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Abstract

The following system description presents our approach to the detection of previously fact-checked
claims. Given a claim originating from a tweet or a political debate, we specified the similarity to a
collection of previously fact-checked claims. In line with the origin of the claims, the collection of
previously fact-checked claims is composed of tweets and political debates respectively. The given task
has been framed as a sequence similarity problem. Relevance scoring is based on semantic similarity.
Similarity is calculated by distance metrics on representation vectors at paragraph level.
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1. Introduction

Social networks provide opportunities to conduct disinformation campaigns for organizations
as well as individual actors. The proliferation of disinformation online, has given rise to a lot
of research on automatic fake news detection. CLEF 2021 - CheckThat! Lab [1, 2] considers
disinformation as a communication phenomenon. By detecting the use various claims in
(political) communication, it takes into account not only the content but also how a subject
matter is communicated by specific actors, in particular, by repetition of the same claims.

Task definition: Detect Previously Fact-Checked Claims Given a check-worthy claim,
and a set of previously fact-checked claims, determine whether the claim has been previously
fact-checked. Based on the source of the considered claims the shared task [3] defines the
following subtasks both of which are framed as ranking tasks:

« Subtask A: Detect Previously Fact-Checked Claims in Tweets
« Subtask B: Detect Previously Fact-Checked Claims in Political Debates/Speeches
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In this work, we covered our approach. Below, we describe the systems built for these
two subtasks. At the core of our systems is RoOBERTa [4], a pre-trained model based on the
Transformer architecture [5].

2. Related Work

The goal of the shared task is to investigate automatic techniques for Information Retrieval (IR)
obtaining information resources relevant to an information need from a larger collection of
information resources. In particular, we want to find the most similar paragraphs from a large
set of documents given a query document.

2.1. Relevancy scoring

Relevancy scoring is a process to determine the relevance of retrieved documents based on user
queries, term frequencies, and other important parameters. In the simplest form, documents
are ranked on how many words of the document match the terms in the query. In the given
task the performance is evaluated with an Elastic Search baseline. Elastic Search uses two kinds
of scoring function — TF-IDF and Okapi BM25 — both of which follow the same principal of
lexical similarity. In particular, to determine a relevancy score TF-IDF as in equation(3), short
for term frequency—-inverse document frequency, is used as a statistical measure to evaluate
the importance of a query term ¢ to a document d form a larger collection of documents D.
The importance increases proportionally to the number of times a query term appears in the
document as shown in equation (1) but is offset by the frequency of the query term in the whole
collection as shown in equation (2).

term frequency in document

TF(t,d) = 1

(t,d) total words in document W
total documents in corpus

IDF(t, D) =1 2

(t, D) = logy < documents with term > @

TF-IDF(t,d, D) = TF(t,d) x IDF(t, D) (3)

Based on TF-IDF, Okapi BM25 as in 4 handles some of it’s shortcomings to make the function
result more relevant to the user’s query. Same as TF-IDF, relevance is calculated as a result of
multiplying T'F and I DF with the difference of how these values are calculated. With | D| as
the number of words in a document it takes into account the document’s length. Furthermore,
k1 normalizes the impact of the frequent occurrences of common words on the relevance score.
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Beyond word matching, our approach considers semantic similarity for relevance estimation.
Neural network based language models are receiving significant attention in the field of nat-
ural language processing due to their capability to effectively capture semantic information



representing words, sentences or even larger text elements in low-dimensional vector space.
Exploiting language models for the task of ad-hoc retrieval has already been demonstrated by
[4] and [6]. In this study, we investigated Sentence-BERT [7] to derive semantically meaningful
sentence embeddings, that to some extent recognizes synonyms, acronyms or spelling variations.
From this point of view, the meaningfulness of a comparison of semantic similarity with lexical
similarity as a baseline could be debated.

2.2. Text embeddings

For a long time word embeddings such as Word2Vec [8], PLSI [9], GloVe [10] have been a
cornerstone for deep learning (DL) NLP. The embeddings are often pre-trained on unlabeled
text corpus from co-occurrence statistics. Due to this fact, these representations are context
independent. To capture semantic and morpho-syntactic properties contextual representations
sentence-level approaches such as Semi-Supervised Sequence Learning [11], ULMFit [12] , ELMo
[13], GPT [14], XLNet [15] and BERT [16] are gaining increasing importance. The ability of
embeddings such as RoBERTa [4], a pre-trained model based on the Transformer architecture
[5] to capture semantic and morpho-syntactic properties has been shown on various NLP tasks
like sentiment analysis, question answering.

2.3. About BERT and RoBERTa

BERT stands for Bidirectional Encoder Representations from Transformers. It is based on the
Transformer model architectures introduced by Vaswani et al. [5]. The general approach consists
of two stages: first, BERT is pre-trained on vast amounts of text, with an unsupervised objective
of masked language modeling and next-sentence prediction. Second, this pre-trained network is
then fine-tuned on task specific, labeled data. The Transformer architecture is composed of two
parts, an Encoder and a Decoder, for each of the two stages. The Encoder used in BERT is an
attention-based architecture for NLP. It works by performing a small, constant number of steps.
In each step, it applies an attention mechanism to understand relationships between all words
in a sentence, regardless of their respective position. By pre-training language representations,
the Encoder yields models that can either be used to extract high quality language features from
text data, or fine-tune these models on specific NLP tasks (classification, entity recognition,
question answering, etc.). We rely on RoBERTa [4], a pre-trained Encoder model which builds
on BERT’s language masking strategy. However, it modifies key hyperparameters in BERT such
as removing BERT’s next-sentence pre-training objective, and training with much larger mini-
batches and learning rates. Furthermore, RoOBERTa was also trained on an order of magnitude
more data than BERT, for a longer amount of time. This allows RoBERTa representations to
generalize even better to downstream tasks compared to BERT. In this study, RoBERTa is at the
core of each solution of the given subtasks.

2.4. Sentence embeddings

Sentence embeddings can be described as a document processing method of mapping sentences
to vectors as a means of representing text with real numbers suitable for machine learning.
For RoBERTa, the representation vectors consisting of 768 numerical values are considered
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Figure 1: 12-layer transformer network — with the hidden layer representations highlighted in green.

as contextual word embeddings of a single token. Because there is one of these vectors for
representing each token (output by each encoder), we are actually looking at a tensor of size
768 by the number of tokens (in our case 512). This tensor is transformed into a semantic
representations of the whole input sequence. The simplest and most commonly extracted tensor
is the last_hidden_state tensor — which is conveniently output by the BERT model. To convert
the last_hidden_states tensor into a sequence vector, a mean pooling operation is used. This
pooling operation takes the mean of all token embeddings.

In this study, we investigated Sentence-BERT [7] to derive semantically meaningful sentence
embeddings. Reimers and Gurevych [7] by modified the original BERT using Siamese networks.
With Sentence-BERT we can now take advantage of BERT embeddings for the tasks like semantic
similarity comparison and information retrieval via semantic search. Similarity metrics are
applied to the resulting sequence vectors to calculate the respective similarity between different
sequences.



Statistical summary of token counts on the collection of verified claims.

Source Tweets (A) Debates/Speeches
(B)

count 13825 19250

mean 16.86 18.01

std 6.38 8.12

min 1 2

25% 13 12

50% 16 16

75% 20 22

max 110 79

2.5. Similarity metrics

To turn language into a machine-readable format, words and sentences are converted into
high-dimensional vectors — organized so that each vector’s geometric position can attribute
meaning. We expect that similar meaning corresponds with proximity/orientation between
those vectors. Similarity measurements such as cosine similarity or Manhattan/Euclidean
distance, evaluate semantic textual similarity so that the scores can be exploited for a variety of
helpful NLP tasks, including information retrieval. For Semantic Textual Similarity (STS) tasks
Reimers and Gurevych [7] suggest to compute the Spearman’s rank correlation between the
cosine-similarity of the sentence embeddings and the gold labels, if they exist.

2.6. Evaluation measures

For both tasks the submitted ranked lists per claim have been evaluated using ranking evaluation
measures MAP@k for k € {1, 3,5, 10, all} (Mean Average Precision for the top-k vClaims),
MRR (Mean Reciprocal Rank) and Precision@k for £ € {3,5,10} (Precision for the top-k
vClaims). MAP@?5 has been defined as the official measure.

3. Dataset

The data for the task was developed during the CLEF-2021 CheckThat! campaign [1, 2, 3].

As presented in Table 1, the given collection contain 13825 and 19250 verified claims, respec-
tively. Additional information is provided for each vClaim: the title of the entry, (the subtitle),
the author/speaker, and the date of verification, (link to the justification). Additionally, there are
1000 and 563 positively labeled <iClaim, vClaim> pairs in the training set to possibly fine-tune
the language model. However, to obtain sentence embeddings, in this study we assume a model
without any task-specific fine-tuning. Thus, we postponed the fine-tuning to future work.



Table 2
Statistical summary of token counts on the collection of input claims.

Source Tweets (A) Debates/Speeches
(B)

count 1196 702

mean 32.19 20.25

std 12.97 13.94

min 11 1

25% 23 10

50% 29 17

75% 40 26

max 108 91

4. Our approach

Problem Definition. Suppose we have a set C of claims and a set V' of previously verfied
claims. Each claim ¢ € C' and verfied claim v € V' can be represented as (c, v, y), where y is
a variable indicating the distance between c and v. Therefore, the solution of sentence-level
retrieval task could be considered as a text similarity problem. Given a claim ¢ and a list of
candidates of verfied claims Candidate(c) C V, our goal is to predict p(y|c, v) of each input
claim ¢ with each candidate v € Candidate(c).

4.1. Experimental setup

Word-Level Sentence Embeddings. A sentence is split into words wy, ..., w, with length
of n by the WordPiece tokenizer [17]. The word w; and its index ¢ (w;’s absolute position in the
sentence) are projected to vectors by embedding sub-layers, and then added to the index-aware

word embeddings:
w; = WordEmbed(w;)

t; = IdzEmbed(i)
h; = LayerNorm(w; + ;)

We use Sentence-BERT [7] to compute dense vector representations for sentences and para-
graphs. The embedding model is trained on paraphrases which is available from the model
repository at huggingface.co'. We determine the similarity at the paragraph level. Although
the model can handle up to 512 tokens, we decided to split the documents into paragraphs
with a target length of 15. Based on the length of the input claims (see Table 2) we try to adapt
the length of the examined fragments of the verified claim to keep the comparison roughly
balanced. We are aware that with this restriction we have made a rather conservative choice.
This parameter can be adjusted in the future.

'https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1
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Table 3
Results on the test set on subtask A.

Rank Team MAP@5 MAP@1 RR P@3 P@5
1 aschern 0.883 0.861 0.884 0.300 0.182
2 NLytics 0.799 0.738 0.807 0.289 0.179
3 DIPS 0.787 0.728 0.795 0.282 0.177
4 shaar 0.749 0.703 0.761 0.262 0.164
Table 4
Results on the test set on subtask B.
Rank Team MAP@5MAP@1 MAP@3 MAP_AIIRR P@3 P@5
1 sshaar  0.346 0.304 0.339 0.355 0.350 0.143 0.091
2 DIPS 0.328 0.278 0.313 0.346 0.336 0.143 0.099
3 NLytics 0.215 0.171 0.210 0.223 0.216 0.101 0.068

Similarity metrics. We use Euclidean distance of normalized vectors, which for two vectors
¢, ¥ is equal to distance(c,¥) = /2 (1 — cos(&,0). The submitted scores represent the
multiplicative inverse of the distance. In case of duplicate scores due to chunking of large
documents, we only consider top scores.

4.2. Results and Discussion

We participated in both subtasks. Official evaluation results on the test set are presented in
Table 3 and Table 4 for each subtask, respectively. shaar is a baseline submission (Elastic Search)
of the competition organizers.

For the subtask A our system was ranked 2"¢. However, a large gap (MAP@5: 0.883 vs. 0.799)
with the superior approach should be mentioned. The result reflects the performance of the pre-
trained language model used without task-specific fine-tuning. The submitted relevance scores
are based on semantic similarity only, resulting from distances of the vector representations
at paragraph level. As already mentioned in section 2.1, the comparison of the ranking to the
given baseline seems problematic, since these are based on semantic similarity on the one hand
and on lexical similarity on the other hand. Thus, this approach can potentially be used as a
baseline for comparing other ranking methods based on semantic similarity.

The particularly poor results of the subtask B are astonishing, since the same procedure
was followed. Our system was ranked last not even passing the given baseline on this task.
The comparison of the input data resulting from tables 1 and 2 do yield any useful clues for
explanation, since they are similar in scope and length. On the contrary, we expected the phrase
structure in political debates should significantly improve semantic representation. For this
reason, the problem of comparing semantic and lexical similarity is considered responsible for
the poor performance.



5. Conclusion and Future work

We described our approach for the CLEF 2021 - CheckThat! Lab: Detecting Previously Fact-
Checked Claims. We employed RoBERTa-based neural architectures to encode text sequences
into a dense vector space. Similarity scores are being calculated using geometric distances
between representation vectors at paragraph level. In future work, we will examine the impact
task-specific fine-tuning on relevance ranking. Furthermore, we plan to investigate more recent
neural architectures for language representation such as T5 [18] and GPT-3 [19]. Finally, from
probing experiments, the morpho-syntactic and semantic features captured by the embedding
models could be extracted to be used in an elaborated weighting scheme for relevance scores.
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