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Abstract
In the e-Health domain, new and continuously evolving threats emerge every day. The security of
e-Health telemonitoring systems is no longer negligible. In this paper, we propose a Cyberattack Detec-
tion System (CADS) model that exploits artificial intelligence techniques to detect anomalies without
requiring a security analyst, explain the malicious activity, and display suspected attack data to health-
care personnel for feedback. The system description is contextualized to the case of the hacked remote
patient health telemonitoring.

1. Introduction

Security plays a major role in the healthcare domain. Preventing cyberattacks on healthcare
infrastructures is no longer negligible. Compromising security in any e-Health system can lead
to serious damage to patients’ health. In particular, in a remote care context, the protection
of telemonitoring systems of patients are essential to ensure that they follow their Clinical
Pathway without any kind of external intrusion.

Artificial Intelligence (AI) plays an important role in combating cyberattacks on the security
of patient telemonitoring systems [1, 2, 3]. A system that monitors and prevents cyberattacks in
healthcare not only must detect the attack, but should also be able to properly understand and
report it to the user. In particular, Anomaly Detection systems are renowned approaches that
are based on Machine Learning (ML) or Deep Learning (DL) methods to model normal activity
in a such way as to easily detect abnormal deviations from the standards in a data-driven fashion.
Therefore, in such a sensitive domain, where several healthcare professionals are involved,
in addition to detecting threats, it is of paramount importance to represent and explain them
through appropriate Explainability algorithms [4]. Moreover, current detection models and
rules are not mature enough to recognise early breaches that have not yet caused any damage.

Intrusion analysts infer the context of the incident using prior knowledge to discover events
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relevant to the incident and understand why it happened [5]. Although security tools that
provide visualization techniques and minimize human interaction have been developed to make
the analysis process easier, too little attention has been given to making human-friendly the
interpretation of security incidents. Simply reporting a cyberattack in written format is not
enough to enable the healthcare professional to correct the patient’s Clinical Pathway. This data
must be represented in a graphical way, which can be grasped by the healthcare provider. The
detection of the cyberattack must therefore be supported by systems that provide different forms
of explanation, depending on the different end users, and that allow these users to have the
possibility to interactively manipulate graphical representations based on Visual Data Mining
techniques.

The Internet of Things (IoT) has transformed hospital settings and created a new moniker for
the healthcare world, The Internet of Medical Things (IoMT). Ensuring a security mechanism
for IoMT, which uses appropriate analytical tools in a distributed working architecture, also
capable of analyzing huge data (i.e., big data) generated by IoMT devices in a distributed
manner, is a challenging issue. In this paper, we present a cyberattack detection model that
implements eXplainable AI (XAI) functionality to support caregivers in grasping that an attack
has occurred to the telemonitoring system and its effect on the patient’s Clinical Pathway. The
main contribution is a Cyberattack Detection System that is able to identify compromised data
during a cyberattack and support the caregiver to fix the problem. In this paper, we focus on
the case where an IoMT system has been hacked, with the malicious intent of manipulating
health data, in order to trigger bogus care countermeasure.

The remainder of the present work is as follows. Section 2 provides an overview of related
work and technologies which were investigated as background knowledge, namely, cyber-
attack detection systems, anomaly-based intrusion detection systems, anomaly detection in
e-Health and IoMT with AI techniques. Section 3 describes the architecture of our proposal,
i.e. a Cyberattack Detection System with an anomaly detector, an explanation module and a
user interface engine, showing a possible scenario of application specifically designed for our
approach. Finally, Section 4 concludes the paper, outlining future works.

2. Background and Related Work

Cyberattack detection can be defined as the problem of identifying individuals who are using a
computer system without authorization, those who have legitimate access to the system but
are abusing their privileges, and, in general, the identification of attempts to use a computer
system without authorization or to abuse existing privileges.

In this landscape, modern cyberattack detection systems monitor either host computers
or network links to capture cyberattack data. Host intrusion detection refers to the class of
intrusion detection systems (IDS) that reside on and monitor an individual host machine [6].
There are a number of system characteristics that a host intrusion detection system (HIDS)
can make use of in collecting data [7]. A network intrusion detection system (NIDS), instead,
monitors the packets that traverse a given network link. Such a system operates by placing the
network interface into promiscuous mode, affording it the advantage of being able to monitor
an entire network while not divulging its existence to potential attackers [8].



Cyberattack Detection System (CADS) is software that automates the cyberattack detection
process and detects possible cyberattacks. Cyberattack Detection Systems serve three essential
security functions: they monitor, detect, and react to unauthorized activity by company insiders
and outsider cyberattack. One of the major approaches to cyberattack detection is Anomaly
Detection. It assumes that a cyberattack will always reflect some deviations from normal
patterns. In this sense, Anomaly-based IDS compares a model of normal behavior against the
incoming traffic in order to find anomalies [9, 10].

Once an intrusive incident has been reported by means of a correct detection, the reaction
phase has to be fired, evaluating the impact of this event on the security level of the system [11].
It must provide the set of countermeasures to quickly eradicate the cyberattack and, at the
same time, indicate the set of actions to heal the system and bring it back to its normal state.
A possible way to react is via the use of Intrusion Response Systems (IRSs), as they are IDSs
capable of counteracting suspicious activities [12]. Although intrusion response components
are often integrated with the detection ones, they have received considerably less attention
than IDS research.

Anomaly Detection typically operates on monitored networked traffic data. Actually, contin-
uous monitoring is the main activity of modern e-Health technologies, ranging from devices
that monitor health and deliver medication, to telemedicine delivering care remotely. Indeed,
the integration of healthcare-based devices and sensors within IoT, led to the evolution of
IoMT [13]. Therefore, IoMT-enabled devices have made remote monitoring possible in the
healthcare sector, enabling the ability to keep patients safe, and inspiring doctor to provide
superlative treatment [14]. As a result, the increasing demands and expansion of IoMT systems
require advancements in data storage methods, data processing and cybersecurity related issues.

Healthcare providers can then provide efficient remote healthcare communication for moni-
toring and diagnosis services to the residents of these smart communities. Any security threat
to these systems may cause a serious problem, such as imposing a false diagnosis or delaying
the interaction. This leads to a violation of patients’ privacy, health issues, and even death
in extreme cases [15]. AI and Machine Learning (ML) have been largely employed for man-
aging issues in healthcare systems as they are the most promising techniques to be used for
previously unseen attacks [16]. It can identify attacks simply by monitoring data alteration or
by detecting changes in the network’s traffic characteristics. In particular, ML-based anomaly
detection systems are crucial to ensure security and mitigate threats such as false data injection
attacks [17]. IoMT systems are widely distributed and are collections of heterogeneous sensors.
Attack detection in IoMT is entirely different from the present security mechanism, due to the
special services required by IoMT such as: computing power, memory space, battery life, low
latency, and network bandwidth, which cannot get fulfilled by the centralized conventional
approach of standalone cloud computing [18]. In cloud computing architecture, data generated
by IoMT devices is being transmitted to and from the cloud in order to provide services to
the healthcare users. The limitations of traditional standalone cloud solutions is that the data
recovery time is too high for a real-time emergency situation, such as fall detection or stroke
prevention, which mostly needs rapid response time from medical professionals [19].

Therefore, designing a distributed security framework, for distributed IoMT applications is a
challenging task due to the dynamic nature of IoMT network such as IoT devices, edge devices,
and cloud. Moreover, the evolution of attacker behavior can intercept the transmission network



in IoMT [20]. The line of research in this way is going towards constructing robust anomaly-
based IDSs that efficiently distinguish attack and normal observations in IoMT environment,
consisting of interconnected devices and sensors, with poor design and weak authentication
measures. As stated in [21, 22], the collection of remote data from these sensors is a complex
process due to the different types of devices that are involved to measure the parameters. For
this reason, works in [23, 24] dealt with a clinical and operational context to develop integrated
solutions for seamless care in which AI and IoMT are used at the Edge, with a people-centered
approach that adapt to the needs of healthcare providers and that are embedded into their
workflows. Recently, in [25] proposed an ensemble learning model that combines Decision
Trees, Naive Bayes, and Random Forest to feed a final XGBoost classifier in order to identify
normal and attack instances in an IoMT network. Also, authors in [26] have designed a a
real-time Enhanced Healthcare Monitoring System (EHMS) test-bed that monitors the patients’
biometrics and collects network flow metrics. Some recent works [27, 28, 29] have proposed
to improve the performance of anomaly detection by incorporating a type of feedback from
the user, called User Feedback. Nevertheless, all the studies lack of effective threat reaction
phases that can be managed with appropriate explainable modules of ML-based models and
user feedback modules to ascertain that a detected anomaly is assumed to be malicious.

3. The Cyberattack Detection System

Figure 1: Architecture for the Cyberattack Detection System.

Figure 1 depicts the architecture of the proposed Cyberattack Detection System. An early
version was already presented in [30]. This revised and refined architecture focuses on the
security of data transmitted from IoMT sensors to three different interconnected processing
modules, namely the Clinical Pathway Anomaly Detection (CPAD), the Explainer module, and
the User Interaction Engine. The latter is made up of three sub-modules, i.e.: Visualization
Framework, User Interface, and User Feedback.

The system implements a methodological approach to the problem of anomaly detection by
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Figure 2: Data flow among system modules.

including, in addition to the identification of anomalous data, an explanation of the possible
motivations for classifying such data as anomalous, and the possibility for a domain expert to
validate data through their visual interactive representation. Anomalous data, which represent
an intrusion in a hacked system, are explained according to the Explainable Security (XSec)
paradigm [31]. As a result of a hacked home-care telemonitoring system, the Cyberattack
Detection System classifies some ECG instances as False Positives (FP) or False Negatives (FN).
After the detection, the user will be able to analyze the characteristics of what caused the
classification of some data as FP or FN and interact with it. The interaction activity with the
data is performed by means of the User Interaction Engine, which provides a dashboard through
which to visually explore the data to get a clearer view of what happened in a time interval.
Furthermore, thanks to the User Feedback sub-module, it is possible to implement a continuous
improvement of the classification performances, and consequently of the anomaly detection,
thus achieving a more robust identification of threats. Figure 2 shows the relationships between
the various modules in terms of data flow.

Our system is beneficial in e-Health scenarios, supporting the patient who is in home-
based healthcare. The technological infrastructure, based on the architecture presented in [30],
promotes the care of a patient according to his or her Clinical Pathway (CP), i.e. a set of
diagnostic and therapeutic procedures related to the treatment of that specific patient. The
CP represents a tool used to manage the quality in healthcare concerning the standardization
of care processes. Its implementation reduces the variability in clinical practice and improves
outcomes, aiming at promoting organized and efficient patient care based on evidence-based
medicine, and to optimize outcomes in settings such as acute care and home care. A single CP
may refer to multiple clinical guidelines on several topics in a well specified context. In this way,
some activities can be managed by the health personnel of health structures; some others can be



managed autonomously by the patient, in a sort of medical-unsupervised manner. The home care
infrastructure, i.e. the IoMT-Edge-Computing, promotes a kind of distributed edge computing of
the IoMT network, thus reducing latency and improving reliability. Patient monitoring devices
are then connected in the IoMT network. In turn, edge devices communicate with a cloud
infrastructure to store gathered clinical data and keep in touch with the corresponding medical
staff. Therefore, some vulnerabilities may arise regarding the security of patient and clinical
data.

The proposed Cyberattack Detection System implements cybersecurity methods to identify
which data were compromised after the system is hacked. Moreover, it provides an explanation
of the cyberattack and enables interaction with the detected anomalies which may occur in the
remote and continuous patient monitoring and care phases. In particular, the anomaly detection
phase is carried out by the CPAD module, whose formalization, already tailored in the healthcare
domain, was introduced in [32]. The CPAD detects deviations from the patient’s CP and avoids
the processing of inconsistent or false data, which could be life-threatening for a patient. After
the detection phase, the Explainer module analyzes clinical data classified as anomalous and,
through the User Interaction Engine, a validation request is sent remotely to the medical staff.
A continuous telemonitoring of patient’s clinical parameters is performed, without the need for
a physical presence of the health operator. The system, by means of IoMT sensors connected to
the Edge network, collects different clinical parameters, such as Electroencephalogram (EEG),
Blood Oxygen Level (OXI), Electrocardiogram (ECG), Electromyography (EMG), ALT Blood
Test (ALT), and body temperature. Afterwards, such clinical data are processed at the Edge and
the patient Clinical Pathway is generated.

In the following, a running example in which an e-Health telemonitoring system has been
hacked is reported. It describes how the proposed Cyberattack Detection System is able to
highlight the cybersecurity threats and the related countermeasures to solve the hack and
restore the system. A male patient who is following a certain CP is monitored. He suffers
from Congestive Heart Failure and his CP requires that his heartbeats are monitored every
15 minutes. A smart end-device that measures the ECG is used. Hence, the proposed system,
suitably connected to the end-device, receives data about the patient pulse. The gathered
heartbeats are fed to the CPAD module that determines whether anomalous measurements
occur, suggesting that the telemonitoring system has been hacked. Since heartbeats measures are
a key factor in determining the clinical picture of a patient, a compromised flow of measurements
would endanger the patient’s CP and induce a wrong handling of the patient’s health.

The Cyberattack Detection System is designed to be modular and can be integrated with
various IoMT devices that use Bluetooth technology. An API gateway is responsible of the
correct integration of the end-device with the Cyberattack Detection System. In particular, the
API gateway checks the compliance of the gathered data to be fed into the system. By means
of specifically designed APIs, input data are normalized according to the system standards,
allowing the correct exchange of information between the devices and the software modules,
also converting unstructured data into structured ones.

Referring to the running example, in which a smart ECG monitoring end-device is connected
via IoMT with the Cyberattack Detection System, the following definition to formally handle
data inflow is proposed.



Table 1
ECG device data table format.

ECG 𝐻𝐵𝑡𝑠1 𝐻𝐵𝑡𝑠2 · · · 𝐻𝐵𝑡𝑠𝑢

𝐸𝐶𝐺0 𝑥(0,1) 𝑥(0,2) · · · 𝑥(0,𝑢)

𝐸𝐶𝐺1 𝑥(1,1) 𝑥(1,2) · · · 𝑥(1,𝑢)

𝐸𝐶𝐺2 𝑥(2,1) 𝑥(2,2) · · · 𝑥(2,𝑢)

... · · · · · ·
. . .

...
𝐸𝐶𝐺𝑖 𝑥(𝑖,1) 𝑥(𝑖,2) · · · 𝑥(𝑖,𝑢)

Definition 1. Let 𝐸𝐶𝐺 be the data-flow of a smart ECG monitoring end-device, 𝐻𝐵 be the
heartbeat information coming from 𝐸𝐶𝐺 at a certain timestamp 𝑡𝑠. The 𝑖-th heartbeat detection
is defined as follows:

𝐸𝐶𝐺𝑖 = 𝑓(𝐻𝐵𝑡𝑠𝑢),with 𝐻𝐵𝑡𝑠𝑢 ∈ R and 𝑢 ∈ [1, 𝑙], 𝑙 ∈ R (1)

The variable𝐻𝐵𝑡𝑠𝑢 indicates the count-based feature representing the value of the𝑢-th sampling
step in a given timestamp, which can be assumed as a real value 𝑥(𝑖,𝑢) ∈ R, representing the
amount in milliVolt (mV) of the count-based feature. Therefore, the representation of the ECG
data can be formalized as in Table 1.

3.1. ECG Anomaly Detection

The proposed system, through the use of AI techniques, contributes to improve the security of
the telemonitoring infrastructure. Once the data have been transformed into a structured form,
they are given as input to the CPAD which analyzes the structured data according to Table 1
format, and checks in which point the cyberattack has been launched by retrieving the anomaly.
The CPAD module is based on Robust Deep Autoencoders (RDA) [33]. In fact, some recent
works demonstrated how these deep approaches perform quite well in detecting cyberattacks by
carrying out anomaly detection by means of neural structures [34, 35, 36]. The main advantage
of applying RDA for anomaly detection is the capability of discovering high-quality nonlinear
features, while at the same time identifying and eliminating outliers and noise.

In the running example, in which it is assumed that a cyberattack on ECG measurements is
going on, a delayed threat reaction would compromise the patient’s care pathway. By exploiting
RDA for anomaly detection, the CPAD modules ensure a rapid response in terms of inference
time, quickly detecting anomalous ECG data. In particular, the CPAD module categorizes ECG
data with a simple binary classification according to whether they have been identified as
anomalous or not. Actually, in the medical literature [37], heartbeats can be classified into five
different types:

1. (N) - Normal;
2. (RonT) - Premature Ventricular Contraction;
3. (PVC) - Premature Ventricular Contraction;
4. (SP) - Supra Ventricular;
5. (UB) - Unclassified Beat.



Therefore, the classification process can be further specified by dividing the normal heartbeats
from the others, and then dedicate another RDA classifier to detect the remaining four different
types of anomalies. In particular, the CPAD module defines three sets of classified ECG data:

• 𝐸𝐶𝐺⊤: instances classified by CPAD as normal, i.e. not anomalous;
• 𝐸𝐶𝐺⊥: instances classified by CPAD as anomalous;
• 𝐸𝐶𝐺⊥𝑡 : instances of anomalous ECG, with 𝑡 ∈ {(RonT), (PVC), (SP), (UB)}.

Once the structured data have been processed, the CPAD produces a CSV file containing all
the instances classified by CPAD as anomalous 𝐸𝐶𝐺⊥, i.e. all the heartbeats that are anomalous.
A confusion matrix is also showed, in order to have a clearer view of performance classification,
both in terms of predictability power and effectiveness of the learned model. To address the
anomaly detection problem, the RDA method based on the autoencoder approach is exploited. It
is based on a training pipeline, where examples of anomalies are provided during model training.
The result is evaluated on sets consisting of anomalous and normal (i.e., non-anomalous) data.
In the end, the CPAD module separates the predicted instances into the three different sets of
heartbeat anomalies, namely 𝐸𝐶𝐺⊤, 𝐸𝐶𝐺⊥, and 𝐸𝐶𝐺⊥𝑡 .

3.2. ECG Explanation

After the anomaly detection, the next step is to interpret and explain the sets that CPAD has
created, to understand why certain instances have been classified as anomalous. In systems using
Explainable AI (XAI) algorithms, additional data coming from the Machine Learning process
may be useful explanations, produced by the system itself to enrich the predicted instances
with a plausible rationale. In Information Security, instead, explanations are provided by the
designers. However, the role of Explanations is crucial in AI field. Consequently, Information
Security kept all advantages from that, for example, ensure the user trust concerning the system.
Explanations are therefore designed to bridge the gap between “actual safety” and “perceived
safety”.

To this end, the Explainer module of our Cyberattack Detection System receives as input the 𝑖-
th ECG instance (𝐸𝐶𝐺𝑖) from the API Gateway, and also the output of the CPAD, appropriately
separated in the three sets 𝐸𝐶𝐺⊤, 𝐸𝐶𝐺⊥, and 𝐸𝐶𝐺⊥𝑡 . Exploiting the XSec paradigm, the aim
is to obtain its “six W ” (Who? What? Where? When? Why? and How?) that give a complete
view of the identified and perceived anomaly. XSec involves several actors (e.g., in this case we
have security analysts, doctors, nurses, and the patient). It requires a dedicated reasoning tool
to infer about the system model, the threat model, and properties of security, privacy, and trust,
as well as concrete cyberattacks, vulnerabilities, and countermeasures.

In addition to the XSec paradigm, two specifically designed indexes, called respectively
Anomaly Score General Unsafe (ASGU) and Anomaly Score Class Unsafe (ASCU), are introduced.
First, we formally define the ASGU index as follows.

Definition 2. Let 𝐸𝐶𝐺 be the set of heartbeat detections received from a smart ECG monitoring
end-device, 𝐸𝐶𝐺𝑖 be the 𝑖-th heartbeat detection, and 𝐸𝐶𝐺⊥ the set of all anomalous instances.
Then, the Anomaly Score General Unsafe index is a function ASGU: 𝐸𝐶𝐺 ↦→ [0, 2] which gives
a general ranking of possibility of considering a heartbeat as anomalous, according to instances



in 𝐸𝐶𝐺⊥. Therefore, ASGU(𝐸𝐶𝐺𝑖) ∈ R[0,2] indicates how the instance 𝐸𝐶𝐺𝑖 is currently
considered an anomaly over the whole set 𝐸𝐶𝐺⊥.

Hence, the higher the ASGU score value, and thus closer to 2, the more anomalous the
heartbeats will be considered. The ASCU index, instead, is based on the comparison with one
of the four classes of anomalies.

Definition 3. Let 𝐸𝐶𝐺 be the set of heartbeat detections received from a smart ECG monitoring
end-device, 𝐸𝐶𝐺𝑖 be the 𝑖-th heartbeat detection, and 𝐸𝐶𝐺⊥𝑡 a set of a class of anomalous
instances, with 𝑡 ∈ {(RonT), (PVC), (SP), (UB)}. Then, the Anomaly Score Class Unsafe index is
a function ASCU: 𝐸𝐶𝐺 ↦→ [0, 1] which gives a general ranking of probability of considering
a heartbeat as anomalous, according to a class 𝐸𝐶𝐺⊥𝑡 . Therefore, ASCU(𝐸𝐶𝐺𝑖) ∈ R[0,1]

indicates how the instance 𝐸𝐶𝐺𝑖 is currently considered an anomaly over the whole set 𝐸𝐶𝐺⊥𝑡 .

In this case, the higher the value of the ASCU score, and therefore the closer to 1, the
more abnormal the heartbeats will be in the set of heartbeats of the same class 𝐸𝐶𝐺⊥𝑡 . The
goal of these two indexes is to quantify the strength of a feature in contributing to determine
an anomaly in the ECG data. This would give a further useful information to characterizing
the detected anomaly, and such information can be assumed as part of the explanation to be
addressed together with the XSec approach.

In the running example, the Explaination module receives as input the CSV file containing
the 𝐸𝐶𝐺𝑖 instances and provides in output another CSV file composed of four columns:

• 𝐸𝐶𝐺𝑖: 𝑖-th instance classified by the CPAD as anomalous;
• CLASS: the corresponding class 𝑡 ∈ {𝐸𝐶𝐺⊥𝑡} of the 𝑖-th instance;
• ASGU: the Anomaly Score General Unsafe score;
• ASCU: Anomaly Score Class Unsafe score.

The Explanation module, therefore, acts in two conjunct phases: the first one takes place
following the generation of the CSV file containing the information and indexes mentioned
above (𝐸𝐶𝐺𝑖, CLASS, ASGU and ASCU); the second one results from the information generated
by the XSec approach, which will be displayed in the Visualization Framework. Thanks to
the combination of the XSec paradigm and the two indexes ASGU and ASCU, the Cyberattack
Detection System provides the doctor with a concise explanation of why the 𝑖-th detection has
been classified as anomalous.

Following the Explanation, it is possible to check whether the Clinical Pathway that has been
generated is correct or not. An incorrect CP has a double meaning: from a clinical point of view,
it is a serious problem for the patient’s health while, from the cybersecurity point of view, it
means that the system has been hacked.

3.3. ECG User Interaction

In our case study, the contribution of the User Feedback to the system is the evaluation of a
the detected anomaly and the embedding of a doctor’s feedback. The User Feedback module
will generate for each detection 𝐸𝐶𝐺𝑖 a feedback coefficient 𝜑𝑖 that represents the doctor’s
feedback on a given instance.



Definition 4. Let𝐸𝐶𝐺 be the set of the heartbeat detections received from a smart ECG monitor-
ing end-device, 𝐸𝐶𝐺𝑖 be the 𝑖-th heartbeat detection. Then, the feedback coefficient is a function
𝜑 : 𝐸𝐶𝐺 ↦→ {−1, 1} such that any 𝑖-th user feedback related to the heartbeat detection 𝐸𝐶𝐺𝑖,
is defined as follows:

𝜑𝑖 =

{︂
+1 if 𝐸𝐶𝐺𝑖 is false positive or false negative
−1 if 𝐸𝐶𝐺𝑖 is true positive or true negative (2)

Therefore, the User Feedback 𝑈𝐹 is a set of tuples such that, for any 𝑖-th pair of arguments (𝐸𝐶𝐺𝑖,
𝜑𝑖), a single element 𝑈𝐹𝑖 is defined as:

𝑈𝐹𝑖 = (𝐸𝐶𝐺𝑖, 𝜑𝑖) (3)

In this way, the Cyberattack Detection System will become more robust to external cyberat-
tacks, since the User Feedback would report the opinion of the caregiver which will confirm or
not whether the 𝑖-the ECG detection is abnormal or not. In the User Interaction Engine, the
Visualisation Framework represents the data orchestrator, handling and visualizing processed
data coming from the various modules. It uses algorithms of Visual Data Mining (VDM) [38, 39]
that allow, through different visualisation techniques, to interactively group data in a more
efficient way, improving the data insight process.

Afterwards, the User Interface (UI) included in the User Interaction Engine allows the user to
interact with the data. In the running example, the UI allows the caregiver to interact with the
ECG instances. After the Explanation module has displayed the result of the XSec paradigm,
it is possible to visually manage each ECG detection. For instance, one would be able to no
longer consider an ECG instance as an anomaly, or, more specifically, to improve the classifier
performances by indicating the correct class of anomaly among the four types 𝐸𝐶𝐺⊥𝑡 when a
wrong one has been predicted. The interaction with the user, in this case a doctor, helps the
system to be more and more reliable, as well as secure from cyberattacks.

Through the integration of CPAD, Explainer, and User Engine Interface modules, the Visual-
ization Framework will be able to manage anomalies detected as Threat Insight. These will be
appropriately displayed on the UI which, in addition to allowing interaction with the anomalous
data (in this case the ECG detection), will be able to display the threat representation through a
dashboard. Thanks to the threats graphical representation in the dashboard, the user’s reaction
to the threat is improved.

4. Discussion and Conclusion

In the e-Health domain, new and continuous evolving threats emerge every day. The security
of e-Health telemonitoring systems is no longer a negligible task. The proposed Cyberattack
Detection System, thanks to the use of AI techniques, is able to protect the e-Health system
from cyberattacks by automatically identifying the anomalies in the e-Health system, without
the need of a dedicated security analyst.

The solution is focused on the task of cyberattack detection, in the particular case of exploiting
a remote patient telemonitoring system that has been hacked. A specific running example, i.e.
the heartbeat telemonitoring, has been considered.



The presented system is designed to automatically detect the anomaly by means of Deep
Learning techniques. In particular, a Robust Deep Autoencoder detects anomalous heartbeats
instances. The detected anomalous heartbeats are subsequently interpreted with a combination
of state-of-the-art explainable security paradigms (XSec) and with two new explainable scores
which have been introduced, showing to the user the reasons of a malicious activity interfering
with the heartbeats telemonitoring. Further, the systems visually represent the results to the
user who is engaged in a feedback response: if the detected anomalous data are truly atypical,
the user assess the detection with a positive feedback coefficient, i.e. a new metric involved
in the process of user interaction with the system. Otherwise, the user provides a negative
feedback coefficient. Such an interaction with the Cyberattack Detection System proposed has
an impact on the processed health data, adjusting the visualization reports with the corrected
measurements, shown in a useful dashboard.

The proposed work witnesses how the wide range of AI techniques are already dramatically
important in the hot topic of Cybersecurity, in particular when applied to eHealth domain.
The effectiveness of AI algorithms in identifying threats, and the consequent efficiency in
significantly reducing the user’s reaction time, are becoming fundamental properties to be
taken into account when designing a Cyberattack Detection System. For these reasons, Threat
Intelligence is increasingly becoming a tool for enhancing system security and performing
automatic threat analysis. Indeed, Threat Intelligence uses different data sources (in this case
data from different IoMT sensors) to proactively identify and mitigate threats to improve the
security of the patient telemonitoring system. Overall, the presented system suggests how it
is possible to improve user reaction to threats in healthcare telemonitoring systems using AI
techniques.

Future work will be devoted to the integration of other IoMT sensors and, hence, to the
anomaly detection of other vital parameters.
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