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Abstract

We show that machine learning can improve the accuracy
of simulations of stress waves in one-dimensional composite
materials. We propose a data-driven technique to learn non-
local constitutive laws for stress wave propagation models.
The method is an optimization-based technique in which the
nonlocal kernel function is approximated via Bernstein poly-
nomials. The kernel, including both its functional form and
parameters, is derived so that when used in a nonlocal solver,
it generates solutions that closely match high-fidelity data.
The optimal kernel therefore acts as a homogenized nonlocal
continuum model that accurately reproduces wave motion in
a smaller-scale, more detailed model that can include multi-
ple materials. We apply this technique to wave propagation
within a heterogeneous bar with a periodic microstructure.
Several one-dimensional numerical tests illustrate the accu-
racy of our algorithm. The optimal kernel is demonstrated to
reproduce high-fidelity data for a composite material in ap-
plications that are substantially different from the problems
used as training data.

Introduction
Nonlocal models use integral operators acting on a length-
scale δ, known as horizon. This feature allows nonlocal
models to capture long-range forces at small scales and mul-
tiscale behavior, and to reduce regularity requirements on
the solutions, which are allowed to be discontinuous or even
singular. In recent decades, nonlocal equations have been
successfully used to model several engineering and scientific
applications, including fracture mechanics (Silling 2000; Ha
and Bobaru 2011; Trask et al. 2019), subsurface transport
(Benson, Wheatcraft, and Meerschaert 2000; Schumer et al.
2003), image processing (D’Elia, De los Reyes, and Tru-
jillo 2019; Gilboa and Osher 2007), multiscale and multi-
physics systems (Alali and Lipton 2012; Askari et al. 2008;
You, Yu, and Kamensky 2020), finance (Scalas, Gorenflo,
and Mainardi 2000), and stochastic processes (D’Elia et al.
2017; Meerschaert and Sikorskii 2012).

However, it is often the case that nonlocal kernels defin-
ing nonlocal operators are justified a posteriori and it is
not clear how to define such kernels to faithfully describe
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a physical system. The problem of learning an appropriate
kernel for a specific application is one of the most challeng-
ing open problems in nonlocal modeling. The literature on
techniques for learning kernel parameters for a given func-
tional form is vast, see, e.g., (Burkovska, Glusa, and D’Elia
2020; D’Elia and Gunzburger 2016) for control-based ap-
proaches, and (Pang et al. 2020; Pang, Lu, and Karniadakis
2019) for machine-learning approaches. However, the use of
machine learning to learn the functional form of the kernel
is still in its infancy, (Xu and Foster 2020; Xu, D’Elia, and
Foster 2020; You et al. 2021) being the only relevant works
that we are aware of.

In this work we use an approach similar to the one devel-
oped in (You et al. 2021) to learn nonlocal kernels whose
associated nonlocal wave equation is well posed by con-
struction and can be used as an accurate surrogate for more
detailed, high-fidelity wave propagation models. In partic-
ular, we present an application to wave propagation at the
microscale in a heterogeneous solid. In this context, the
machine-learned nonlocal kernel embeds the material con-
stitutive behavior so that the material interfaces do not have
to be treated explicitly and, more importantly, the mate-
rial microstructure can be unknown. Furthermore, the cor-
responding nonlocal models allow for accurate simulations
at scales that are much larger than the microstructure.
Our main contributions are:
• The design of an optimization technique that bridges mi-
cro and continuum scales by providing accurate and stable
model surrogates for the simulation of wave propagation in
heterogeneous materials.
• The illustration of this method via one-dimensional experi-
ments that confirm the applicability of our technique and the
improved accuracy compared with state-of-the-art results.
• The demonstration of generalization properties of our al-
gorithm whose associated model surrogates are effective
even on problem settings that are substantially different from
the ones used for training in terms of loading and time
scales.

Nonlocal kernel learning

We introduce the high-fidelity (HF) model that faithfully
represents the system: for Ω ∈ Rd, the scalar function



u(x, t) solves, for (x, t) ∈ Ω× [0, T ]

∂2u

∂t2
(x, t)− LHF[u](x, t) = f(x, t), (1)

provided some boundary conditions on ∂Ω for u(x, t) and
initial conditions at t = 0 for u and ∂u/∂t are satisfied.
Here, LHF is the HF operator, which can either be a differ-
ential or integral operator, and f represents a forcing term.

We assume that solutions to this HF problem may be ap-
proximated by solutions to a nonlocal problem of the form

∂2u

∂t2
(x, t)− LK [u](x, t) = f(x, t), (2)

for (x, t) ∈ Ω × [0, T ], augmented with nonlocal boundary
conditions on Ωδ (a layer of thickness δ that surrounds the
domain) and the same initial conditions on the variable u
and its derivative as in (1). The forcing f may coincide with
the forcing term in (1) or it could be an appropriate repre-
sentation of the same.

We seek LK as a nonlocal operator of the form

LK [u](x, t) =

∫
Ω

K(|x− y|) (u(y, t)− u(x, t)) dy (3)

where K is a radial, sign-changing, kernel function, com-
pactly supported on the ball of radius δ centered at x, i.e.,
Bδ(x) and Ω = Ω ∪ Ωδ .

The algorithm
To learn the kernel K, we assume that we are given N pairs
of forcing terms and corresponding solutions to (1), nor-
malized with respect to the L2 norm of each solution over
Ω× [0, Ttr]. These are denoted by

Dtr = {(uk(x, t), fk(x, t))}Nk=1 , (4)

for x ∈ Ω and t ∈ (0, Ttr]. Similarly to (You et al. 2021),
we represent K as a linear combination of Bernstein basis
polynomials:

K

(
|y|
δ

)
=

M∑
m=0

Cm
δd+2

Bm,M

(∣∣∣∣yδ
∣∣∣∣), (5)

where the Bernstein basis functions are defined as

Bm,M (x) =

(
M
m

)
xm(1− x)M−m for 0 ≤ x ≤ 1

and where Cm ∈ R. Note that, by construction, this kernel
guarantees that (2) is well-posed (Du, Tao, and Tian 2018).

We machine-learn the nonlocal model by finding optimal
parameters {Cm} such that solutions ûk to (2), for f = fk
and the kernel function K associated to {Cm}, are as close
as possible to the training variable uk.

In this work we numerically approximate ûk by ūk using
a central-differencing scheme in time with time step dt, i.e.

ūn+1
k (xi) = 2ūnk (xi)− ūn−1

k (xi)

+ dt2 (LK,h[ūnk ](xi) + fk(xi, t
n)) ,

(6)

where ūn+1
k (xi) represents the k-th approximate solution at

time step tn+1 and at discretization point xi, and LK,h is an

  

Figure 1: One-dimensional bar with ordered microstructure
of period 2L. Material 1 and 2 have the same density and
Young modulus E1 and E2. The horizon δ, the wave length
λ, and the discretization size, h, are reported for comparison.

approximation of LK by Riemann sum with uniform grid
spacing h. The optimal parameters are obtained by solving
the following optimization problem.

min
Cm

Ttr

dt3N

N∑
k=1

Ttr/dt∑
n=1

∥∥ūn+1
k − uk(tn+1)

∥∥2

`2
+R({Cm}),

(7)
s.t. ūk satisfies (6) and (8)

K satisfies physics-based constraints. (9)

Here, the `2 norm is taken over the space-discretization
points xi, R(·) is a regularization term on the coefficients
that improves the conditioning of the optimization problem,
and (9) depends on the physics of the problem (as an exam-
ple, it may correspond to enforcing that the surrogate model
reproduces exactly a certain class of solutions).

Dispersion in heterogeneous materials
We apply the learning algorithm described above to the
propagation of waves in a one-dimensional heterogeneous
bar, like the one reported in Figure 1, with an ordered mi-
crostructure, i.e. two materials with the same length alter-
nate periodically. Our goal is to learn a nonlocal model able
to reproduce wave propagation on distances that are much
larger than the size of the microstructure without resolving
the microscales. The high-fidelity model we rely on is the
classical wave equation; the corresponding high-fidelity data
used for training and validation are obtained with the solver
described below.

High-fidelity data
For both training and validation purposes we generate data
using high-fidelity simulations for the propagation of stress
waves within the microstructure of the heterogeneous, linear
elastic bar. This method, which will be referred to as Direct
Numerical Solution (DNS), constructs an arbitrarily com-
plex wave diagram (also called an x-t diagram), that treats
the mutual interaction and superposition of many wavefronts
moving in either direction. The bar is discretized into nodes
such that it takes a constant amount of time ∆t for a wave to
travel between nodes γ and γ + 1, regardless of the elastic
wave speed in the material between these two nodes. There-
fore, in a heterogeneous medium, the spacing between nodes
is not constant. Each node γ, at each time step n, has veloc-
ity vnγ (note that, in this case, the subscript refers to position,
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Figure 2: Interaction of two waves in the DNS method. Each
node may or may not be located at a material interface.

as opposed to the previous section where it corresponds to a
specific sample k). To compute the velocities in the next time
step, it is assumed that two waves moving in opposite direc-
tions converge on the node γ at time step n (see Figure 2).
The waves shown in the figure can have unequal slopes on
the x-t diagram because the materials on either side of node
γ can have different waves speeds c. The jump conditions for
the waves are applied that relate the stress change [σ] across
a wave to the velocity change [v]. These jump conditions
have the following form:

[σ] = ±ρc[v],

where ρ is the mass density, and where the + and − signs
apply to right-running waves and left-running waves respec-
tively. From these conditions, the velocity vn+1

γ can be com-
puted explicitly from the values at the adjacent nodes in time
step n− 1. Externally applied forces can also be included in
a straightforward way. After vn+1

γ is computed, the updated
displacement is approximated by

un+1
γ = unγ + ∆tvn+1

γ .

Details of the method can be found in (Silling 2020).
This DNS solver has the important advantage of not us-

ing an approximate representation of derivatives in space or
time for the computation of the velocity, which is, therefore,
free from truncation error and other sources of discretization
error that are usually encountered with PDE solvers. This
allows us to model the propagation of waves through many
thousands of microstructural interfaces without the need to
worry about what features of the velocity are real and what
are numerical artifacts.

We consider four types of data and use the first two for
training and the last two for validation of our algorithm. In
all our experiments we set L = 0.2, E1 = 1, E2 = 0.25,
ρ = 1, and the symmetric domain Ω = (−b, b). Discretiza-
tion parameters for the DNS solver are set to ∆t=0.01 and
max{∆x}=0.01.

1) Oscillating source. We set b = 50, v(x, 0) = u(x, 0) = 0,

f(x, t) = e−( 2x
5kL )

2

e
−
(

t−t0
tp

)2

cos2
(

2πx
kL

)
, k = 1, 2, . . . , 20,

t0 = tp = 0.8.

2) Plane wave. For b = 50, f(x, t) = 0 and u(x, 0) = 0, we
prescribe v(−b, t) = sin(ωt) for ω = 0.35, 0.7, · · · , 3.85.

3) Wave packet. For b = 133.3, f(x, t) = 0 and u(x, 0) = 0,
we prescribe v(−b, t) = sin(ωt) exp(−(t/5− 3)2) for ω =
2, 3.9, 5.

4) Impact. For b =266.6, f(x, t) = 0 and u(x, 0) = 0, we
prescribe v(x, 0) = 1 for all x ∈ [−b,−b + 1.6] and v = 0
outside of this interval. This initial condition represents an
impactor hitting the bar at time zero, generating a velocity
pulse of width roughly 3.2 that propagates into the interior
of the bar. The pulse attenuates and changes shape as it en-
counters the many microstructural interfaces.

Training procedure
For the optimization problem (7) we choose a Tikhonov
regularization of the form R({Cm}) = ε

M+1

∑M
m=0 C

2
m,

where the regularization weight ε is chosen empirically to
guarantee accurate predictions, as we explain later on. The
physics-based constraints in (9) are defined as follows and
also discretized by Riemann sum; they are used to explicitly
prescribe values of CM−1 and CM :

M∑
m=0

Cm

∫ δ

0

y2

δ3
Bm,M

(
|y|
δ

)
dy = ρc20,

M∑
m=0

Cm

∫ δ

0

y4

δ3
Bm,M

(
|y|
δ

)
dy = −4ρc30R,

(10)

where ρ is the density and c0 is the effective wave speed
for infinitely long wavelengths. For ρ = 1, it is given by
c0 = (2/(1/E1 + 1/E2)

1
2 . R is the second derivative of the

wave group velocity with respect to the frequency ω evalu-
ated at ω = 0. Both parameters are obtained by simulating a
very low frequency plane wave propagating through the mi-
crostructure over a long distance using DNS (Silling 2020).
These parameters primarily affect simulations at large times,
t > 10. However, due to practical limitations on computer
resources, our training simulations are restricted to t ≤ 2.
Therefore, we incorporate these parameters as constraints
obtained from DNS as indicated in (10), rather than attempt-
ing to learn these through our algorithm. The first constraint
in (10) is also used for similar purposes in (Xu, D’Elia, and
Foster 2020) and prescribed in a weak sense by penalization.

Training is performed with DNS data of type 1) and 2).
Parameters for the nonlocal solver and the optimization al-
gorithm are set to h = 0.05, dt = 0.02, Ttr = 2, δ =1.2,
M = 24 and ε = 0.01. The optimization problem (7) is
solved with L-BFGS. Note that we empirically choose δ and
ε in such a way that the group velocity, defined below, corre-
sponding to the optimal kernel is as close as possible to the
one computed with DNS.

The optimal kernel, Kopt, is reported in Figure 3; as ex-
pected from the literature (Xu and Foster 2020; Xu, D’Elia,
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Figure 3: Optimal kernel Kopt as a function of distance.
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Figure 4: Dispersion curve associated with Kopt.

and Foster 2020; You et al. 2021; Weckner and Silling
2011), we observe a sign-changing behavior. We also com-
pute the corresponding dispersion ω(k) and group velocity
vg(ω) = dω/dk. For a given kernel K and different fre-
quencies ki = 0, 2π

200h , · · · ,
2π
h , the corresponding angular

frequency ω(ki) and group velocity vg(ω(ki)) are approxi-
mated by

ω(ki)
2 ≈ 1

ρ

∑
q

K(|yq|)(1− cos(kiyq))h,

vg(ω(ki)) ≈
ω(ki+1)− ω(ki−1)

ki+1 − ki−1
,

where yq belong to a uniform grid of size h in (−δ, δ).
The dispersion curve is reported in Figure 4, its positivity

indicates that Kopt corresponds to a physically stable mate-
rial model. The group velocity is reported in the upper plot
of Figure 5 in comparison with the curve computed with
DNS by observing the speed of a wave packet of a given
frequency as it moves through the microstructure. We also
display the group velocity associated with an alternative ker-
nel obtained for the same material by a completely different
method (Silling 2020). This alternative kernel is a constant,
specifically, we have that Cm=Kconst =0.7714, for M =3
and δ=0.15.

It is well known that layered, periodic elastic media have
a band structure for wave propagation, see (Bedford and
Drumheller 1994, pages 121-122). In the present study, be-
cause it is not possible to reproduce the higher-frequency
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Figure 5: Comparison of the group velocity. Upper: group
velocity corresponding to Kopt, Kconst, and DNS data. Bot-
tom: group velocity corresponding to Kopt for different
pairs (δ, ε).

pass bands with the coarse discretization that is used in
fitting our nonlocal kernel, we address only the first, low-
frequency pass band, i.e. ω ∈ (0, ωbs), where “bs” stands
for band stop. Hence, the optimal kernel is suitable only for
wavelengths that are bigger than the microstructure; this is
enough to reproduce the physically most important features
of wave propagation in layered media for typical applica-
tions.

The profile of the group velocity shows the improved ac-
curacy of our optimal kernel that not only matches the be-
havior for low values of ω, but also catches the behavior at
ω = ωbs ≈ 4. This fact has important consequences on the
ability to reproduce wave propagation for values of ω big-
ger than ωbs. In order to justify the statement above on the
optimality of the parameters δ and ε, we report the group ve-
locity profile in correspondence of different pairs; it is clear
from the profiles in Figure 5 that (δ, ε) = (1.2, 0.01) pro-
vides the best match both in terms of curvature at ω = 0 and
identification of the band stop.

Numerical validation
We test the performance of the optimal kernel Kopt on data
sets of type 3) and 4), i.e. the problem setting considered
for validation has different model parameters, including the
domain, than the one used for training and, hence, these tests
serve as an indicator of the generalization properties of our
algorithm.

Wave packet. For data type 3) we numerically compute so-
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Figure 6: Velocity computed with Kopt. Plots from top to
bottom correspond to: 1. ω1 = 2 at t = 100; 2. ω2 = 3.9 at
t = 320; 3. ω3 = 5 at t = 100.

lutions to (2) using Kopt and DNS data as nonlocal bound-
ary conditions. We consider solutions corresponding to three
values of ω: ω1 =2 <ωbs, ω2 =3.9 ≈ ωbs and ω3 =5 >ωbs.
Note that the latter value is beyond the band stop and, as
such, corresponds to a zero group velocity, i.e. the wave does
not travel in time. In Figure 6 we report the velocity corre-
sponding to the computed displacement ū at time t = 100,
t = 320, and t = 100 for ω1, ω2, and ω3 respectively; as a
reference, we also report the exact DNS velocity. Our results
indicate that our kernel can accurately reproduce solutions
of type 3) at times larger than Ttr and for all values of ω,
even larger than ωbs. This is possible because the group ve-
locity corresponding to Kopt reproduces the true group ve-
locity very accurately, see Figure 5. In particular, detecting
the presence of a band stop allows us to accurately predict
the wave propagation for values of ω>ωbs. Due to the poor
accuracy of the group velocity associated to Kconst, corre-
sponding solutions are not as accurate for ω in the proximity
of ωbs and beyond. To illustrate this phenomenon, we re-
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Figure 7: Velocity computed with Kconst. Plots from top to
bottom correspond to: 1. ω1 = 2 at t = 100; 2. ω2 = 3.9
at t = 320; 3. ω3 = 5 at t = 100. The optimal kernel Kopt

obtained by machine learning (Figure 6) clearly performs
better than Kconst for the second and third cases (ω2 and
ω3).

port in Figure 7 the behavior of the velocity corresponding
to Kconst at time t = 100, t = 320 and 100, respectively for
ω1, ω2 and ω3. Comparison with DNS data shows that, for
ω2 the wave associated with Kconst is traveling faster than
the exact one and, for ω3, it keeps traveling while the exact
wave is not propagating.

Impact. We use the optimal kernel to compute solutions cor-
responding to data type 4). In Figure 8 we report the velocity
profile at different time steps in correspondence ofKopt and
DNS data, displayed for comparison. Figure 9 displays the
same results in correspondence ofKconst. These results indi-
cate that our optimal kernel can accurately predict the short-
and long-time wave propagation, as opposed to the constant
kernel that successfully predicts the long-time behavior only.
We also point out that for values of (δ, ε) for which the group
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Figure 8: Velocity profile for the Impact problem at T = 20
and T = 600 with Kopt.

velocity is not accurate, the predicted velocity and displace-
ment exhibit non-physical oscillations, which disappear in
correspondence of pairs that guarantee an accurate group ve-
locity profile.

Conclusion
We introduced a new data-driven, optimization-based algo-
rithm for the identification of nonlocal kernels in the con-
text of wave propagation through material featuring het-
erogeneities at the microscale. The corresponding nonlocal
model is well-posed by construction and allows for accu-
rate simulations at a larger scale than the microstructure.
We stress the fact that our algorithm does not require a pri-
ori knowledge of the microstructure (often unknown and/or
hard to model), but only requires high-fidelity measurements
of the displacements or the velocity. We also point out that
our algorithm has excellent generalization properties as the
optimal kernel performs well at much larger times than the
time instants used for training and on problem settings that
are substantially different from the training data set.

One of the most important findings in this work is the
key role of the group velocity in the accuracy of the predic-
tions; in fact, our criterion for the choice of the horizon δ and
the regularization weight ε is the accurate prediction of the
group velocity profile. Given the critical role of such quan-
tity, our future work includes the identification of the optimal
horizon by, possibly, embedding constraints on the group ve-
locity to the training procedure. Another natural follow-up
work is the illustration of the efficiency of our algorithm on
two- and three-dimensional test cases.
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Figure 9: Velocity profile for the Impact problem at T = 20
and T = 600 withKconst. The optimal kernelKopt obtained
by machine learning (Figure 8) provides better agreement
with the DNS data than Kconst at the earlier time (T = 20)
by reducing the size of the oscillations that trail the main
pulse. For large T , the solution is dominated by the low fre-
quency components of the pulse, for which the two kernels
behave similarly.
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