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Abstract
This paper presents our solutions for the Swiss-
Text 2021 shared task “Sentence End and
Punctuation Prediction in NLG Text”. We en-
gaged with both subtasks (i.e., sentence end
detection and full-punctuation prediction) and
built systems for English, German, French
and Italian. To tackle the punctuation pre-
diction problem, we ensemble multiple dif-
ferently trained Transformer models (BERT,
CamemBERT, Electra, Longformer, MPNet,
XLM-RoBERTa, XLNet) and leverage their re-
sults using a sliding window method during in-
ference time. As a result, we achieve an F1
score of the positive class of 0.94 for English,
0.96 for German, 0.93 for French, and 0.93 for
Italian for the subtask 1 “sentence end detec-
tion” on the respective test sets. Furthermore,
Macro F1 results on test sets for subtask 2
“full-punctuation prediction” for English, Ger-
man, French and Italian are 0.78, 0.81, 0.78,
0.76 respectively.

1 Introduction

Transcribed or translated texts often contain erro-
neous punctuation. Correct punctuation, however,
is crucial for human understanding of a text, as
shown by Tündik et al. (2018). Rightly placed
punctuation not only makes the text more read-
able and intelligible but can change the meaning of
sentences, as well. Translated texts pose another
challenge: Different languages expose different
sentence structuring conventions and hence use
punctuation very differently.

However, systems for automatic transcription of
speech nowadays focus on minimizing the Word
Error Rate (WER), which omits punctuation (He
et al., 2011). As a result, the state-of-the-art sys-
tems are focused on the correct transcription of
words and not necessarily correct segmentation of
text or correct punctuation (Tündik et al., 2018).

*Equal contribution. Order determined by coin flip.

Therefore, attempts in improving the quality of
such texts must also focus on a more precise predic-
tion of punctuation. Consequently, this is an ongo-
ing research effort in the NLP community. Recent
developments in NLP (such as Transformers) offer
new possibilities to tackle punctuation prediction
effectively. Some of these attempts are discussed
in Section 2.

Following recent attempts, we propose an ensem-
ble system based on the Transformer architecture,
where multiple models predict the punctuation sym-
bols of a given text. The results are then combined
and the final predictions are made. Our language-
specific systems are able to predict punctuation for
English, German, French, and Italian texts and are
on par – if not better – with current state-of-the-art
models that participated in the shared task.

Our main contributions include

1. the exploration of different Transformer-based
models and identification of the most impor-
tant features which affect the performance for
this task, and

2. a showcase that the ensembling of differently
trained models enhances the performance for
the punctuation prediction task.

2 Related Work

Punctuation prediction tasks pose many challenges.
One of them is the restricted input length thus re-
stricted context for the Transformers. To solve the
above mentioned limitation, Nguyen et al. (2019)
used an overlapped chunk method (i.e., an over-
lapping sliding window) combined with a capi-
talization and a punctuation model to tackle the
punctuation problem in long documents. First,
the text is divided into chunks with overlapping
segments. Second, a punctuation model (seq2seq
LSTM, Transformer) predicts punctuation and cap-
italization for every segment. Lastly, overlapped
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chunk merging combines chunks by discarding a
defined number of tokens per overlapped chunk.

Courtland et al. (2020) changed the usual frame-
work of punctuation prediction to predicting punc-
tuation for the whole sequence rather than for sin-
gle tokens. The authors used a feedforward neural
network. Similar to Nguyen et al. (2019), they find
that using a sliding window approach improves
prediction performance. However, instead of pro-
ducing multiple predictions for the same token,
they sum activations before prediction and make
inference afterwards.

Sunkara et al. (2020) used a joint learning objec-
tive for capitalization and punctuation prediction.
The model input are sub-word embeddings. The
authors used the pre-trained BERT model (BERT
base truncated to the first six layers). They fine-
tuned the model on medical domain data because
the medical domain was in the main scope of this
paper. They also fine-tuned the model for the punc-
tuation prediction task. The authors used masked
language learning objective while forcing half of
the masked tokens to be punctuation marks.

Similarly, Nagy et al. (2021) also leveraged pre-
trained BERT models (BERT base cased and un-
cased and a smaller version for English; multilin-
gual and Hungarian-specific BERT versions for
Hungarian). They added a two-layer multi-layer
perceptron network with a soft-max output layer.
The model also used a sliding window approach to
enhance the results further. This model is trained
to predict four labels: empty (no punctuation),
comma, period and question mark.

Our approach differs from the above men-
tioned in using ensembling of multiple pre-trained
Transformer-based models fine-tuned for the given
task. Very importantly, our systems predict six
different punctuation symbols for the punctuation
prediction task.

Additionally, a multilingual Transformer was
used as a part of our ensemble. We hypothesize
that it would be able to capture more accurately the
multilingual content of the EuroParl data. Further-
more, low-resource Latin languages might bene-
fit from pre-training on more data, e.g., including
other Latin languages.

In Section 3 we will discuss the datasets we used
and the challenges they provide. The problem is
described in Section 4 together with detailed de-
scription of our approach. Section 5 contains expla-
nation of used hyperparameters, technical details

Language Training Evaluation
English 11,028 10,521
German 11,495 10,207
French 12,276 13,366
Italian 10,379 10,502

Table 1: Mean token length per document in the train-
ing and evaluation dataset.

and experimental setup. Section 6 presents our
results and discusses the impact of used methods.
Finally, a conclusion is drawn in Section 7.

3 Dataset

The Europarl Parallel Corpus (Koehn, 2005) serves
as the data source for the training, development,
and test set. The surprise test set (of an undisclosed
domain during evaluation) is an out-of-domain
dataset that consists of a sample from the TED
2020 dataset (Reimers and Gurevych, 2020) with
a low vocabulary overlap with the training data.
As provided by the organizers of the shared task,
samples in all datasets were lowercased and all
punctuation marks were removed.

Subsequently, we outline challenges that we be-
lieve are especially relevant in solving this shared
task and thus directly influenced our proposed sys-
tem architecture.

3.1 Long Documents

As shown in Table 1, the mean token length is
many orders of magnitudes longer than what typi-
cal Transformer architectures can process at once
(typically up to 512 subtokens). It should be noted
that some of the documents are especially long and
can contain up to 100,000 tokens. The most obvi-
ous solution would be just to split documents into
smaller sequences and subsequently merge predic-
tions. However, this approach lowers the context
with which a model is confronted and might lead
to lower prediction quality (presumably at the be-
ginning and end of a sequence).

3.2 Multilingual Content

To some extent, documents in the EuroParl Corpus
contain multilingual content. As shown in the ex-
amples in Table 2, many documents contain names
of people and areas that reflect the multilingualism
of the participants of the European Parliament, i.e.,
members come from all over Europe. Therefore,
using pre-trained models trained on monolingual



Sentence Excerpt
i agree completely with mr pöttering
and with you too mr swoboda
the president of the european commission
josé manuel durão barroso however

Table 2: Excerpts from the English training data that
contain multilingual content.

data only may result in an inaccurate representation
of this content.

3.3 Imbalanced Class Distribution

The class distribution of the training and evaluation
set, as shown by Table 3, presents a rather typical
situation in machine learning: Some of the classes
have very few examples compared to the biggest
classes. Neglecting this circumstance will likely
lead to low performance for minority classes. Us-
ing typical techniques such as class-specific loss
weights or data augmentation might improve per-
formance to some extent. We have tried to reduce
this problem by adding a model with altered loss
weights to the ensemble.

Punctuation Training Development
: 43,133 9,490
? 44,290 9,815
- 80,916 18,335
. 1,396,166 319,751
, 1,759,686 401,095
0 30,454,904 6,985,003

Table 3: The distribution of class labels for English
for the training and development set. 0 indicates the
absence of a punctuation mark. The distributions for
German, French and Italian are similar.

4 Methods

4.1 Problem Modelling

We modelled this problem as a token classification
task. More precisely, each token is assigned a label
representing the following punctuation symbol (if
any). We concentrated our main efforts and focus
on the full punctuation prediction. As such, we
built all of the models to be able to predict all punc-
tuation symbols. For the end of sentence prediction
task, we mapped predictions of ‘.’ ‘?’ to 1 and the
rest to 0.

Language Transformers - Base
English Electra, Longformer,

MPNet, XLNet
German BERT, Electra‡,

XLM-RoBERTa
French CamemBERT‡, Electra,

XLM-RoBERTa
Italian BERT, Electra‡,

XLM-RoBERTa

Table 4: Transformer models that were used for each
language-specific model. Models marked with ‡ were
used twice: Once trained without weighted loss and
once with weighted loss.

4.2 Transformers

The corner-stones of our systems are pre-trained
Transformer models. We trained four different fine-
tuned models for each language and combined the
predictions using majority vote ensembling (see
Section 4.5). Table 4 provides an overview.

Electra (Clark et al., 2020) is trained as a dis-
criminator, and the authors suggest that it is more
suitable for downstream sequence labelling tasks.
In fact, we can further support this claim because
this model architecture was the best-performing
single model for all languages except French (see
Table 5 and 6).

Both MPNet (Song et al., 2020) and XLNet
(Yang et al., 2019) are trained (slightly differently)
through permuted language modelling, allowing
a better understanding of bidirectional contexts,
which is often needed with punctuation. Both of
these single models performed exceptionally well
in our experiments.

Longformer (Beltagy et al., 2020), due to its
local windowed attention with a task motivated
global attention, can process larger sequence
lengths (up to 4096) and perform well on the longer
documents of this task.

XLM-RoBERTa (Conneau et al., 2019) is a mul-
tilingual transformer that is trained on over 100
languages. In our experiments it was demonstrated
to be the best performing multilingual model.

The authors of CamemBERT (Martin et al.,
2019) show that it performs exceedingly well in
NER token classification. Moreover, the good per-
formance translated to our French full-punctuation
prediction experiments.

BERT (Devlin et al., 2018) has models pre-
trained in multiple languages. We used language-



specific BERT models as part of German, French
and Italian ensembles.

4.3 Sliding Window
As discussed earlier, documents in the corpus can
be rather long, and typical Transformers cannot pro-
cess such documents at once. Therefore, instead
of simply splitting the documents into smaller seg-
ments, sequences are overlapped for inference. In
other terms, a sliding window is applied, as sug-
gested by Nguyen et al. (2019). Subsequently, the
overlapped sequences are merged back together by
discarding half of the overlapped tokens at the beg-
ging and end of each sequence. Our experiments
have shown that an overlap of 40 tokens performs
best. Consequently, we chose this overlap length
for the final models.

4.4 Weighted Loss
For the German, French and Italian ensembles, we
retrained the best performing model with weighted
loss. We set the weights to three for the two
least performing classes (‘-’, ‘:’) and left them
unchanged for the other classes (i.e., a weight of
one). The idea is to increase recall for these classes

by sacrificing overall performance, which, in re-
turn, helps an ensemble to create more accurate
predictions.

Initially, we used inverted class frequencies as
loss weights. However, this approach turned out to
be too aggressive (worse minority class and over-
all performance). Further, we experimented with
increasing minority class (‘-’, ‘:’) weights. Ini-
tial experiments showed showed that weights set
to three for minority classes and one for majority
classes performed best on the development set. Our
approach is rather heuristic, and further experimen-
tation may lead to better results.

4.5 Majority Vote Ensembling

We did preliminary experiments in separate stack-
ing models as mentioned in Wolpert (1992) as well
as ensembling using the arithmetic average of class
probabilities of single models as described in Good-
fellow et al. (2014). However, one technique was
shown to be more effective: majority vote ensem-
bling. More concretely, all the models predict (i.e.,
vote) and the most voted label is then used as the
final prediction. In case of a tie, the least common

Language Models Ensemble

English
Electra Longformer MPNet XLNet
0.940 0.934 0.940 0.937 0.943

German
Electra XLM-RoBERTa BERT Electra‡

0.954 0.952 0.950 0.953 0.955

French
Electra XLM-RoBERTa CamemBERT CamemBERT‡

0.923 0.926 0.930 0.928 0.933

Italian
Electra XLM-RoBERTa BERT Electra‡

0.922 0.918 0.918 0.919 0.926

Table 5: Positive class (sentence end) F1 results on the development set for all single models and the correspond-
ing ensemble for sentence end prediction. Models marked with ‡ denote a model trained with weighted loss as
described in subsection 4.4.

Language Models Ensemble

English
Electra Longformer MPNet XLNet
0.769 0.760 0.768 0.763 0.777

German
Electra XLM-RoBERTa BERT Electra‡

0.803 0.795 0.792 0.805 0.812

French
Electra XLM-RoBERTa CamemBERT CamemBERT‡

0.758 0.761 0.769 0.770 0.778

Italian
Electra XLM-RoBERTa BERT Electra‡

0.746 0.732 0.741 0.739 0.755

Table 6: Macro F1 results on the development set for all single models and the corresponding ensemble for full-
punctuation prediction. Models marked with ‡ denote a model trained with weighted loss as described in subsection
4.4.



Language Development Test Surprise Test
P R F1 P R F1 P R F1

English 0.93 0.96 0.94 0.93 0.95 0.94 0.84 0.75 0.80
German 0.95 0.96 0.96 0.95 0.96 0.96 0.89 0.77 0.82
French 0.92 0.94 0.93 0.92 0.94 0.93 0.82 0.72 0.77
Italian 0.91 0.95 0.93 0.90 0.95 0.93 0.83 0.71 0.77

Table 7: Ensembling positive class (sentence end) F1 results on the development, test and surprise test set for
sentence end prediction.

Language Development Test Surprise Test
P R F1 P R F1 P R F1

English 0.82 0.75 0.78 0.81 0.75 0.77 0.65 0.59 0.62
German 0.82 0.80 0.81 0.82 0.80 0.81 0.66 0.65 0.65
French 0.80 0.76 0.78 0.78 0.77 0.77 0.63 0.60 0.61
Italian 0.77 0.74 0.76 0.77 0.74 0.75 0.57 0.55 0.56

Table 8: Ensembling Macro F1 results on the evaluation, test and surprise test set for punctuation prediction.

label is chosen. Additionally, predictions for a hy-
phen are counted twice – mainly to increase the
performance for the worst-performing label (which
was the case for all languages). Our experiments on
the development set have shown that this leads to an
increase of 1-2% Macro F1 score for all languages
compared to the single best performing model.

5 System Architecture

5.1 Hyperparameter Setup

At the beginning of development, we empirically
determined what characteristics of the model and
fine-tuning correlate with better performance. For
fine-tuning, five epochs performed consistently
well for all transformer architectures. Due to the
large document size, the larger the maximum se-
quence length, the better the performance. To our
surprise, there were no significant differences be-
tween the performance of cased vs. uncased Trans-
formers on our lower-cased data.

5.2 Technical Implementation

For the training of our models, we used the Simple
Transformers 1 library, a wrapper for the Hugging
Face 2 library, that allows for fast experimenting.
As the Simple Transformers library does not sup-
port weighted loss training, we have adapted the
relevant code for this purpose.

1https://simpletransformers.ai
2https://huggingface.co

5.3 Experimental Setup

We trained all of the models on a single T4 GPU
instance. Our final models shared some of the hy-
perparameters, namely a learning rate of 4e−5, a
batch size of 16 (four for Longformer) and the max-
imum sequence length (512, 4096 for Longformer).
We trained each model for five epochs.

6 Results & Discussion

Our results for sentence end prediction and full
punctuation prediction can be seen in Table 7 and
Table 8, respectively. They demonstrate the high ca-
pability of using Transformers in predicting punctu-
ation marks. Especially for sentence end prediction,
the F1 scores are well above 90% for all languages.
We hypothesize that it is because usage of sentence
end punctuation is less ambiguous – it is consis-
tently and grammatically correctly used in the data.
For full punctuation prediction, the overall perfor-
mance is significantly lower for all languages. The
full punctuation prediction task is more difficult
not only because of the existence of more labels,
but also because some of the labels might not fol-
low strict grammatical rules. For example ‘-’ or a
‘:’ can be used differently due to different styles
of linguistic expressions, while a label such as a
comma might be misplaced due to human error.

With respect to our system, sliding windows are
a simple way to improve performance when an in-
put sequence is much longer than what a model
can actually process. However, this performance
gain is limited, and as of now, it is not clear how



this compares to a model that can process much
longer sequences. Observing results we have ob-
tained from single models at Table 5 and 6 for both
subtasks we can see that the model architecture
has an effect on performance. Within our experi-
ments, majority vote ensembling further enhances
performance.

7 Conclusion

In this paper, we showed that the ensembling of
diversely trained Transformers can yield significant
improvement and allows for good generalisation
for punctuation prediction in out-of-domain exam-
ples. From this work, it can be seen that combin-
ing different Transformers can be really beneficial.
However, further work is needed to determine if
more advanced ensembling techniques could fur-
ther increase the quality of the predictions.
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