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Abstract

This paper describes our approach (UR-
mSBD) to address the shared task on Sentence
End and Punctuation Prediction in NLG Text
(SEPP-NLG) organised as part of SwissText
2021. We participated in Subtask 1 (fully un-
punctuated sentences – full stop detection) and
submitted a run for every featured language
(English, German, French, Italian). Our sub-
missions are based on pre-trained BERT mod-
els that have been fine-tuned to the task at hand.
We had recently demonstrated, that such an ap-
proach achieves state-of-the-art performance
when identifying end-of-sentence markers on
automatically transcribed texts. The difference
to that work is that here we use language-
specific BERT models for each featured lan-
guage. By framing the problem as a binary
tagging task using the outlined architecture we
are able to achieve competitive results on the
official test set across all languages, with Re-
call, Precision, F1 ranging between 0.91 and
0.96 which makes us joint winners for Recall
in two of the languages. The official baselines
are beaten by large margins.

1 Introduction

Text normalization has always been a core build-
ing block of natural language processing aimed at
converting some raw text into a more convenient,
standard form (Jurafsky and Martin, 2020). Be-
sides tokenization, stemming and lemmatization
this process includes sentence segmentation. What
is interesting though is that text pre-processing and
normalization is by no means a solved challenge.

The SwissText 2021 Shared Task 2: Sentence
End and Punctuation Prediction in NLG Text is
concerned exactly with this problem area. The goal
is to develop approaches for sentence boundary
detection (SBD) in unpunctuated text. Providing
suitable solutions means fostering readability and
restoring the text’s original meaning.

We took part in Subtask 1 (fully unpunctuated
sentences – full stop detection) of this challenge
and did so for all featured languages. This report
starts by contextualising the task as part of a short
discussion of related work. We will then introduce
our methodology, briefly describe the data and re-
port results. Finally we present some discussion
and conclusions.

2 Related Work

Sentences are considered as a fundamental informa-
tion unit of written text (Jurafsky and Martin, 2020;
Levinson, 1985). Therefore, many NLP pipelines
in practice split text into sentences. Fact checking
is just one – currently very popular – challenge
where the automated detection of sentences within
a stream of input data is essential. Fact check-
ers are increasingly turning to technology to help,
including NLP (Arnold, 2020). These tools can
help identify claims worth checking, find repeats
of claims that have already been checked or even
assist in the verification process directly (Nakov
et al., 2021). Most such tools rely on text as input
and require the text to be split into sentences (Don-
abauer et al., 2021). For this and other application
areas sentence segmentation will remain a challeng-
ing task despite the fact that recent developments
suggest that for some NLP tasks it is possible to
achieve state-of-the-art performance without con-
ducting any pre-processing of the raw data, e.g.
(Shaham and Levy, 2021).

Sentence Boundary Detection (SBD) is an im-
portant and actually well-studied text processing
step but it typically relies on the presence of punc-
tuation within the input text (Jurafsky and Martin,
2020). Even with such punctuation it can be a diffi-
cult task, e.g. (Gillick, 2009; Sanchez, 2019), and
traditional approaches use a variety of architectures
including CRFs (Liu et al., 2005) and combinations
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of HMMs, maximum likelihood as well as maxi-
mum entropy approaches (Liu et al., 2004). With
unpunctuated texts (and lack of word-casing infor-
mation) it becomes a lot harder as even humans find
it difficult to determine sentence boundaries in this
case (Stevenson and Gaizauskas, 2000). Song et al.
(2019) simplify the problem by aiming to detect the
sentence boundary within a 5-word chunk – using
YouTube subtitle data. Using LSTMs they predict
the position of the sample’s sentence boundaries
but did not consider any chunks without sentence
boundary. Le (2020) presents a hybrid model (us-
ing BiLSTMs and CRFs) originally used for NER
that was evaluated on SBD in the context of conver-
sational data by preprocessing the CornellMovie-
Dialogue and the DailyDialog datasets to obtain
samples that neither contain sentence boundary
punctuation nor word-casing information (they also
predict whether the sentence is a statement or a
question). Du et al. (Du et al., 2019) present a
transformer-based approach to the problem, but
they assume partially punctuated text and word-
casing information. Recently, it was shown that
a simple fine-tuned BERT model was able to im-
prove on the state of the art on fully unpunctuated
case-folded input data (Donabauer et al., 2021).

3 System

3.1 General Architecture of UR-mSBD
The system architecture we use is adopted from our
previous work that achieved state-of-the-art per-
formance on a very similar task (Donabauer et al.,
2021). That architecture demonstrated the suitabil-
ity of a BERT-based token classification approach
for sentence end prediction in the context of im-
proving text processing pipelines for fact-checking.
The underlying idea is to treat the restoration of sen-
tence boundary information as a problem similar
to IO-tagging in named entity recognition. For the
implementation we refer to our GitHub repository1.
The last token of every sentence, marking the oc-
currence of a sentence boundary punctuation mark
to follow up, is labeled with EOS. In our previ-
ous work we predicted the beginning of a sentence
rather than its end. We therefore labeled the first
token of every sentence with BOS. Out-of-context
labels O are assigned to all other tokens of the text.

We fine-tuned a pre-trained BERT model on the
problem and obtained high F1 scores for the de-
sired positive class (sentence end) outperforming

1https://github.com/doGregor/SBD-SCD-pipeline

alternative approaches on different datasets. We
use a softmax classification head predicting the la-
bel (EOS or O) by the highest probability at each
token.

3.2 Adjustments for the Shared Task

We apply two changes to the model fine-tuning
process for this shared task as follows:

• First of all, we are faced with four different
languages and not just English texts. The
two obvious options would be to use a multi-
lingual language model or to choose a dif-
ferent language-specific pre-trained model
for each of the languages, i.e. German,
French, English and Italian. We decided to
adopt language-specific BERT-base models
as Nozza et al. (2020) reports that this yields
better results than using mBERT, pre-trained
on a multilingual corpus.

• Secondly, we change the process of sample
construction. We handle the unpunctuated in-
put text as one long chain of words. We origi-
nally split this chain in samples of 64 words
and fine-tuned the model with a maximum se-
quence length of 128 BERT-specific tokens.
Further experiments have shown that utiliz-
ing token sequences as long as possible (512
BERT tokens) yields the best results. There-
fore, we pre-process the raw text data by send-
ing it through the model’s tokenizer first. Each
time a batch of iterated words fits 512 BERT
tokens we create a sample from it. If a word
at the transition between two samples would
be ripped apart (as adding it entirely to the
current sample would exceed 512 tokens), we
put it at the beginning of a new sample and
pad the rest of the previous one with special
PAD tokens.

All other hyperparameters are kept in line with
Donabauer et al. (2021), namely using an epoch
number of 3 and a batch size of 8 per device. Since
we run it on 3 GPUs simultaneously the batch size
per iteration increases to 24. We also evaluated our
approach on the datasets with tuned hyperparam-
eters. However, it turned out that increasing the
number of epochs to 5 leads to a deterioration of
results.



4 Data and Setup

We participated in Subtask 1 (fully unpunctuated
sentences – full stop detection) of SwissText’s
SEPP-NLG Shared Task 2.

Before addressing the experimental setup we
briefly describe the provided data sets. The chal-
lenge’s domain are NLG texts. Since there are no
corpora that feature such data nor manually cor-
rected versions the organizers selected Europarl2

as source. This corpus includes transcribed text
data originating from spoken text in many different
languages. The data come along in lowercase for-
mat and are already split up into tokens. Sentence
boundary punctuation is removed. Instead labels
are assigned that mark upcoming sentence ends.
The last token of each sentence is labeled with ’1’,
all remaining with ’0’.

The data are provided as multiple tab-separated
value files grouped by each language and set. The
number of tokens per language and dataset is re-
ported in Table 1. We explain our pre-processing
with respect to a single set for a single language,
e.g. the English evaluation set. Firstly, we read
each tsv file one after the other and concatenate all
tokens and labels as two long lists. During reading
we save the order and length of the input files. By
that we are able to reconstruct the original struc-
ture of the files later on. The list of tokens is fed
into the model-specific tokenizer. If tokens are not
recognized properly we replace them with ’nan’.
Each time a batch of 512 BERT tokens is filled, we
create a sample from it. Data are saved in CoNLL-
2003 format (Tjong Kim Sang and De Meulder,
2003). Tokens and labels are separated horizon-
tally with spaces. Samples are separated vertically
with empty lines. We use the tokenizer during pre-
processing only to calculate the number of BERT
tokens at each input word. The samples themselves
consist of plain text tokens. Thus dimension and
order of predicted labels correspond to the structure
of the processed tsv files. We can then simply map
our output to the words in the input data.

As mentioned earlier, we make use of language
specific models rather than mBERT. We briefly
describe the respective models and the corpora they
are trained on.

• English: Classic BERT base uncased model,
trained on English lowercase text (Devlin
et al., 2019).

2https://opus.nlpl.eu/Europarl.php

• German: BERT base uncased model, trained
on 16GB monolingual German corpus by db-
mdz (MDZ Digital Library team at the Bavar-
ian State Library)3.

• French: BERT base uncased model, trained
on 71GB monolingual French corpus (Le
et al., 2020).

• Italian: BERT base uncased model, trained
on 81GB monolingual Italian text by dbmdz.

We make use of the PyTorch4 version of the
Python huggingface5 transformers library to access
models and run fine-tuning. We execute the scripts
on 3 Nvidia GeForce RTX 2080 Ti GPUs with an
overall memory size of 33GB.

5 Results

5.1 Baselines

The official baseline is produced using the spaCy
NLP package. The organisers report scores for
different pipeline versions and we are describing
the best performing one for every language in Table
2. The official evaluation metrics are Precision,
Recall and F1-score of the positive class label (i.e.,
sentence end).

As Table 2 illustrates, F1-scores for English, Ger-
man and French are ranging from 0.32 to 0.47. For
Italian the F1-metric is collapsing to 0.01, caused
by a very low Recall of 0.00.

5.2 UR-mSBD

We summarise the results obtained when running
our system, UR-mSBD, on the test data. For each
language we also include scores obtained on the
dev set as well as the surprise test set that was intro-
duced to check the generalizability of the different
approaches.

Table 3 presents the results for the English data,
Table 4 for German, Table 5 for French, and Table
6 presents the results for the Italian test data.

We see overall consistently high scores for all
three metrics and across all languages when look-
ing at the official test sets. An average of F1=0.93
aggregated over all languages places us just one per-
centage point behind the top performance. Looking
at Recall, we actually end up being joint winners
for the German and French test data.

3https://github.com/dbmdz/berts
4https://pytorch.org/
5https://huggingface.co/



Language Train Dev Test Surprise Test
English 33,779,095 7,743,489 10,039,222 1,081,910
German 28,645,112 6,358,683 9,575,861 979,982
French 32,690,367 8,781,593 11,297,534 1,143,911
Italian 28,167,993 7,194,189 10,193,542 985,448

Table 1: Number of tokens in the respective data sets for each language.

Dataset Precision Recall F1
Dev EN 0.49 0.23 0.32
Test EN 0.49 0.24 0.32
Dev DE 0.51 0.44 0.47
Test DE 0.49 0.44 0.46
Dev FR 0.71 0.24 0.36
Test FR 0.63 0.24 0.35
Dev IT 0.64 0.00 0.01
Test IT 0.51 0.00 0.01

Table 2: Highest baseline scores for EN, DE, FR, IT.

Dataset Precision Recall F1
Dev 0.92 0.92 0.92
Test 0.91 0.92 0.92
Surprise Test 0.82 0.68 0.74

Table 3: UR-mSBD scores for English.

Dataset Precision Recall F1
Dev 0.96 0.95 0.95
Test 0.94 0.96 0.95
Surprise Test 0.89 0.73 0.80

Table 4: UR-mSBD scores for German.

Dataset Precision Recall F1
Dev 0.94 0.93 0.93
Test 0.93 0.94 0.93
Surprise Test 0.83 0.70 0.76

Table 5: UR-mSBD scores for French.

Dataset Precision Recall F1
Dev 0.93 0.91 0.92
Test 0.91 0.93 0.92
Surprise Test 0.84 0.67 0.74

Table 6: UR-mSBD scores for Italian.

The highest scores are reported for German (with
Precision at 0.94, Recall at 0.96 and F1 at 0.95).
All the scores for the test sets are above 0.90. For
the surprise test set the results drop quite a bit but
are still reasonably high given the data is not repre-

sentative of the data the system was trained on.
Across the board all the baselines were beaten

by large margins.

6 Discussion

For all featured languages our fine-tuned BERT-
based predictions are performing very well with
results for all three metrics (P/R/F1) in the 90s and
being very competitive when looking at the other
submissions for this shared task. This first of all
demonstrates the power of transformer-based mod-
els and confirms findings we reported previously
(Donabauer et al., 2021).

The fact that the baselines were outperformed
by such large margins is perhaps a sign that non-
neural approaches are not competitive for the task
and data at hand.

We note that our approach performed best for
German texts which might be caused by high simi-
larity between the data the model was pre-trained
on and the data sampled to be training, dev and
test sets for this task. It will be worth exploring
whether for different data samples we observe a
similar pattern or whether the differences are in
fact not significant.

Taking a slightly broader perspective, we ob-
serve that the scores obtained here are similar
to what we obtained when running our sentence
boundary detection algorithm on a dataset com-
prising transcribed lectures given at Stanford Uni-
versity first proposed by Song et al. (2019), and
the DailyDialog dataset (Li et al., 2017) but that
extending these datasets or creating a hybrid ver-
sion resulted in significant drops in performance
(Donabauer et al., 2021). It would therefore be in-
teresting to see whether other approaches illustrate
similar patterns.

Another general pattern we read into the results
is that there are only small differences when com-
paring results on the dev sets with the results on
the test sets. We conclude that our approach can
generalize to unseen data as long as the training
data is representative for the data used for testing.



The approach does however generalise less well
to out-of-domain (’surprise’) data with F1-scores
dropping between 0.15 and 0.18, compared to the
Europarl sets. We still consider the results to be rea-
sonably well though given they are on average over
all languages only 0.03 behind the top-performing
system.

7 Conclusions

We framed the task of full-stop prediction (Subtask
1 of Shared Task 2 at SwissText 2021) as a binary
classification task over all input tokens identifying
whether each of these tokens should indicate the
position of a full stop or not. Fine-tuning language
specific pre-trained BERT models for each of the
four tasks resulted in competitive results. Given
the small difference in F1 of 0.01 compared to the
top results reported for this competition for three
of the languages (as well as aggregated over all
languages) we will await statistical significance
tests as our results may well turn out to be on par
with the top results in this task.
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