
String Assembling Systems and Watson-Crick Finite Automata∗

András Murvai, György Vaszil

Faculty of Informatics, University of Debrecen, Kassai út 26, 4028 Debrecen, Hungary
halimifoliumlycium@gmail.com

vaszil.gyorgy@inf.unideb.hu

Abstract: We explore the relationship of Watson-Crick au-
tomata and string assembling systems. In the general case,
Watson-Crick automata are more powerful, so restricting
the study to the stateless variant is of interest. We show
that the class of languages of stateless Watson-Crick au-
tomata are strictly included in the class of languages of
automata with at least two states, then compare string as-
sembling systems with the stateless variant. It turns out,
that there are languages that can be generated by string
assembling systems, but not accepted by stateless Watson-
Crick automata, but the question concerning the exact re-
lationship of the language classes remains open.

1 Introduction

The double stranded structure of DNA motivated the in-
troduction and study of double stranded strings with the
tools and techniques of formal language theory, that is, the
definition of string operations which model the biochem-
ical processes that the corresponding strings can undergo,
see the monograph [7] for more details. Two such models,
related to the topic of this paper are sticker systems and
Watson-Crick automata.

Sticker systems were introduced in [3], they use dou-
ble stranded string “pieces” as building blocks to assemble
longer double stranded strings when their single stranded
ends stick together and form double strands according to
the Watson-Crick complementarity relation. Such systems
describe formal languages, sets of double stranded strings
which can be “stick” together starting from a set of initial
pieces. Depending on how we specify the details of the
functioning of the system, simple languages (like regular
languages which can be described by finite automata), or
more complicated languages (like recursively enumerable
languages which can be described by Turing machines)
can be generated by sticker systems. As we will see later,
string assembling systems (one of the computing models
studied in this paper) are similar to this, from a certain
point of view they can be thought of as special cases of
sticker systems.

∗Research supported by the construction EFOP-3.6.3-VEKOP-16-
2017-00002 supported by the European Union, co-financed by the Eu-
ropean Social Fund, and by grant K 120558 of the National Research,
Development and Innovation Office of Hungary (NKFIH), financed un-
der the K 16 funding scheme.

Copyright c©2021 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

The other model interesting for our investigations is
called Watson-Crick finite automaton, and it was intro-
duced in [2]. Such automata are similar to ordinary finite
automata in the sense that they read strings written on their
tape, and either accept or reject them, thus defining a for-
mal language as the set of strings that are accepted. Sim-
ilarly to sticker systems, Watson-Crick automata work on
double stranded strings, thus, they have a double stranded
tape that contains two complementary strings which are
read by two separate reading heads being able to move in-
dependently of each other, one on the upper and one on the
lower strand of the tape. Concerning their computational
power, these types of automata can describe more compli-
cated language classes than ordinary finite automata. As
we will see examples of this later, even some non-context-
free context-sensitive languages can be accepted.

2 Preliminaries

For a finite alphabet of symbols V , let V ∗ denote the set
of all strings over V , and let V+ = V ∗ \ {λ} where λ

denotes the empty string. We consider two languages
L1,L2 ⊆V ∗ equal if they differ in at most the empty string,
L1 \ {λ} = L2 \ {λ}. The length of a word w ∈ V ∗ is de-
noted by |w|, the number of occurrences of a symbol x∈V
in w is denoted by |w|x.

A double stranded string over V is a pair of strings

(w1,w2) ∈V ∗×V ∗, it can also be written as
(

w1

w2

)
, while

the set of pairs V ∗×V ∗ can be written as
(

V ∗

V ∗

)
.

We denote the last letters and the first letters of a string

pair
(

u
v

)
as end(

(
u
v

)
) and bgn(

(
u
v

)
):

1. If u = u′x, v = v′y for some x,y ∈ V, u′,v′ ∈ V ∗,

then end(
(

u′x
v′y

)
) =

(
x
y

)
. Similarly, the first letters

of the pair
(

u
v

)
for u = xu′ and v = yv′ are denoted

as bgn(
(

xu′

yv′

)
) =

(
x
y

)
where x,y ∈V, u′,v′ ∈V ∗.

2. Otherwise, if one of the strings is empty, we

have end(
(

λ

v′y

)
) =

(
λ

y

)
, end(

(
u′x
λ

)
) =

(
x
λ

)
,

bgn(
(

λ

yv′

)
) =

(
λ

y

)
, and bgn(

(
xu′

λ

)
) =

(
x
λ

)
for

x,y ∈V, u′,v′ ∈V ∗.

The complementarity relation is a symmetric relation
on the letters of the alphabet ρ ⊆V ×V . We call the set of
sequences of pairs of complementary symbols a Watson-
Crick domain and denote it with WKρ(V), more formally,

WKρ(V) = {
[

x
y

]
| x,y ∈V, (x,y) ∈ ρ}∗.

The string pair
[

x1

y1

][
x2

y2

]
. . .

[
xn

yn

]
∈WKρ(V) can also be

written as
[

w
w′

]
where w = x1x2 . . .xn, w′ = y1y2 . . .yn. We

also denote the complement of x ∈V by x, that is, (x,x) ∈
ρ , and the complement of x is x, so x = x, and (x,x) ∈ ρ .

The difference between
(

w1

w2

)
and

[
w1

w2

]
is that

(
w1

w2

)
only gives a different notation for (w1,w2), while in the

case of
[

w1

w2

]
∈WKρ(V), |w1| = |w2| and w2 is the com-

plement of w1, w2 = w1 (also w2 = w1).

2.1 Watson-Crick automata

Now we recall the definition of Watson-Crick automata
from [2], see also the monograph [7] for more details.

The construct M = 〈V,ρ,Q,q0,F,δ 〉 is a Watson-Crick
automaton (WK automaton in short), where

• V is the input alphabet,

• ρ ⊆V ×V is the complementarity relation,

• Q is the nonempty finite set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states, and

• δ : Q×
(

V ∗

V ∗

)
→ 2Q is a finite relation, the state tran-

sition relation.

A configuration of such a WK automaton is denoted as(
w1

w2

)
q
(

w3

w4

)
where

(
w1

w2

)
∈
(

V ∗

V ∗

)
is the part of the in-

put which is already read, q ∈Q is the state of the WK au-

tomaton, and
(

w3

w4

)
∈
(

V ∗

V ∗

)
is the part of the input which

is not read yet.
The transition between two configurations is denoted by
⇒, and defined as follows.

Let
(

u1

v1

)
,

(
u2

v2

)
,

(
u3

v3

)
∈
(

V ∗

V ∗

)
,

[
u1u2u3

v1v2v3

]
∈

WKρ(V), q,q′ ∈ Q. Then(
u1

v1

)
q
(

u2u3

v2v3

)
⇒
(

u1u2

v1v2

)
q′
(

u3

v3

)

if and only if, q′ ∈ δ (q,
(

u2

v2

)
). We may also write

(
u1

v1

)
⇒
(

u1u2

v1v2

)
if we are not interested in the states of the automaton and
in the rest of the input to be read.

If the reflexive and transitive closure of⇒ is denoted by
⇒∗, then the language accepted by M is

L(M) = {w ∈V ∗ | q0

[
w
w

]
⇒∗

[
w
w

]
q f ,

where
[

w
w

]
∈WKρ(V), q f ∈ F}.

2.2 String assembling systems

Now we recall the definition of string assembling systems
from [5]. These also work with double stranded strings,
but in their case, the complementarity relation is the iden-
tity relation. Similarly to sticker systems mentioned in the
introduction, they use a set of double stranded string pieces
as building blocks to generate a language. They are able
to “glue” two double stranded strings together if the last
letters of the first string and the first letters of the second
string coincide, and these letters overlap in the resulting
string.

The 4-tuple S = 〈Σ,A,T,E〉 is a string assembling sys-
tem (SAS in short), where

• Σ is a finite alphabet,

• A ⊂ Σ+×Σ+ is the finite set of axioms of the form(
uv
u

)
or
(

u
uv

)
with u ∈ Σ+, v ∈ Σ∗,

• T ⊂ Σ+×Σ+ is the finite set of assembly units,

• E ⊂ Σ+×Σ+ is the finite set of ending assembly units

of the form
(

uv
v

)
or
(

v
uv

)
with u ∈ Σ∗, v ∈ Σ+.

A derivation step of the SAS S as above is denoted by
⇒, and defined as follows. We say that we added the unit(

xu2

yv2

)
to the unit

(
u1

v1

)
, denoted as

(
u1

v1

)
⇒
(

u1u2

v1v2

)
,

if and only if,
(

x
y

)
= end(

(
u1

v1

)
) for some x,y ∈ Σ, and(

xu2

yv2

)
∈ T ∪E. Moreover, if |u1u2| ≥ |v1v2|, then u1u2

can be written as u1u2 = v1v2u′ for some u′ ∈ Σ∗, or the
other way around, if |u1u2| ≤ |v1v2|, then u1u2v′ = v1v2
for some v′ ∈ Σ∗.

A sequence of derivation steps is a derivation. A deriva-
tion is successful, if after choosing an axiom from A, we

add assembling units from T , then close the derivation by
adding a unit from E, in such a way that the upper and
lower string of the string pair which is produced is identi-
cal.

If the reflexive and transitive closure of⇒ is denoted by
⇒∗, then the language generated by S is

L(S) = {w ∈ Σ
+ |
(

u
v

)
⇒∗

[
w
w

]
is a

successful derivation}.

Now we introduce some additional notation that will
be useful later. The string pair generated in k deriva-
tion steps, or in the case of WK automata, the string pair

read in k transition steps, is denoted by
(

u(k)
v(k)

)
, that is,(

u0

v0

)
⇒∗

(
u0u1 . . .uk−1uk

v0v1 . . .vk−1vk

)
=

(
u(k)
v(k)

)
. The pair

(
u(0)
v(0)

)
denotes an axiom, or in the case of WK automata, the

pair
(

λ

λ

)
, representing the fact that nothing has been read

from the input yet.
Let ∆k denote the difference of the length of upper and

lower element of the string pair
(

u
v

)
added in the kth

derivation step, or read in the kth state transition, that
is,∆k = |u| − |v|, and let ∆(k) denote the difference of the
generated strings or the strings read on the upper and lower
pert of the input tape in k derivation or state transition

steps, that is, for
(

u(k)
v(k)

)
, let ∆(k) = |u(k)|− |v(k)|.

Let us also denote the class of languages accepted or
generated by a computational model X by L (X), so let
L (SAS) and L (WK) denote the classes of languages gen-
erated by SAS and accepted by WK automata, respec-
tively.

3 The computational power of
Watson-Crick automata and string
assembling systems

In the following, we would like to point out some of the
similarities of WK automata and SAS, and then investigate
whether these similarities help us to establish a relation-
ship between their computational power.

Consider the WK automata M = 〈V,ρ,Q,q0,F,δ 〉 and
the SAS S = 〈Σ,A,T,E〉. They both work with double
stranded strings, and there is a relation between the upper
and lower strings in both cases. In the case of SAS, this re-
lation is the identity relation, in WK automata, on the other
hand, the relation can be an arbitrary symmetric relation.
This might seem to be an important difference, but it is
not. It is known from [4], that the computational power
of WK automata is not influenced by the complementar-
ity relation. For any WK automata M, we can construct
an M′, such that it uses the relation ρ = {(x,x) | x ∈ V},

and L(M) = L(M′). Based on this result, from now on we
assume that ρ = ρid , the identity relation.

We can also find similarities in the functioning of the
two models. Adding building units to the generated string
by a SAS from A, T , or E, corresponds to reading sub-
strings of the input by a WK automaton with a transi-
tion from the initial state, a transition between arbitrary
states, and a transition leading to and accepting state, re-
spectively. While the states of WK automata are explicitly
given, “states” of a SAS are implicit, they are “hidden” in
the overlapping pairs of letters of the building units.

3.1 Known results on WK automata and SAS

As we have seen, SAS can basically add three types of
units to the generated strings, while WK automata can
have an arbitrary number of states, so it seems to be rea-
sonable to review results related to the number of states of
WK automata. In [6] the authors show that from the point
of view of state complexity, WK automata are more ef-
ficient than ordinary finite automata, there is a sequence
Lk, k ≥ 1 of regular languages, such that the number
of states of the automata sequence accepting Lk is un-
bounded, while all languages of the sequence can be ac-
cepted with WK automata having a fixed number of states.
Building on these results, in [1] it is shown that arbitrary
finite languages can be accepted with WK automata hav-
ing two states, and that arbitrary unary regular languages
can be accepted by WK automata having three states.

Concerning the power of SAS, already in the introduc-
tory paper [5], the authors show that there are unary regu-
lar languages that cannot be generated by SAS, but all fi-
nite languages can be. From our point of view, especially
interesting is the result concerning the relationship of lan-
guages accepted by stateless two head finite automata (that
is, two head automata with one state) and languages gen-
erated by SAS. While the languages accepted by stateless
WK automata strictly include the languages accepted by
stateless two-head automata, Theorem 1 which we are go-
ing to prove in the next section, can be considered as the
extension of this result.

3.2 Comparing the power of WK automata and SAS

Let us start by establishing the relationship between lan-
guages of (unrestricted) WK automata and SAS.

Proposition 1.

L (SAS)⊂L (WK).

Proof. According to Theorem 3.1 of [5], languages gener-
ated by SAS can be accepted by nondeterministic one-way
two-head finite automata, and since one-way two-head fi-
nite automata can be simulated by WK automata, it is clear
that L (SAS)⊆L (WK).

On the other hand, L (WK) 6=L (SAS), since according
Theorem 3.6 in [5] the language L = {a}∪{a2n | n ≥ 2}

cannot be generated by any SAS, but can be accepted by
the following WK automaton.

Let M = 〈{a},ρid ,{q0,q f ,q f ′},q0,{q f ,q f ′},δ 〉 where

δ (q0,

(
a
a

)
) = q f , δ (q0,

(
aaaa
aaaa

)
) = q f ′ ,

δ (q f ′ ,

(
aa
aa

)
) = q f ′ .

As we have seen, in the general case, the computational
power of WK automata is greater than the power of SAS.
Now we continue by restricting the power of WK automata
by considering its variants with reduced number of states.
First, we look at the relationship between stateless WK
automata and SAS.

In the following, we denote the classes of WK automata
with m states by WK|Q|=m and by L (WK|Q|=m) the class
of languages they accept.

Theorem 1. Let M be a nondeterministic stateless WK
automaton. Then there exists an SAS S generating the
language accepted by M with an initial marker, that is,
$L(M) = L(S) where $ 6∈V .

Proof. Consider M = 〈V,ρid ,{q},q,{q},δ 〉, we construct
the SAS S = 〈Σ,A,T,E〉 as follows.

• Σ =V ∪{$} ($ 6∈V),

• A = {
(

$
$

)
},

• T = {
(

xu
yv

)
| for all

(
x
y

)
∈ Σ×Σ pairs of letters and

transitions δ (q,
(

u
v

)
) = q},

• E = T ∪{
(

$
$

)
}.

First we show that any w∈ L(M) can be generated by S.
M accepts the empty word, so S must generate $, thus(

$
$

)
∈ A,

(
$
$

)
∈ E.

Let su and sl denote the already read part of the upper
and lower strands of the input of M. For all possible pairs

of letters end(
(

$su

$sl

)
) =

(
x
y

)
, if
(

u
v

)
can be read by M,

there has to be a unit
(

xu
yv

)
which can be added by S. We

have added all possible building units for the reading of(
u
v

)
to S, so if a string pair can be read by M, then the

corresponding building unit can be added by S.
M is always in an accepting state, so the only require-

ment for a string to be accepted is the property that it can
be read completely. In the last reading step, reading some(

u
v

)
, the two heads reach the end of the upper and lower

strings simultaneously. All string pairs corresponding to
some unit in T have an appropriate transition in δ , so S
can finish the string generation by adding some unit from
T , which must contain all units that can end the generation,
so

E = T ∪{
(

$
$

)
}.

Now we show that any $w ∈ L(S) can be accepted by
M. For all $w, we have a derivation(

$
$

)
⇒
(

$u1

$v1

)
⇒
(

$u1u2

$v1v2

)
⇒ . . .⇒

(
$u1u2 . . .ut

$v1v2 . . .vt

)
,

where $w= $u1u2 . . .ut = $v1v2 . . .vt ,

(
xui

yvi

)
∈ T ∪E, 1≤

i ≤ t. Since we created the building units in such a way
that their initial pairs of letters contain all possible com-

binations, even if
(

x
y

)
= end(

(
u(i−1)

v(i−1)

)
) holds, the ability

to add unit
(

xui

yvi

)
depends only on the string pair

(
ui

vi

)
.

As δ (q,
(

ui

vi

)
) = q, and M is stateless, only the read string

pair
(

ui

vi

)
determines the success of the reading a word.

The derivation above (besides the leading $ sign) is a suc-
cessful reading of the word w(

u1

v1

)
⇒
(

u1u2

v1v2

)
⇒ . . .⇒

(
u1u2 . . .ut

v1v2 . . .vt

)
,

thus w ∈ L(M).

Although formally the above theorem does not say
anything about the containment relationship betweem
L (SAS) and L (WK|Q|=1), it still establishes some kind of
connection between the two languages classes. Moreover,
our statement is “stronger” then the similar statement in
[5] which states that for all languages L accepted by state-
less two-head finite automata, a corresponding SAS gen-
erating L′ can be constructed in such a way that all w ∈ L
corresponds to w′ ∈ L′ with h(w′) = w for a homomor-
phism deleting four symbols from w′ (and not just one, as
in our case).

Let us now relax the requirement of statelessness, and
consider WK automata with two states

Lemma 1. There is a WK automaton with two states
which accepts the language L = {w | w ∈ {a,b}∗, |w|a =
2(1+2i), i≥ 0}.

Proof. The language can be accepted by the following
WK automaton.

Let M = 〈{a,b},ρid ,{q0,q f },q0,{q f },δ 〉 with δ :

δ (q0,

(
a
λ

)
) = q0, δ (q f ,

(
a
λ

)
) = q f ,

δ (q0,

(
b
x

)
) = q0, δ (q f ,

(
b
x

)
) = q f ,

δ (q0,

(
λ

xy

)
) = q f , δ (q f ,

(
λ

xy

)
) = q0,

where x,y ∈ {a,b}.
We first show that L(M) ⊆ L. For any w ∈ L(M) we

have a transition sequence

q0

(
w
w

)
⇒
(

u0

v0

)
q
(

w1

w′1

)
⇒
(

u0u1

v0v1

)
q′
(

w2

w′2

)
⇒ . . .

. . .⇒
(

u0u1...ut

v0v1...vt

)
q f

where in the first and last configuration M is in states q0
and q f , respectively, and in one of the two states in the

intermediate configurations,
(

ui

vi

)
∈ {
(

a
λ

)
,

(
b
x

)
,

(
λ

xy

)
|

x,y ∈ {a,b}}, 0≤ i≤ t, correspond to the reading steps.

In any case, by reading
(

ui

vi

)
=

(
b
x

)
, ∆i = 0, and M

remains in the same state, by reading
(

ui

vi

)
=

(
a
λ

)
, ∆i =

1 and M remains in the same state, by reading
(

ui

vi

)
=(

λ

xy

)
, ∆i =−2, and M changes to the other state.

It is clear that ∆(i) can only increase after a reading step

if
(

a
λ

)
was read, and can only decrease if

(
λ

xy

)
was read.

Therefore, in order for ∆(i) = 0, some
(

λ

xy

)
need to be

read, together with reading twice as many
(

a
λ

)
. Thus, if

∆(i) = 0, the already read part of the upper string contains
an even number of as.

If w is accepted, then ∆(i) = 0 and M must be in state q f .
In order for M to be in state q f , an odd number (1+2k,k≥

0) of reading
(

λ

xy

)
had to happen, which means that 2(1+

2k) number of reading
(

a
λ

)
had to happen. Thus, M can

only accept words containing 2(1+2k) number of as.
Now we show that M can accept any w ∈ L. First it

needs to read
(

a
λ

)
and

(
b
x

)
(choosing the appropriate x)

until it reaches the end of the upper string. We are in state
q0, since we have started in q0 and remained in q0 all the
way. The reading head of the lower string is behind the
upper head by the number of as, by 2(1+ 2k). In order

to catch up with the upper head, we need to read
(

λ

xy

)
a

number of times. At each such reading step, M changes
its state. Since the number if as in w is 2(1+ 2k) and we
read two letters from the lower string, the lower reading

head reaches the end of the word after 1+2k, that is, after
an odd number of reading steps. Therefore, M enters q f
when started in q0, so w is accepted.

Corollary 1. The language L = {w | w ∈ {a,b}∗, |w|a =
(1+ 2i)k, i ≥ 0} can be accepted for any k ≥ 2 by a WK
automaton similar to the above, with

δ (q0,

(
a
λ

)
) = q0, δ (q f ,

(
a
λ

)
) = q f ,

δ (q0,

(
b
x

)
) = q0, δ (q f ,

(
b
x

)
) = q f ,

δ (q0,

(
λ

x1x2...xk

)
) = q f , δ (q f ,

(
λ

x1x2...xk

)
) = q0,

where x,x1,x2, ...,xk ∈ {a,b}.

Thus, L = {w | w ∈ {a,b}∗, |w|a = 2(1+2i), i≥ 0} can
be accepted by a WK automaton with two states, but it
cannot be accepted by stateless WK automata, as we will
show in the following.

Lemma 2. If M is a stateless WK automaton, then L(M)=
L(M)∗.

Proof. Let M = 〈V,ρid ,{q},q,{q},δ 〉 be a stateless WK
automaton. It is clear that L(M) ⊆ L(M)∗. To show the

converse inclusion, consider L(M)∗ =
∞⋃

i=0
L(M)i, and a

word w ∈ L(M)∗. There are three possible cases.

1. If w ∈ L(M)0, then w = λ ∈ L(M),

2. if w ∈ L(M)1, then w ∈ L(M),

3. if w ∈ L(M)k, k ≥ 2, then w can be written as w =
w1w2...wk, where wi ∈ L(M), 1≤ i≤ k.

The first two cases are clear. In the third case,[
w1

w1

]
q
[

w2...wk

w2...wk

]
is a possible configuration, since w1 ∈ L,

so the two reading heads can be positioned after w1.

If a configuration
[

w1...wi−1

w1...wi−1

]
q
[

wi...wk

wi...wk

]
can occur,

then also
[

w1...wi

w1...wi

]
q
[

wi+1...wk

wi+1...wk

]
is a possible configura-

tion, since
[

wi

wi

]
can be read (as wi ∈ L). Therefore, w can

be read in such a way that both reading heads reach the
end of the tape, and since there is only one state, M ac-
cepts w.

Using the above lemma, we can show the following.

Corollary 2. L = {w | w ∈ {a,b}∗, |w|a = 2+ 4i, i ≥ 0}
cannot be accepted by any stateless WK automaton.

Proof. If L = L(M) for a stateless WK automaton M, then
L = L∗, according to the lemma above. Let w ∈ L be such,
that |w|a = 2. Then w2 ∈ L∗, but w2 /∈ L, so L 6= L∗, there-
fore L 6= L(M), which is a contradiction.

Now we show that the language that we found not to be
in L (WK|Q|=1) can be generated by SAS.

Lemma 3. L = {w | w ∈ {a,b}∗, |w|a = 2+4i, i≥ 0} can
be generated by SAS.

Proof. Let S = 〈Σ,A,T,E〉 with

• Σ = {a,b},

• A = {
(

aa
aa

)
,

(
ab
a

)
,

(
ba
b

)
,

(
bba
bb

)
,

(
bbb

b

)
},

• T = {
(

x1b
x2x3

)
,

(
xabb

y

)
,
(

xbab
y

)
,
(

xbba
y

)
,
(

xaa
y

)
,(

x1a
x2x3x4

)
} where x,x1,x2,x3,x4, y ∈ Σ,

• E = {
(

a
a

)
,

(
b
b

)
}.

We have chosen the assembly units of the SAS S in such
a way that the difference between the length of the upper
and lower string indicates how many as must be added to
the upper string in order to obtain a correct number. The
following four cases are possible.

1. At least 3 as are missing: ∆(i) = 3+4n,

2. at least 2 as are missing: ∆(i) = 2+4n,

3. at least 1 a is missing: ∆(i) = 1+4n,

4. at least 0 a is missing: ∆(i) = 0+4n,

where n ∈ Z and we are after the ith derivation steps.
More formally we can express the above as follows.

Consider the string pair
(

u(k)
v(k)

)
obtained in k derivation

steps. Then the congruence

2−|u(k)|a ≡ ∆(k) (mod 4)

must hold during the whole generating process: |u(k)|a is
the number of as in the upper string. In case of |u(k)|a +
2 = 4i+ j, (i≥ 0, 1≤ j ≤ 4), (4i+4)− (4i+ j) = (4i+
4)− |u(k)|a − 2 indicates the least number of as that we
need to add in order for the number to be a multiple of 4.
∆(k) = (4− j)+4n, n ∈ Z indicates this too, so

(4i+4)−|u(k)|a−2≡ 2−|u(k)|a ≡
∆(k) = (4− j)+4n (mod 4).

The axioms fulfill this condition.
Let us assume, that the congruence holds after k deriva-

tion steps. After adding the unit
(

uk+1

vk+1

)
in the (k+ 1)th

step, the congruence still holds, since

• if
(

x1b
x2x3

)
,

(
a
a

)
,

(
b
b

)
, then |u(k+1)|a = |u(k)|a so

∆(k) =∆(k+1), thus 2−|u(k+1)|a = 2−|u(k)|a ≡∆(k) =
∆(k+1) also hold.

Using that a≡ b (mod m) if and only if m|(a−b), that
is, if a−b≡ 0 (mod m), in the remaining cases we show
the congruence (2−|u(k)|a)−∆(k) ≡ 0 (mod 4) holds.

• If
(

xabb
y

)
,

(
xbab

y

)
,

(
xbba

y

)
, then |u(k+1)|a =

|u(k)|a + 1 and ∆(k+1) = ∆(k) + 3 holds, so 2 −
|u(k+1)|a−∆(k+1) = 2− (|u(k)|a +1)− (∆(k)+3) =
2−|u(k)|a−∆(k)−4≡ 0 (mod 4) also holds;

• if
(

xaa
y

)
, then |u(k+1)|a = |u(k)|a + 2 and ∆(k+1) =

∆(k)+2 hold, so 2−|u(k+1)|a−∆(k+1) = 2−(|u(k)|a+
2)− (∆(k)+ 2) = 2− |u(k)|a−∆(k)− 4 ≡ 0 (mod 4)
also holds;

• if
(

x1a
x2x3x4

)
, then |u(k+1)|a = |u(k)|a+1 and ∆(k+1) =

∆(k)−1 hold, so 2−|u(k+1)|a−∆(k+1) = 2−(|u(k)|a+
1)− (∆(k)−1) = 2−|u(k)|a−∆(k) ≡ 0 (mod 4) also
holds.

Thus, all words generated by S belong to the language L.
Now we show that arbitrary words of L can be generated

by S. The assembling units of S are chosen in such a way
that as and bs can follow each other in arbitrary order in
the upper string, and the lower string of each unit can be
arbitrary (only the length of the strings are fixed), so it is
possible to add to the lower strings the appropriate letters.

Axioms are chosen as follows. We create the least num-
ber of axioms which satisfy the above mentioned congru-
ence and provide the arbitrary letter order. The idea is to

create axioms of the form
(

u
v

)
with upper strings of a

fixed length at most n ∈ N, and the lower strings being at
most as long as the upper, thus |u| = i, i = 1 . . .n, 1 ≤
|v| ≤ |u|. Then we discard those which do not satisfy the
congruence, or which are not necessary for the initiation
of the generation.

This way, for i = 1 we have
(

a
a

)
and

(
b
b

)
as

axioms, but we discard these, because they do not
satisfy the congruence. For i = 2 we have the units(

aa
a

)
,

(
aa
aa

)
,

(
ab
a

)
,

(
ab
ab

)
,

(
ba
b

)
,

(
ba
ba

)
,

(
bb
b

)
, and(

bb
bb

)
. We keep

(
aa
aa

)
,

(
ab
a

)
,

(
ba
b

)
, so we can

begin the generation of words starting with aa, ab,
ba. We cannot generate words starting with bb, so
for i = 3 we only consider the units starting with bb(

bba
b

)
,

(
bba
bb

)
,

(
bba
bba

)
,

(
bbb
b

)
,

(
bbb
bb

)
,

(
bbb
bbb

)
. We

keep
(

bba
bb

)
,

(
bbb

b

)
, so we are able to start the gen-

eration of words beginning with bb. We can start the
generation with all possible combinations of letters, so no
more axioms are needed.

We proceed with units in T in a similar manner: we
create the least possible number of elements that satisfy

the congruence, but we also allow that lower strings are
longer than the upper strings. Let us suppose that the cur-
rent string pair satisfies the congruence. If we would like
to continue the upper string with b, then

• we need to add an appropriate letter also to the lower

string, so we need a unit of the form
(

x1b
x2x3

)
.

If we would like to continue the upper string with a, then

• we need to add two letters to the lower string, so we

have the unit
(

x1a
x2x3x4

)
, or

• we need to add further letters to the upper string. If
to the upper string

– we would like to add an a, then we need to

add three letters, so we have the units
(

xabb
y

)
,(

xbab
y

)
and

(
xbba

y

)
;

– we would like to add two as, then we have the

unit
(

xaa
y

)
.

The number of letters needed to be added to the upper or
lower strings are determined by the congruence.

With these units, we can generate arbitrary strings of as
and bs on the upper string, while the lower can only be
the same length as the upper if the congruence is satisfied.
In this case the generation can be finished with the ending

units
(

a
a

)
or
(

b
b

)
.

Based on the above, we have the next statement.

Theorem 2.

L (SAS) 6⊆L (WK|Q|=1).

Proof. The statement is clear by combining Lemma 3 and
Corollary 2.

4 Conclusion

We have started to investigate the relationship between the
computational power of WK automata and string assem-
bling systems. We know that in the general case, WK au-
tomata are stronger than SAS, so the comparison with WK
automata having a restricted number of states is of interest.

First we have shown that WK automata with at least
two states are strictly more powerful than stateless WK
automata, then constructed a language that can be gener-
ated by SAS, but cannot be accepted by stateless WK au-
tomata. The exact relationship of the two language classes,
that is the question whether there are languages accepted
by stateless WK automata which cannot be generated by
SAS, remains open.

References

[1] Elena Czeizler, Eugen Czeizler, Lila Kari, and Kai Salomaa.
On the descriptional complexity of watson-crick automata.
Theor. Comput. Sci., 410(35):3250–3260, 2009.

[2] Rudolf Freund, Gheorghe Păun, Grzegorz Rozenberg, and
Arto Salomaa. Watson-crick finite automata. In Harvey Ru-
bin and David Harlan Wood, editors, DNA Based Computers,
Proceedings of a DIMACS Workshop, Philadelphia, Penn-
sylvania, USA, June 23-25, 1997, volume 48 of DIMACS
Series in Discrete Mathematics and Theoretical Computer
Science, pages 297–327. DIMACS/AMS, 1997.

[3] Lila Kari, Gheorghe Păun, Grzegorz Rozenberg, Arto Salo-
maa, and Sheng Yu. DNA computing, sticker systems, and
universality. Acta Informatica, 35(5):401–420, May 1998.

[4] Dietrich Kuske and Peter Weigel. The role of the com-
plementarity relation in watson-crick automata and sticker
systems. In Cristian Calude, Elena Calude, and Michael J.
Dinneen, editors, Developments in Language Theory, 8th In-
ternational Conference, DLT 2004, Auckland, New Zealand,
December 13-17, 2004, Proceedings, volume 3340 of Lec-
ture Notes in Computer Science, pages 272–283. Springer,
2004.

[5] Martin Kutrib and Matthias Wendlandt. String assembling
systems. RAIRO Theor. Informatics Appl., 46(4):593–613,
2012.

[6] Andrei Păun and Mihaela Păun. State and transition com-
plexity of watson-crick finite automata. In Gabriel Ciobanu
and Gheorghe Paun, editors, Fundamentals of Computation
Theory, 12th International Symposium, FCT ’99, Iasi, Ro-
mania, August 30 - September 3, 1999, Proceedings, volume
1684 of Lecture Notes in Computer Science, pages 409–420.
Springer, 1999.

[7] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa.
DNA Computing - New Computing Paradigms. Texts in
Theoretical Computer Science. An EATCS Series. Springer,
1998.

	Introduction
	Preliminaries
	Watson-Crick automata
	String assembling systems

	The computational power of Watson-Crick automata and string assembling systems
	Known results on WK automata and SAS
	Comparing the power of WK automata and SAS

	Conclusion

