly targets fea-
ture engineering and the relation between the available fea-
ture space and classifier performance. This novel method that
can be utilized together with the existing methods to better
estimate the performance of different classifiers.

2.2 Feature Density
The concept of Feature Density (FD) was introduced by
[Ptaszynski et al., 2017] based on the notion of Lexical Den-
sity [Ure, 1971] from linguistics. It is a score representing
an estimated measure of content per lexical units for a given
corpus, calculated as the number of all unique words divided

by the number of all words in the corpus. The score is called
Feature Density as it also includes other features, like parts-
of-speech or dependency information, in addition to words.

In this research, after calculating FD for all applied dataset
preprocessing methods we calculated Pearson’s correlation
coefficient (ρ-value) between dataset generalization (FD) and
classifier results (F-scores). If ideal ranges of FD can be
identified, or FD has a positive or negative correlation with
classifier performance, it could be useful in comparatively
estimating the performance of various classifiers. For ex-
ample, [Ptaszynski et al., 2017] showed that CNNs benefit
from higher FD while other classifiers’ score was usually
higher when using lower FD datasets. This suggests that it
could be possible to improve the performance of CNNs by
increasing the FD of the applied dataset, while other classi-
fiers could achieve higher scores by lowering FD [Ptaszynski
et al., 2017].

In practice, we attempt to estimate what feature engineer-
ing methods can achieve the highest performance for differ-
ent models in different languages. The method lets us ignore
redundant feature sets for a particular classifier or language
and only keep the ones with the highest performance poten-
tial without actually training any models.

2.3 Linguistically-backed Preprocessing
Almost without exception, the word embeddings are learned
from pure tokens (words) or lemmas (unconjugated forms of
words). This is also the case with the recently popularized
pre-trained language models like BERT [Devlin et al., 2018].
To the best of our knowledge, embeddings backed with lin-
guistic information have not yet been researched extensively,
with only a handful of related work attempting to explore the
subject [Levy and Goldberg, 2014; Komninos and Manand-
har, 2016; Cotterell and Schütze, 2019].

To further investigate the potential of capturing deeper re-
lations between lexical items and structures and to filter out
redundant information, we propose to preserve the morpho-
logical, syntactic and other types of information by adding
linguistic information to the pure tokens or lemmas. This
means, for example, including parts-of-speech or dependency
information within the used lexical features. These combina-
tions would then be used to train the word embeddings. The
method could be later applied to the pre-training of huge lan-
guage models to possibly improve their performance. The
preprocessing methods are described in-depth in section 3.2.

3 Dataset and Learners
3.1 Dataset
We tested the concept of FD on the Kaggle Formspring
Dataset for Cyberbullying Detection [Reynolds et al., 2011].
However, the original dataset had a problem of being anno-
tated by laypeople, whereas it has been pointed out before
that datasets for topics such as online harassment and cy-
berbullying should be annotated by experts [Ptaszynski and
Masui, 2018]. Therefore in our research we applied the ver-
sion of the dataset after re-annotation with the help of highly
trained data annotators with sufficient psychological back-
ground to assure high quality of annotations [Ptaszynski et
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Table 1: Statistics of the dataset after improved annotation.

Element type Value
Number of samples 12,772
Number of CB samples 913
Number of non-CB samples 11,859
Number of all tokens 301,198
Number of unique tokens 18,394
Avg. length (chars) of a post (Q+A) 12.1
Avg. length (words) of a post (Q+A) 23.6
Avg. length (chars) of a question 61.6
Avg. length (words) of a question 12
Avg. length (chars) of a answer 58.5
Avg. length (words) of a answer 11.5
Avg. length (chars) of a CB post 12.1
Avg. length (words) of a CB post 22.9
Avg. length (chars) of a non-CB post 13.9
Avg. length (words) of a non-CB post 24.7

al., 2018]. Cyberbullying is a phenomenon observed in many
SNS. It is defined as using online means of communication to
harass and/or humiliate individuals. This can include slurry
comments about someone’s looks or personality or spreading
sensitive or false information about individuals. This prob-
lem has existed throughout the time of communication via
Internet between people but has grown extensively with the
advent of communication devices that can be used on-the-
go like smartphones and tablets. Users’ realization of the
anonymity of online communications is one of the factors that
make this activity attractive for bullies since they rarely face
consequences of their improper behavior [Bull, 2010]. The
problem has been growing with the popularity of SNS.

Table 1 reports some key statistics of the current annota-
tion of the dataset. The dataset contains approximately 300
thousand of tokens. There were no visible differences in
length between the posted questions and answers (approx. 12
words). On the other hand, the harmful (CB) samples were
usually slightly shorter than the non-harmful (non-CB) sam-
ples (approx. 23 vs. 25 words). The number of harmful sam-
ples was small, amounting to 7%, which roughly reflects the
amount of profanity on SNS [Ptaszynski and Masui, 2018].

3.2 Preprocessing
In order to train the linguistically-backed embeddings, we
first preprocessed the dataset in various ways, similarly to
[Ptaszynski et al., 2017]. This was done to verify the cor-
relation between the classification results and Feature Den-
sity (FD) and to verify the performance of various versions of
the proposed linguistically-backed embeddings. The prepro-
cessing was done using spaCy NLP toolkit (https://spacy.io/).
After assembling combinations from the listed preprocessing
types, we ended up with a total of 68 possible preprocessing
methods for the experiments. The FDs for all separate pre-
processing types used in this research were shown in Table
2.

• Tokenization: includes words, punctuation marks, etc.
separated by spaces (later: TOK).

• Lemmatization: like the above but with generic (dictio-
nary) forms of words (“lemmas”) (later: LEM).

• Parts of speech (separate): parts of speech information
is added in the form of separate features (later: POSS).

• Parts of speech (combined): parts of speech informa-
tion is merged with other applied features (later: POS).

• Named Entity Recognition (without replacement):
information on what named entities (private name of a
person, organization, numericals, etc.) appear in the sen-
tence are added to the applied word (later: NER).

• Named Entity Recognition (with replacement): same
as above but information replaces the applied word
(later: NERR).

• Dependency structure: noun- and verb-phrases with
syntactic relations between them (later: DEP).

• Chunking: like above but without dependency relations
(“chunks”, later: CHNK).

• Stopword filtering: redundant words are filtered out us-
ing spaCy’s stopword list for English (later: STOP)

• Filtering of non-alphabetics: non-alphabetic charac-
ters are filtered out (later: ALPHA)

3.3 Feature Extraction
We generated a Bag-of-Words language model from each
of the 68 processed dataset versions. This resulted in sepa-
rate models for each of the datasets (Bag-of-Words, Bag-of-
Lemmas, Bag-of-POS, etc.). Next, we applied a weighting
scheme, term frequency with inverse document frequency or
tf ∗ idf .

When training a Convolutional Neural Network model, the
embeddings were trained as a part of the network for all of the
described datasets. Similarly to other classifiers, we trained a
separate model for each of the 68 datasets (Word/token Em-
beddings, Lemmas Embeddings, POS Embeddings, Chunks
Embeddings, etc.). The embeddings were trained as part of
the network using Keras’ embedding layer with random ini-
tial weights, meaning no pretraining was used.

3.4 Classification
We used two variants of Support Vector Machine [Cortes and
Vapnik, 1995], linear-SVM and linear-SVM with SGD op-
timizer. We also used two different solvers for Logistic Re-
gression (LR), Newton and L-BFGS. We also used both Ad-
aBoost [Freund and Schapire, 1997] and XGBoost [Chen and
Guestrin, 2016]. Other classifiers applied include Random
Forest [Breiman, 2001], kNN, Naı̈veBayes, Multilayer Per-
ceptron (MLP) And Convolutional Neural Network (CNN).

In this experiment MLP refers to a network using regu-
lar dense layers. We applied an MLP implementation with
Rectified Linear Units (ReLU) as a neuron activation func-
tion [Hinton et al., 2012] and one hidden layer with dropout
regularization which reduces overfitting and improves gener-
alization by randomly dropping out some of the hidden units
during training [Hinton et al., 2012].

We applied a CNN implementation with Rectified Linear
Units (ReLU) as a neuron activation function, and max pool-
ing [Scherer et al., 2010], which applies a max filter to non-
overlying sub-parts of the input to reduce dimensionality and
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Table 2: Feature Density of preprocessing types.

Preprocessing type Uniq.1grams All1grams FD

POS 18 357616 .0001
POSALPHA 18 357616 .0001
POSSTOP 18 194606 .0001
POSSTOPALPHA 17 129076 .0001
LEMPOSSALPHA 17875 579664 .0308
LEMPOSS 21238 660653 .0321
TOKPOSSALPHA 21737 579624 .0375
TOKPOSS 25122 660612 .038
LEMNERALPHA 14815 289868 .0511
LEMNERR 17327 309124 .0561
CHNKNERRALPHA 12293 215096 .0572
LEMNERRALPHA 17877 305481 .0585
CHNKNERALPHA 14007 228146 .0614
LEMALPHA 17860 289868 .0616
LEMPOSSSTOP 20948 334870 .0626
TOKNERRALPHA 18595 289828 .0642
CHNKALPHA 13991 215096 .065
LEMNER 21239 325173 .0653
LEMPOSSSTOPALPHA 17554 258103 .068
TOKNERR 21119 309084 .0683
LEM 21222 308434 .0688
TOKNERALPHA 21737 305441 .0712
TOKPOSSSTOP 24472 334869 .0731
LEMPOS 26232 357657 .0733
TOKALPHA 21722 289828 .0749
LEMPOSALPHA 22206 289868 .0766
TOKNER 25121 325132 .0773
TOK 25106 308393 .0814
TOKPOSSSTOPALPHA 21037 258103 .0815
TOKPOS 31121 357616 .087
TOKPOSALPHA 27013 289828 .0932
LEMNERRSTOPALPHA 14509 129076 .1124
LEMNERRSTOP 17047 146549 .1163
LEMNERSTOPALPHA 17557 142289 .1234
CHNKNERR 33025 262529 .1258
LEMNERRSTOPALPHA 20950 160269 .1307
LEMPOSSTOP 25669 194674 .1319
LEMSTOPALPHA 17540 129076 .1359
TOKNERRSTOPALPHA 17911 129076 .1387
CHNKNER 38044 272581 .1396
TOKNERRSTOP 20480 146549 .1397
LEMSTOP 20933 145866 .1435
CHNKNERSTOPALPHA 13356 92782 .144
CHNKNERRSTOPALPHA 11656 80896 .1441
CHNK 38029 261990 .1452
TOKNERSTOPALPHA 21037 142289 .1478
TOKNERSTOP 24471 160268 .1527
TOKPOSSTOP 30040 194673 .1543
TOKSTOPALPHA 21022 129076 .1629
CHNKSTOPALPHA 13340 80896 .1649
LEMPOSSTOPALPHA 21626 129076 .1675
TOKSTOP 24456 145865 .1677
TOKPOSSTOPALPHA 25925 129076 .2009
CHNKNERRSTOP 32452 126357 .2568
CHNKNERSTOP 37462 135357 .2768
CHNKSTOP 37447 125824 .2976
DEPNERALPHA 95404 240302 .397
DEPNERRALPHA 94928 215096 .4413
DEPALPHA 95386 215096 .4435
DEPNER 143197 321835 .4449
DEPNERSTOPALPHA 47159 104940 .4494
DEPNERR 141479 308704 .4583
DEP 143179 308704 .4638
DEPNERSTOP 94539 184130 .5134
DEPNERRSTOP 92730 172086 .5389
DEPSTOP 94521 172086 .5493
DEPNERRSTOPALPHA 46552 80896 .5755
DEPSTOPALPHA 47141 80896 .5827

Table 3: Classifiers with best F1, preprocessing type and Pearson’s
correlation coefficient for FD and F1.

Classifier Best F1 Best PP type ρ(F1, FD)

SGD SVM .798 TOKPOS -.8239
MLP .7958 TOK -.8599
Linear SVM .7941 TOKPOSSTOP -.834
L-BFGS LR .7932 TOKSTOP -.8024
Newton LR .7915 TOKNERSTOP -.8097
RandomForest .7582 TOKSTOP -.7873
XGBoost .7523 LEMSTOP -.8303
CNN1 .7406 DEPSTOP .1633
CNN2 .7357 LEMPOSS .0951
AdaBoost .7356 TOKSTOP -.7362
NaiveBayes .7165 TOK -.7531
KNN .6711 TOKPOSSSTOPALPHA -.7116

in effect correct overfitting. We also applied dropout regu-
larization on penultimate layer. We applied two versions of
CNN. First, with one hidden convolutional layer containing
128 units. The second version consisted of two hidden con-
volutional layers, containing 128 feature maps each, with 4x4
size of patch and 2x2 max-pooling, and Adaptive Moment
Estimation (Adam), a variant of Stochastic Gradient Descent
[LeCun et al., 2012].

4 Experiments
4.1 Setup
The preprocessed dataset provides 68 separate datasets and
the experiment was performed once for each preprocessing
type. Each of the classifiers (sect. 3.4) were tested on each
version of the dataset in a 10-fold cross validation proce-
dure. This gives us an opportunity to evaluate how effec-
tive different preprocessing methods are for each classifier.
As the dataset was not balanced, we oversampled the minor-
ity class using Synthetic Minority Over-sampling Technique
(SMOTE) [Chawla et al., 2002]. The preprocessing methods
represent a wide range of Feature Densities, which can be
used to evaluate the correlation with classifier performance.

4.2 Effect of Feature Density
We analyzed the correlation of Feature Density with each
of the classifiers using the proposed preprocessing methods.
The results are represented in Table 5. As the results for us-
ing only parts-of-speech tags, which had the lowest FD by
far, were extremely low (close to a coinflip). Thus, we can
say that POS tags alone do not contain enough information to
successfully classify the entries.

After excluding the preprocessing methods that only used
POS tags, we can see that all classifiers, except CNNs have
a strong negative correlation with Feature Density. So these
classifiers seem to have a weaker performance if a lot of lin-
guistic information is added, and the best results being usu-
ally within the range of .05 to .15 FD depending on the clas-
sifier. This range includes 38 of the 68 preprocessing meth-
ods (Table 2), meaning that the total training time could be
reduced by around 40-50%. This can be seen from, for exam-
ple, the highest performing classifier, SVM with SGD opti-
mizer (Figure 1), where the maximum classifier performance
starts high at around .05 and slowly falls until .14 after which

8



there is a noticeable drop. The performance only falls further
as the FD rises.

For CNNs however, there was a very weak positive or no
correlation between FD and the classifier performance, with
the higher FD datasets performing equally or even slightly
better when comparing to the low FD datasets. Taking a look
at one layer CNN’s performance, which was better than the
CNN with two layers, we can see from Figure 1 that the max-
imum performance starts at a moderate level and stays more
stable throughout the whole range of feature densities. The
most potential ranges of FD are between .05 to .1 and after
.45. The potential training time reduction seems to be similar,
around 40-50% The reduction in training time could be es-
pecially important when considering demanding models like
Neural Networks.

The results suggest that for non-CNN classifiers there is
no need to consider preprocessings with a high FD, such as
chunking or dependencies, as they had a considerably lower
performance. The performance seems to start falling rapidly
at around FD = .15 with most of the classifiers. For CNNs,
high performances were recorded on both low and high FDs.
This means that there is potential in the higher FD prepro-
cessing types, namely, dependencies for CNNs.

The reason for CNNs relatively low performance could be
explained by the relatively small size of the dataset, especially
when considering the amount of actual cyberbullying entries,
as adding even a second layer to the network already caused
a loss of the most valuable features and ended up degrad-
ing performance. With such small amount of data, it doesn’t
seem useful to train deep learning models to solve the clas-
sification problem. Still, the dependency based features are
showing potential with CNNs. With a considerably larger
dataset and more computational power, it could be possible
to outperform other classifiers and the usage of tokens with
dependency based features when using deep learning.

The experiments show that changing Feature Density in
moderate amount can yield good results when using other
classifiers than CNNs. However, excessive changes to ei-
ther too low or too high always showed diminishing results.
The treshold was in all cases approximately between 50%
and 200% of the original density (TOK), most optimal FDs
only slightly varying with each classifier. The exception be-
ing Random Forest [Breiman, 2001], which showed a clear
spike at around .12 FD. As the usage of high Feature Density
datasets showed potential with CNNs, their usage needs to
be confirmed in future research. Also, more exact ideal fea-
ture densities need to be confirmed for each classifier using
datasets of different sizes and fields to make a more accurate
ranking of classifiers by FD possible.

4.3 Analysis of Linguistically-backed
Preprocessing

From the results it can be seen that most of the classifiers
scored highest on pure tokens. CNNs also performed quite
well on the dependency-based preprocessings. Using lemmas
usually got slightly lower scores than tokens probably due to
information loss. Chunking got low performance overall and
was clearly outperformed by dependency-based features in
CNNs. Using only POS tags achieved very low performance

and thus it should be only used as a supplement to other meth-
ods.

Stopword filtering seemed to be the one of the most effec-
tive preprocessing techniques for traditional classifiers, which
can be seen from Table 3 as it was used in the majority of
the highest scores. The problem with stopwords was that
the scores fluctuated a lot, having both low and very high
scores and scoring high mostly with Logistic Regression and
all of the tree based classifiers. An important thing to note is
that the preprocessing method had extremely polarized per-
formance with CNNs, scoring either very high or low. Over-
all, stopwords yielded the most top scores of any preprocess-
ing method considering all the classifiers.

Another very effective preprocessing method was Parts of
Speech merging (POS), which achieved high performance
overall when added to TOK or LEM. The method also got
the highest scores with multiple classifiers, especially SVMs.
Adding parts-of-speech information to the respective words
achieved a higher score than using them as a separate feature.
This keeps the information directly connected to the word it-
self, which seems a better option when preserving informa-
tion.

Using Named Entity Recognition reduced the classifier
performance most of the time, only achieving a high score
with one classifier, Newton-LR. The performance of using
NER seemed clearly inferior compared to stopwords or POS
information. Replacing words with their NER information
seems to cause too much information loss and reduces the
performance when comparing to plain tokens. Attaching
NER information to the respective words did not improve the
performance in most cases but still performed better than re-
placement. These results are different to [Ptaszynski et al.,
2017], who noticed that NER helped most of the times for
cyberbullying (CB) detection in Japanese. This could come
from the fact that CB is differently realized in those lan-
guages. In Japan, revealing victim’s personal information,
or “doxxing” is known to be one of the most often used form
of bullying, thus NER, which can pin-point information such
as address or phone number often help in classification, while
this is not the case in English.

Filtering out non-alphabetic characters also reduced the
classifier performance most of the time and also got a high
score with only one classifier, kNN, which was the weakest
classifier overall. Non-alphabetic tokens seem to carry useful
information, at least in the context of cyberbullying detec-
tion, as removing them reduced the performance comparing
to plain tokens due to information loss.

Trying to generalize the feature set ended up lowering the
results in most cases with the exception of the very high
scores of stopword filtering using traditional classifiers. This
would mean that the stopword filter sometimes succeeded
in removing noise and outliers from the dataset while other
generalization methods ended up cutting useful information.
Adding information to tokens could be useful in some scenar-
ios as was shown with parts-of-speech tags and using depen-
dency information with CNNs, although using NER was not
so successful. Any kind of generalization attempt resulted in
a lower performance with CNNs, which shows their ability
to assemble more complex patterns from tokens and relations
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Table 4: Approximate power usage of the training processes. Non-
neural classifiers: i9 7920X, 163W. Neural classifiers: GTX 1080ti,
250W. Expecting 100% power usage.

Classifier Runtime (s) Power usage (Wh) Best F1

SGD SVM 176.26 79.81 .798
MLP 53845.89 37392.98 .7958
Linear SVM 1543.06 698.67 .7941
L-BFGS LR 321.6 145.61 .7932
Newton LR 249.74 113.08 .7915
Random Forest 3982.49 1803.18 .7582
XGBoost 17917.74 8112.76 .7523
CNN1 62361.45 43306.56 .7406
CNN2 62054.46 43093.37 .7357
AdaBoost 10425.4 4720.39 .7356
Naive Bayes 97.54 44.16 .7165
KNN 556.44 251.94 .6711

that are unusable by other classifiers.
An interesting discovery is that using raw tokens only

rarely resulted in the best performance considering the pro-
posed feature sets. This can be seen from Tables 3 and 5. This
proves the effectiveness of using linguistics-based feature en-
gineering instead of directly using words as features. Also,
the performance of one-layer CNN increased significantly
when using linguistic embeddings, from 0.659 (TOK) F-score
to 0.741 (DEPSTOP). The high scores of dependency-based
feature sets indicate that structural information could be im-
portant.

In order to compare the usage of linguistic preprocessing
to modern text classifiers, we fine-tuned RoBERTa [Liu et al.,
2019] on the dataset. This showed an F-score of 0.797, which
is similar to the highest scores by other models using our
method. Actually, the best score by SGD SVM is 0.798 which
is slightly higher. It is fascinating that a simple method like
SVM can outperform a complex modern text classifier when
using the right feature set. This shows that traditional, more
simple models should not be underestimated as with correct
preparations, they can achieve a similar performance as state-
of-the art models and require much less computational power.
Possibly, the performance of pretrained language models like
RoBERTa could also be increased by feature engineering and
applying embeddings with linguistic information. This needs
to be explored further in future research.

4.4 Environmental Effect
If the weaker feature sets were to be left out, the power sav-
ings are approximately 35Wh calculated from Table 4 for
training the SGD SVM classifier, which is not very much.
But the classifier was very power efficient to train to begin.
A more impressive result can be seen with CNN, where the
power savings are approximately 21kWh, which is consider-
ably more compared to SVM.

In order demonstrate the environmental effect of the
method, we will look at the CNN model and its power savings
(21kWh). According to European Environmental Agency
(EEA) 1, the average CO2 emissions of electricity generation
was 275 g CO2e/kWh in 2019. Thus the greenhouse gases
emitted during the training of CNN could be estimated to be
5.8 kg CO2e. For comparison, the average new passenger

1https://www.eea.europa.eu/

car in the European Union in 2019, according to EEA, emits
around 122 g CO2e per kilometer driven. So when training a
simple CNN model, if we calculate the feature densities and
leaving out the weaker feature sets before training, we could
save as much as driving a new car for almost 50 kilometers in
emissions.

Instead of having to run all of the experiments, it could be
useful to first discard the FD ranges of the overall weakest
feature sets. Then running a small subset of the experiments
with a set interval between preprocessing type feature den-
sities, look for the FD range with a high performance and
iterate around it by running more experiments with similar
feature densities in order to find the maximum performance.

5 Conclusions
In this paper we presented our research on Feature Density
and linguistically-backed preprocessing methods, applied in
dialog classification and cyberbullying detection. Both con-
cepts are relatively novel to the field. We studied the effect of
FD in reducing the number of required experiments iterations
and analyzed the usage of different linguistically-backed pre-
processing methods in the context of CB detection.

The results indicate that for non-CNN classifiers, there is
an ideal Feature Density that slightly differs between each
classifier. This can be taken into account in future experi-
ments in order to save time and computational power when
running experiments. For CNNs however, there is almost no
correlation between FD and classifier and thus the higher FD
datasets should also be considered when trying to achieve the
best performance.

Using plain tokens to keep the original words and their
forms and reducing noise with stopword filtering yielded the
best results in general. With some classifiers, adding extra
information in the form of POS tags also proved useful. For
convolutional neural networks, using dependency based in-
formation showed potential and their effect needs to be con-
firmed in future research.

Although the environmental effect of the method does not
seem very significant here, one has to keep in mind that the
tested models were quite simple. Assuming that the method
would work with other datasets and more resource intensive
classifiers, the savings could be very significant. It could
be useful to only run a subset of the experiments and iter-
ate around the most probable performance peak in order to
find the maximum performance.

In the near future we will also confirm the potential of
linguistically-backed preprocessing and Feature Density for
other applications and languages. The research further sug-
gests that adding linguistic preprocessing can improve the
performance of classifiers, which needs to be also confirmed
on current state of the art language models.
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Table 5: F1 for all preprocessings & classifiers; best classifier for each dataset in bold; best preprocessing for each underlined
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CHNK 0.727 0.726 0.718 0.736 0.57 0.674 0.613 0.649 0.667 0.724 0.657 0.666
CHNKNERR 0.688 0.695 0.702 0.699 0.58 0.653 0.603 0.608 0.642 0.704 0.645 0.662
CHNKNERRALPHA 0.66 0.663 0.651 0.657 0.603 0.626 0.616 0.599 0.653 0.674 0.566 0.6
CHNKNERRSTOP 0.686 0.684 0.684 0.694 0.577 0.629 0.635 0.621 0.652 0.693 0.402 0.344
CHNKNERRSTOPALPHA 0.618 0.617 0.591 0.607 0.404 0.598 0.62 0.582 0.648 0.623 0.451 0.34
CHNKNER 0.718 0.723 0.721 0.737 0.582 0.669 0.603 0.63 0.673 0.722 0.654 0.642
CHNKNERALPHA 0.675 0.676 0.663 0.663 0.599 0.641 0.618 0.609 0.649 0.684 0.557 0.614
CHNKNERSTOP 0.724 0.724 0.715 0.724 0.582 0.663 0.635 0.652 0.679 0.72 0.501 0.298
CHNKNERSTOPALPHA 0.666 0.661 0.644 0.668 0.386 0.615 0.659 0.625 0.656 0.647 0.431 0.406
CHNKALPHA 0.684 0.681 0.669 0.683 0.607 0.643 0.647 0.616 0.676 0.695 0.587 0.583
CHNKSTOP 0.722 0.721 0.711 0.723 0.577 0.67 0.667 0.648 0.679 0.715 0.386 0.342
CHNKSTOPALPHA 0.629 0.637 0.606 0.619 0.395 0.608 0.649 0.654 0.664 0.628 0.455 0.374
DEP 0.617 0.619 0.568 0.587 0.243 0.617 0.536 0.566 0.598 0.594 0.682 0.694
DEPNERR 0.61 0.614 0.571 0.587 0.241 0.611 0.533 0.562 0.596 0.595 0.67 0.695
DEPNERRALPHA 0.606 0.605 0.589 0.602 0.312 0.596 0.537 0.556 0.595 0.593 0.585 0.622
DEPNERRSTOP 0.602 0.599 0.564 0.568 0.273 0.615 0.543 0.572 0.6 0.578 0.726 0.702
DEPNERRSTOPALPHA 0.584 0.584 0.56 0.581 0.386 0.599 0.544 0.561 0.595 0.574 0.583 0.619
DEPNER 0.624 0.621 0.574 0.585 0.242 0.611 0.528 0.564 0.595 0.592 0.686 0.692
DEPNERALPHA 0.585 0.589 0.561 0.579 0.213 0.607 0.578 0.497 0.593 0.603 0.606 0.623
DEPNERSTOP 0.611 0.602 0.564 0.576 0.274 0.604 0.527 0.563 0.604 0.577 0.725 0.708
DEPNERSTOPALPHA 0.535 0.531 0.523 0.523 0.297 0.543 0.563 0.422 0.576 0.564 0.63 0.632
DEPALPHA 0.609 0.612 0.588 0.601 0.314 0.6 0.545 0.552 0.604 0.598 0.606 0.62
DEPSTOP 0.606 0.595 0.562 0.571 0.276 0.616 0.544 0.576 0.603 0.584 0.741 0.648
DEPSTOPALPHA 0.586 0.587 0.564 0.588 0.388 0.594 0.539 0.568 0.595 0.578 0.629 0.625
LEM 0.781 0.786 0.784 0.79 0.634 0.715 0.724 0.72 0.744 0.786 0.67 0.665
LEMNERR 0.74 0.737 0.742 0.74 0.601 0.692 0.697 0.683 0.724 0.749 0.658 0.663
LEMNERRALPHA 0.729 0.728 0.725 0.725 0.614 0.685 0.699 0.68 0.71 0.74 0.645 0.652
LEMNERRSTOP 0.737 0.734 0.726 0.732 0.609 0.682 0.727 0.69 0.72 0.741 0.371 0.364
LEMNERRSTOPALPHA 0.732 0.732 0.714 0.727 0.624 0.674 0.723 0.682 0.704 0.737 0.372 0.348
LEMPOSS 0.764 0.765 0.769 0.767 0.564 0.713 0.658 0.679 0.717 0.773 0.662 0.736
LEMPOSSALPHA 0.76 0.758 0.753 0.758 0.406 0.705 0.669 0.674 0.712 0.756 0.603 0.715
LEMPOSSSTOP 0.763 0.766 0.767 0.774 0.566 0.709 0.706 0.691 0.72 0.773 0.683 0.725
LEMPOSSSTOPALPHA 0.762 0.766 0.748 0.765 0.49 0.702 0.713 0.681 0.714 0.757 0.593 0.716
LEMNER 0.784 0.782 0.787 0.792 0.631 0.71 0.716 0.72 0.742 0.78 0.68 0.613
LEMNERALPHA 0.763 0.764 0.765 0.767 0.637 0.699 0.71 0.707 0.742 0.768 0.662 0.671
LEMNERSTOP 0.782 0.783 0.782 0.792 0.634 0.706 0.745 0.725 0.742 0.78 0.429 0.378
LEMNERSTOPALPHA 0.77 0.767 0.752 0.767 0.64 0.693 0.739 0.716 0.738 0.768 0.46 0.414
LEMPOS 0.778 0.778 0.788 0.79 0.517 0.711 0.663 0.727 0.741 0.783 0.665 0.64
LEMPOSALPHA 0.768 0.772 0.772 0.768 0.522 0.7 0.654 0.713 0.727 0.775 0.664 0.695
LEMPOSSTOP 0.78 0.781 0.788 0.788 0.642 0.708 0.708 0.721 0.735 0.783 0.715 0.707
LEMPOSSTOPALPHA 0.77 0.769 0.766 0.768 0.669 0.696 0.718 0.722 0.73 0.778 0.669 0.698
LEMALPHA 0.755 0.764 0.745 0.765 0.294 0.703 0.718 0.705 0.748 0.754 0.61 0.651
LEMSTOP 0.787 0.786 0.784 0.791 0.641 0.713 0.754 0.732 0.752 0.789 0.403 0.327
LEMSTOPALPHA 0.772 0.766 0.766 0.773 0.357 0.702 0.747 0.712 0.745 0.764 0.377 0.329
POSS 0.487 0.487 0.488 0.491 0.522 0.498 0.556 0.509 0.555 0.488 0.54 0.536
POSSALPHA 0.488 0.486 0.488 0.498 0.526 0.498 0.552 0.518 0.549 0.493 0.538 0.534
POSSSTOP 0.477 0.477 0.471 0.467 0.518 0.486 0.54 0.496 0.533 0.484 0.431 0.434
POSSSTOPALPHA 0.469 0.47 0.471 0.465 0.517 0.478 0.525 0.484 0.511 0.491 0.428 0.484
TOK 0.793 0.788 0.793 0.796 0.632 0.716 0.711 0.728 0.748 0.796 0.659 0.661
TOKNERR 0.741 0.744 0.737 0.743 0.6 0.696 0.688 0.671 0.719 0.749 0.655 0.631
TOKNERRALPHA 0.734 0.735 0.735 0.73 0.624 0.683 0.681 0.674 0.704 0.748 0.626 0.655
TOKNERRSTOP 0.736 0.736 0.728 0.732 0.609 0.68 0.73 0.678 0.71 0.751 0.406 0.317
TOKNERRSTOPALPHA 0.728 0.731 0.727 0.723 0.623 0.675 0.721 0.68 0.698 0.744 0.412 0.394
TOKPOSS 0.766 0.768 0.767 0.783 0.549 0.715 0.648 0.671 0.715 0.773 0.686 0.729
TOKPOSSALPHA 0.765 0.761 0.763 0.767 0.378 0.709 0.662 0.656 0.709 0.769 0.643 0.658
TOKPOSSSTOP 0.763 0.765 0.767 0.773 0.563 0.704 0.703 0.684 0.724 0.771 0.675 0.722
TOKPOSSSTOPALPHA 0.774 0.773 0.774 0.771 0.671 0.694 0.722 0.713 0.73 0.779 0.68 0.698
TOKNER 0.789 0.785 0.788 0.789 0.609 0.708 0.703 0.722 0.745 0.784 0.684 0.68
TOKNERALPHA 0.768 0.771 0.763 0.776 0.628 0.696 0.701 0.705 0.746 0.775 0.649 0.648
TOKNERSTOP 0.785 0.791 0.79 0.79 0.635 0.703 0.732 0.721 0.743 0.79 0.444 0.367
TOKNERSTOPALPHA 0.773 0.771 0.762 0.774 0.646 0.691 0.737 0.704 0.74 0.771 0.371 0.379
TOKPOS 0.781 0.783 0.791 0.798 0.565 0.713 0.656 0.72 0.739 0.787 0.626 0.705
TOKPOSALPHA 0.775 0.775 0.778 0.784 0.576 0.699 0.653 0.705 0.731 0.783 0.633 0.698
TOKPOSSTOP 0.786 0.783 0.794 0.792 0.645 0.7 0.711 0.733 0.739 0.789 0.706 0.691
TOKPOSSTOPALPHA 0.759 0.766 0.756 0.762 0.458 0.696 0.706 0.679 0.674 0.601 0.734 0.718
TOKALPHA 0.768 0.768 0.757 0.773 0.271 0.705 0.721 0.705 0.742 0.756 0.643 0.652
TOKSTOP 0.793 0.79 0.784 0.794 0.644 0.708 0.758 0.736 0.749 0.787 0.355 0.321
TOKSTOPALPHA 0.775 0.776 0.766 0.776 0.342 0.7 0.745 0.714 0.744 0.765 0.452 0.425
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(a) Alphabetic filtering (red) vs others (blue) (b) Alphabetic filtering (red) vs others (blue)

(c) NER (red) vs others (blue) (d) NER (red) vs others (blue)

(e) POS (red) vs others (blue) (f) POS (red) vs others (blue)

(g) Stopword filtering (red) vs others (blue) (h) Stopword filtering (red) vs others (blue)

(i) TOK (red), LEM (green), CHNK (yellow), DEP (blue) (j) TOK (red), LEM (green), CHNK (yellow), DEP (blue)

Figure 1: FD & F1 score for SGD SVM (left) and CNN1 (right)
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