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Abstract. In this paper, we present MT-GAN-BERT, i.e., a BERT-based
architecture for faceted classification tasks. It aims to reduce the require-
ments of Transformers both in terms of the amount of annotated data and
the computational cost required at classification time. First, MT-GAN-BERT
enables semi-supervised learning in BERT-based architectures based on
Generative Adversarial Learning. Second, it implements a Multi-task
Learning approach to solve multiple tasks simultaneously. A single BERT-
based model is used to encode the input examples, while multiple linear
layers are used to implement the classification steps, with a significant
reduction of the computational costs. Experimental evaluations against
six classification tasks involved in detecting abusive languages in Italian
suggest that MT-GAN-BERT represents a sustainable solution that generally
improves the raw adoption of multiple BERT-based models with lighter
requirements in terms of annotated data and computational costs.
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1 Introduction

In recent years, Deep Learning methods have become very popular in Natural
Language Processing (NLP), e.g., they reach high performances by relying on
very simple input representations (for example, in [10, 7, 11]). In particular,
Transformer-based architectures, e.g., BERT [4], provide representations of their
inputs as a result of a pre-training stage. These are, in fact, trained over large scale
corpora and then effectively fine-tuned over a targeted task achieving state-of-
the-art results in different and heterogeneous NLP tasks. However, several critical
aspects tend to critically limit the impact of such Transformer-based architectures
on sustainable real-word applications. First of all, they have been generally shown
to achieve state-of-the-art results when trained using very large-scale datasets
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but significant performance drops have been observed when annotated material
of limited size is adopted [3].

Unfortunately, obtaining annotated data is a time-consuming and costly
process. In addition, Transformer-based solutions are characterized by complex
architectures, with a large number of parameters and therefore have an onerous
computational cost [24]. Several works proposed solutions devoted to the reduction
of such computational complexity [23, 27, 25]. However, whenever the problem
at hand requires decomposing the decision process into a (possibly large) set of
decision steps, the overall computational cost is likely to grow rapidly. In fact,
the cost of the entire workflow generally increases as the sum of the (millions)
of parameters of the individual architectures. Let us consider the adoption
of Language Technologies against Offensive Language on the Web and Social
Networks. Offensive language (also called “abusive language”) refers to any insult
or vulgarity that demeans a target [26, 17].

The NLP community has worked on methods to mitigate this phenomenon
by developing technologies to automatically detect abuse in texts. However, some
of these methods largely focused on a limited definition of abuse, i.e. detecting
hateful comments against only certain communities, such as comments referring
to ethnic minorities, and marginalizing other types of communities, such as
hateful comments towards women [20]. In fact, the notion of abuse is proved
elusive and difficult to formalize. Different norms in communities can influence
what is considered abusive. In the context of natural language, abuse is a term
that encompasses many different types of fine-grained negative expressions. For
example, in [18] it is used to collectively refer to hate speech, derogatory language
and insults, while others [16] use it to discuss racism and sexism. The definitions
for the different types of abuse tend to be overlapping and ambiguous. For
this reason, abusive behavior is considered a problem with many “faces”, as it
involves cases of hate speech, offensive language, sexism and racism, aggression,
cyberbullying, harassment and trolling. Each form of abusive behavior has its own
characteristics and manifests itself differently [6]. As a result, several datasets
exist [26] but they are focused on specific aspects of abusive language. We
speculate here that a solution consisting of several classifiers (each specialized on
a dataset) is not completely sustainable, especially when the cost of adopting
multiple architectures to classify large amounts of data may not be sustainable.
Furthermore, we hypothesize that training each classifier separately on a different
dataset might lead to sub-optimal quality compared to a classifier trained on
a dataset where each instance is labeled with respect to each phenomenon of
interest. Unfortunately, accessing datasets where individual instances are labeled
for all the different aspects of the abusive language is not always possible.

In this paper, we propose a methodology to handle multifaceted problems, in
this case, language abuse recognition, but keeping the final solution sustainable
in terms of both: i) the amount of annotated data required to train the final
model an ii) the computational cost required at classification time. In order to
address the issue i) we propose the adoption of semi-supervised methods, such as
in [28, 2, 30, 12] to improve the generalization capability when few annotated data
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is available, while the acquisition of unlabeled sources is possible. In particular
we will adopt GAN-BERT [3], a recently proposed method that enables semi-
supervised learning in BERT-based architectures based on Generative Adversarial
Learning [8]. Moreover, we will mitigate the issue ii) by adopting the Multi-
task learning approach proposed in [13], a specific formulation of BERT-based
architectures that solve multiple tasks simultaneously. Instead of using a different
BERT architecture for each task (each composed of hundreds of millions of
parameters), a single BERT model is used to encode the input examples, but
multiple classifiers (each composed of a negligible number of parameters) are used
to implement the classification steps. This significantly reduces the overall cost
and, in addition, allows the final architecture to be trained using disjoint datasets.
Finally, we will introduce the combination of both of the above approaches in
MT-GAN-BERT , a new architecture that extends BERT-based models with semi-
supervised learning while using a single encoder when applied to multiple tasks1.
Experimental evaluations against six classification tasks involved in detecting
abusive languages in Italian suggests: the beneficial impact of GAN-BERT when
trained on a reduced labeled dataset (e.g., 200 labeled vs. thousands of unlabeled
examples); the high accuracy of a unified Multi-task model that achieves results
comparable to those of multiple models, trained on a disjoint datasets; the reduced
requirements posed to the size of annotated data and the computational costs
implied by MT-GAN-BERT that thus represents a sustainable solution with respect
to the raw adoption of multiple BERT-based models.

In the rest of this paper, Section 2 discusses the adopted architectures and
presents MT-GAN-BERT . Section 3 reports the experimental evaluation while
Section 4 derives the conclusions.

2 Multi-task and Generative Adversarial Learning in
MT-GAN-BERT

Multi-task learning in Transformer-based architectures.Multi-task learn-
ing (MTL) is a paradigm useful for multiple (related) tasks to be learned jointly so
that the knowledge learned in one task can support other tasks [31]. Hard parame-
ter sharing is the most commonly used approach of MTL with neural networks and
it is generally applied by sharing hidden layers between all tasks, while maintaining
different task-specific output levels. Sharing hard parameters greatly reduces the
risk of over-fitting. Recently, there is a growing interest in applying MTL to repre-
sentation learning using deep neural networks (DNNs) for two reasons. First, super-
vised learning of DNNs requires large amounts of task-specific labeled data, which
is not always available. MTL provides an effective way of leveraging supervised
data from many related tasks. Second, the use of multi-task learning profits from
a regularization effect via alleviating over-fitting to a specific task, thus making
the learned representations universal across tasks. [13] proposed Multi-Task Deep
Neural Network (MT-DNN ) to incorporate a single pre-trained BERT model [4] to

1 MT-GAN-BERT is publicly available at: https://github.com/crux82/mt-ganbert



4 C. Breazzano et al.

be applied at the same time to several NLI tasks involving single-sentence classifi-
cation, pairwise text classification, text similarity scoring, and relevance ranking.
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Fig. 1. MT-DNN architecture

The architecture of the MT-DNN
model is shown in Figure 1
and adhere to the approach pro-
posed in [13] in a scenario in-
volving only classification tasks.
A BERT-based encoder represents
the shared layers across all T tasks,
while the output layersD1, . . . ,DT
implement the specific classifica-
tion tasks. For each input exam-
ple (either a sentence or a pair
of sentences packed together) com-
posed of n word-pieces, BERT cap-
tures the contextual information
for each word via self-attention, generating a sequence of contextual embeddings:
these are n+ 2 vector representations in Rd, i.e., (hCLS , hw1

, ..., hwn
, hSEP ). As

suggested in [4], hCLS corresponds to the d-dimensional representation of the
entire input sequence, while hw1

, ..., hwn
represent the d-dimensional embeddings

for the individual word-pieces. As we are interested in sentence based classification
tasks, only the hCLS is retained2 and it is given as input to the Dt layer to
classify the input sentence w.r.t. the task t = 1, ..., T .

The training procedure of MT-DNN is reported in the Algorithm 1. Input
examples generally belong to datasets E1, . . . , ET that are specific for each task
and they do not share the same labels. As a consequence, MT-DNN requires that
each dataset is shuttered in mini-batches Btj , each containing valid examples for
the same task t. In each epoch, a random mini-batch Btj is selected, all examples
are encoded using the same BERT and the generated hB

t

CLS are classified by the
Dt. This allows estimating a loss Lt that is task-specific but used to update the
entire model via back-propagation. In this way, the output layer Dt is fine-tuned
with respect to the t-th task but, most importantly, BERT encodings are at the
same time optimized in all tasks.

In addition to the benefits associated with regularization and the reduction
in over-fitting discussed in [13], MT-DNN shows a significant reduction of the
computational costs at classification time. In fact, each example is encoded only
once by BERT (which is composed of hundreds of millions of parameters [4]) and
then classified by each classifier Dt which is significantly smaller and composed
of about one thousand parameters for each of the kt classes. Moreover, whenever
the tasks are related to each other, such as Sentiment Classification or Hate
Speech Detection, the multi-task training procedure is also expected to improve
the final classification accuracy.

2 The remaining hwk embeddings can be used for other tasks, such as sequence labeling
tasks, not considered in this work.
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Algorithm 1 Training of a MT-DNN model Θ
1: Load the BERT parameters acquired during the pre-training stage as in [4]
2: Initialize D1, . . . , DT randomly
3: for t in 1, . . . , T do //Prepare the data for T tasks.
4: Divide data of the t-th task into mini-batches so that Et =

⋃
j B

t
j

5: end for
6: for epoch in 1, ..., epochmax do
7: Merge datasets: E = E1 ∪ · · · ∪ ET
8: Shuffle E
9: for Bt in E do //Bt is a mini-batch of the task t.
10: 1. Use the shared BERT to encode hB

t

CLS

11: 2. Classify hB
t

CLS using Dt against the kt classes
12: 3. Compute Lt loss as the Cross-entropy w.r.t. the kt classes
13: 4. Compute gradient: ∇(Θ) using Lt

14: 5. Update the entire model: Θ = Θ − ν∇(Θ)
15: end for
16: end for

GAN-BERT and Semi-Supervised Learning. Recent Transformer-based archi-
tectures, e.g., BERT, provide impressive results in many Natural Language
Processing tasks. However, most of the adopted benchmarks are made of (some-
times hundreds of) thousands of examples. In many real scenarios, obtaining
high-quality annotated data is expensive and time consuming; in contrast, unla-
beled examples characterizing the target task can be, in general, easily collected.
GAN-BERT [3] enables semi-supervised learning in BERT-based architectures, by
implementing a Semi-Supervised Generative Adversarial Learning technique. In
general, SS-GANs [21] enable semi-supervised learning in a GAN framework.
A discriminator is trained over a (k + 1)-class objective: “true" examples are
classified in one of the target (1, ..., k) classes, while the generated samples are
classified into the k+1 class. More formally, let D and G denote the discriminator
and generator, and pd and pG denote the real data distribution and the generated
examples, respectively. In order to train a semi-supervised k-class classifier, the
objective of D is extended as follows. Let us define pm(ŷ = y|x, y = k + 1) the
probability provided by the model m that a generic example x is associated with
the fake class and pm(ŷ = y|x, y ∈ (1, ..., k)) that x is considered real, thus belong-
ing to one of the target classes. The loss function of D is LD = LDsup. + LDunsup.

where:

LDsup.=−Ex,y∼pdlog[pm(ŷ = y|x, y ∈ (1, ..., k))]
LDunsup.=−Ex∼pd log[1− pm (ŷ = y|x, y= k+1)]

− Ex∼G log [pm(ŷ = y|x, y = k + 1)]

LDsup. measures the error in assigning the wrong class to a real example among
the original k categories. LDunsup. measures the error in incorrectly recognizing a
real (unlabeled) example as fake and not recognizing a fake example.

At the same time, G is expected to generate examples that are similar to
the ones sampled from the real distribution pd. As suggested in [21], G should
generate data approximating the statistics of real data as much as possible. In
other words, the average example generated in a batch by G should be similar
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to the real prototypical one. Formally, let’s f(x) denote the activation on an
intermediate layer of D. The feature matching loss of G is then defined as:

LGfeature matching= ‖Ex sim pd
f(x) − Ex ∼ Gf(x)‖2

2

that is, the generator should produce examples whose intermediate representations
provided in input to D are very similar to the real ones. The G loss also considers
the error induced by fake examples correctly identified by D, i.e.,

LGunsup.=−Ex∼G log[1− pm (ŷ = y|x,y = k+1)]

The G loss is LG = LGfeature matching + LGunsup.
. GAN-BERT [3] is based on the

already pre-trained BERT model and adapts the fine-tuning by adding two
components: i) task-specific layers, as in the usual BERT fine-tuning; ii) SS-GAN
layers to enable semi-supervised learning.
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ℇ

real data

BERT

k 
classes

F
noise 𝒢

real/fake

𝒟

Fig. 2. GAN-BERT architecture

Without loss of generality, let
us assume we are facing a sen-
tence classification task over k cat-
egories. As in the previous MT-DNN
architecture, given an input text,
we select the hCLS representation
as a sentence embedding for the
target tasks. As shown in figure
2, the SS-GAN architecture intro-
duces on top of BERT two com-
ponents: i) a discriminator D for
classifying examples, and ii) a gen-
erator G acting adversarially. In
particular, G is a Multi Layer Perceptron (MLP) that takes in input a 100-
dimensional noise vector drawn from N(µ, σ2) and produces in output a vector
hfake of the same dimension of hCLS . The discriminator is another MLP that
receives in input a vector h∗: this can be either hfake produced by the generator
or hCLS for unlabeled or labeled examples from the real distribution. The last
layer of D is a softmax-activated layer, whose output is a k + 1 vector of logits.

During the forward step, when real instances are sampled (i.e., h∗ = hCLS),
D should classify them in one of the k categories; when h∗ = hfake, it should
classify each example in the k+1 category. The training process of GAN-BERT tries
to optimize two competing losses, i.e., LD and LG. During back-propagation, the
unlabeled examples contribute only to LDunsup.

, i.e., they are considered in the
loss computation only if they are erroneously classified into the k+1 category. In
all other cases, their contribution to the loss is masked out. The labeled examples
thus contribute to the supervised loss LDsup. . Finally, the examples generated by
G contribute to both LD and LG, i.e., D is penalized when not finding examples
generated by G and vice-versa. When updating D, BERT weights are changed
in order to fine-tune its inner representations, so accounting for both labeled
and unlabeled data. After training, G is discarded while retaining the rest of the
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original BERT model for inference. This means that there is no additional cost
at inference time with respect to a standard BERT model.

MT-GAN-BERT: Combining Multi-task and Adversarial Learning. In order
to take advantage of both Multi-task learning and Adversarial learning and also
try to reduce the computational cost, using few labeled data, this paper proposes
the MT-GAN-BERT architecture. The MT-GAN-BERT model combines GAN-BERT and
MT-DNN , by relying on a shared Transformer, i.e. BERT, and applying as many
Generators and Discriminators as the number of the targeted tasks. As shown
in figure 3, BERT represents the shared layers across all tasks as suggested by
MT-DNN and takes labeled and unlabeled data as input, as proposed in GAN-BERT
. In this case, no overall Discriminator and Generator are foreseen, but for each
t-th task that you want to (simultaneously) solve we extend BERT with: i) a
Discriminator Dt for classifying examples, and ii) a Generator Gt acting adversely.

BERT
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noise 𝒢1
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noise 𝒢2
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Fig. 3. MT-GAN-BERT architecture

During the forward step, a
batch Bt belonging to a t-th task is
randomly selected. Therefore, each
sentence of the selected batch is
given as input to BERT, which
outputs the vector hCLS (for un-
labeled or labeled examples from
the real distribution). The vector
is given as input to the discrim-
inator Dt of the t-th task. Each
discriminator Dt is a MLP and, in
addition to vectors produced by
BERT over training sentences, it
also separately receives in input
htfake produced by the generator
Gt, of the t-th task. Each Gener-
ator is also a Multi Layer Percep-
tron (MLP), that behaves in the
same way as described above: so,
it takes as input a 100-dimensional noise vector drawn from N(µ, σ2) and outputs
a vector htfake ∈ Rd. The last layer of Dt is a softmax-activated layer and, when
real instances are sampled (i.e, h∗ = hCLS), Dt should classify them in one of the
kt categories specific to the t-th task; when h∗ = htfake, it should classify each
example in the “fake” kt + 1 category. The losses of Dt and Gt are computed as
in GAN-BERT , and the back-propagation applies to the MLP as well as on the
underlying BERT pre-trained model that is also modified. Changing weights in
BERT during the training batch Bt of a particular task t allows to specialize
BERT on that task t. By cycling and alternating forward and back-propagation
steps in the other tasks, BERT is asked to generalize across all tasks and learn
from all of them. Moreover, the capability of individual generators Gt for each
task, that generate task-specific fake examples, further improves the learning
of the individual discriminator Dt for each task t, even when few labeled data
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are used. MT-GAN-BERT correspondingly improves the sustainability of the overall
learning approach.

3 Experimental evaluation

In this section, we assess the impact of the MT-DNN model, the GAN-BERT model
and MT-GAN-BERT over different sentence classification tasks characterized by
different training conditions, i.e., number of examples and number of categories.
In particular, the objectives of this experimentation are three-fold. First, we
aim at demonstrating that the existing MT-DNN model allows to share a single
Transformer (BERT) in the training for multiple classification tasks at the same
time, by preserving or improving performances against a model trained specifically
on one task at a time (a standard BERT model). Second, we show that GAN-BERT
trained over few annotated data, supports more accurate classification against
the standard BERT model. In particular, the results of the BERT and GAN-BERT
models are compared on specific training data of different sizes for each task:
100, 200, 500 annotated examples. Finally, we show that MT-GAN-BERT further
improves performance, compared to applying as many BERT models as there
are tasks involved. Abusive language detection is a complicated task due to
the multifaceted nature of its target [26]. In fact, detecting abusive language
involves knowledge about specific and heterogeneous bad linguistic behaviors
manifested by Social Web data. For this reason, experiments across different
tasks each involving a specific form of abuse is useful to assess the impact of the
MT-GAN-BERT paradigm on the overall phenomena.

We report measures of our approach over the following tasks. First, we consid-
ered Hate Speech Recognition over two datasets, HaSpeeDe and DANKMEMEs.
HaSpeeDe, proposed in the 2018 EVALITA Competition, is a corpus that in-
cludes Twitter posts, in Italian ([19],[22]), that do or do not express hate. The
hateful tweets are mainly addressed to minorities and social groups, which are
potential targets of hate speech in Italy, such as immigrants, Muslims and Rom.
DANKMEMES (multimoDal Artefacts recogNition Knowledge for MEMES) [15]
is the first EVALITA task for the recognition of MEMEs and the identification
of hateful events or hate speech in them. A MEME is a multi-modal artifact,
manipulated by users, which combines textual and visual elements to convey a
message. The DANKMEMES task foresees three subtasks, which involve both
images and sentences. However, in this work, we will focus only on the dataset
used within the Hate Speech Detection task, only referring to the textual parts.
Again, individual instances are annotated to discriminate sentences that are
hateful from those that are not. Second, we considered Misogyny Identification
experimenting over the dataset of the Automatic Misogyny Identification (AMI)
task of the 2018 EVALITA competition [5]. AMI consists of two subtasks. In
this work, tweets from the two subtasks are used to create two different datasets,
AMI subtask A and AMI subtask B. In the first subtask, tweets are classified
as misogynous or not; in the second, misogynous tweets are further classified
into specific categories: “stereotype”, tweets that express a widely diffused but
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fixed and simplified image of a woman, “sexual harassment”, tweets that contain
sexual advances, but also the intent to physically assert power over women,
through threats of violence and “discredit”, and finally, tweets that are bad at
women with no other specific focus. Finally, we considered Sentiment Analysis
over the dataset of SENTIment POLarity Classification (SENTIPOLC) task
of the 2016 EVALITA competition [1], whose goal is sentiment analysis (SA).
Although SENTIPOLC is divided into three subtasks, this work only focuses on
the first two tasks: these are the subjectivity classification task and the polarity
recognition task, respectively. In this way, we obtained two independent datasets,
SENTIPOLC subtask 1 and SENTIPOLC subtask 2. In the first binary subtask,
tweets are classified as subjective or objective. In subtask 2, tweets are classified
into positive, negative, neutral ones.

The adopted datasets are mostly made up Twitter posts. Opinions and
subjective positions are thus mainly expressed in an immediate and direct style:
a post consists of a few words, exploiting at most 280 bytes. In the case of the
DANKMEMEs dataset, the sentences have a typical structure of MEMEs and
they express concepts in a very direct way, which are sometimes understandable
not only by reading the text, but also by observing the image. For each task,
performances are reported through two metrics: Accuracy and Macro F-measure,
the harmonic mean of the Precision and the Recall. As a comparison, we report
the performances of the basic BERT model that is independently fine-tuned on
the available training material of each task.

Table 1. List of dataset considered in the evaluation. For each dataset, the list of
available class and corresponding number of examples are reported.

Task Classes #examples
per class

HaSpeeDe hate, not hate 972, 2028
AMI A misogynous, not misogynous 1828, 2172
AMI B stereotype, sexual harassment, discredit 668 , 431, 634
DankMEMEs hate, not hate 395, 405
SENTIPOLC 1 subj, obj 5098, 2312
SENTIPOLC 2 positive, negative, neutral 1611, 2543, 2816

Experimental Setup. The MT-DNN and GAN-BERT implementations are based on
the code made available3 in support of [13] and [3], respectively. The MT-GAN-BERT
combines the above models and it is entirely written in PyTorch, based on the
HuggingFace framework [29]. All the models are based on BERT and, in particular,
UmBERTo4, that is a BERT model for the Italian language, based on Roberta
[14] and trained on large Italian Corpora. While GAN-BERT is trained individually
on each task, MT-DNN and MT-GAN-BERT are trained on all tasks, simultaneously.
In the MT-DNN model, the last layers, those specific to individual tasks, are single-
3 The original code repositories are available at https://github.com/namisan/mt-dnn
and https://github.com/crux82/ganbert

4 https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1
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level linear classifiers. 10 epochs are used to carry out the training, with a batch
size of 16 and a learning rate of 5 · 10−5. The adopted Loss function is the
Cross Entropy Loss. For the GAN-BERT and MT-GAN-BERT models, the Generator
components are implemented as MLPs, with one hidden layer activated by a
GELU [9] function and dropout set to 0.1 after a hidden layer. Generator inputs
consist of noise vectors drawn from a normal distribution N(0, 1): they pass
through the MLP and finally result in 768-dimensional vectors, that are used as
fake examples. The Discriminator components are also MLP with only a softmax
layer for the final prediction. In the training phase of GAN-BERT and MT-GAN-BERT
the batch size chosen is 64, the loss function is again the Cross Entropy Loss. The
GAN-BERT model is used in comparison with the basic BERT model: 25 epochs
are used to carry out the training and the adopted learning rate is 10−5. In
MT-GAN-BERT the adopted loss functions are the loss of the discriminator Dt and
of the generator Gt of each t-th task. To overcome the scarcity of data of some
datasets, in the models that apply multi-task learning, a balancing technique
is applied: examples are replicated for smaller training datasets of some tasks,
until the number of samples in the largest training dataset is reached. During the
training of each model, the best model is established, taking the model at the
time when the average Accuracy (or Macro F-Measure) between the Accuracy
(or Macro F-Measure) of each task, is the highest on the Validation set. The best
model is then applied to the Test set to establish the reported Accuracy and
Macro F-Measure. In order to obtain stable results and overcome the variable
performance of model runs caused by the small size of some datasets, more
executions (in particular 3) were carried out for each model: the average of the
resulting measurement is then reported.
BERT-based model vs MT-DNN . This section shows the performance of the
experiments carried out to compare the results obtained with the MT-DNN model,
with the results obtained with the BERT-based model. The MT-DNN model is
trained over all the tasks simultaneously, while the BERT-based model is trained
individually on each task. In particular, Table 2 shows the results of the BERT-
based model with Macro F-measure (second column) and Accuracy (third column),
while the results of the Multi-task Model (MT-DNN ) are reported in the fourth
and fifth column. Finally, the last two columns reports the absolute differences
between MT-DNN and the original BERT. If considering the computational costs,
when applying both solutions on unseen data, the MT-DNN allows reducing about
the 80% of parameters: in fact MT-DNN use only one encoder (made of 125M
millions of parameters, as based on RoBERTa) while the baseline adopts 6
encoders, one per task5. Results show that a monolithic architecture trained on
multiple tasks maintains the same performance as a model trained individually
on the same tasks. In particular, it can be noted how the AMI B task is able
to benefit from the data of the other tasks. In contrast, the polarity dataset
(SENTIPOLC 2) loses performance points, probably because it is one of the
two largest datasets among tasks and benefits less from other sentence polarity
recognition tasks.

5 The number of parameters of D are negligible if compared to the encoder.
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Table 2. Results BERT-based model vs MT-DNN in Macro F-measure e Accuracy

Task BERT model MT-DNN Difference
MF1 ACC MF1 ACC MF1 ACC

HaSpeeDe 77.79% 80.13% 77.73% 80.67% -0.06 +0.53
AMI A 83.70% 83.87% 84.70% 84.93% +1.01 +1.07
AMI B 80.41% 80.64% 84.97% 85.13% +4.56 +4.48
DANKMEMES 72.96% 73.17% 74.77% 74.83% +1.81 +1.67
SENTIPOLC 1 73.35% 73.03% 72.04% 72.55% -1.30 -0.48
SENTIPOLC 2 63.85% 67.84% 59.91% 64.34% -3.94 -3.50

BERT-based model vs GAN-BERT . This section shows the performances of the
experiments carried out to compare the results obtained with the BERT-based
model with those obtained with the GAN-BERT model. In particular, three results
are shown in Table 3, as the training procedure was applied to labeled datasets of
increasing sizes, i.e., 100, 200 and 500 labeled examples, respectively. The results
obtained show that GAN-BERT obtains better performances than the BERT-based
model with 100 and 200 labeled data, while with 500 examples in some tasks
the performances are stable compared to those of the BERT-based models. It
is clear that with GAN-BERT there is the possibility to generalize when there are
little data. There are more differences when there are more data and therefore
more contribution. Thus, the more unlabeled data, the more GAN-BERT benefits
from the contribution of adversarial learning.

Table 3. Results BERT-based model vs GAN-BERT , with 100, 200 e 500 labeled examples

Task BERT100 GANBERT100 Difference
MF1 ACC MF1 ACC MF1 ACC

HaSpeeDe 56.20% 67.03% 61.77% 68.17% +5.57 +1.13
AMI A 66.03% 65.20% 69.94% 71.90% +3.91 +6.70
AMI B 43.85% 44.92% 46.65% 47.01% +2.80 +2.09
DANKMEMES 49.81% 50.00% 53.62% 54.00% +3.81 +4.00
SENTIPOLC 1 58.94% 65.22% 61.43% 67.17% +2.49 +1.95
SENTIPOLC 2 37.57% 47.95% 44.74% 50.75% +7.17 +2.80

Task BERT200 GAN-BERT200 Difference
MF1 ACC MF1 ACC MF1 ACC

HaSpeeDe 61.62% 67.23% 62.70% 67.97% +1.08 +0.73
AMI A 64.34% 65.53% 69.03% 69.03% +4.69 +3.50
AMI B 52.80% 51.94% 56.09% 55.98% +3.29 +4.04
DANKMEMES 53.38% 53.00% 56.42% 56.67% +3.03 +3.67
SENTIPOLC 1 61.23% 65.70% 63.62% 67.97% +2.39 +2.27
SENTIPOLC 2 41.42% 49.66% 48.69% 54.18% +7.27 +4.51

Task BERT500 GAN-BERT500 Difference
MF1 ACC MF1 ACC MF1 ACC

HaSpeeDe 63.50% 68.93% 63.33% 69.30% -0.18 +0.37
AMI A 70.24% 71.17% 72.48% 72.60% +2.24 +1.43
AMI B 56.70% 56.65% 60.71% 58.52% +4.01 +1.87
DANKMEMES 56.58% 57.00% 58.43% 56.17% +1.85 -0.83
SENTIPOLC 1 58.94% 66.87% 63.02% 66.88% +4.08 +0.01
SENTIPOLC 2 43.12% 51.92% 48.67% 54.89% +5.55 +2.97
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Table 4. Results BERT-Based model vs MT-GAN-BERT with 200 e 500 labeled examples

Task BERT200 MT-GAN-BERT200 Difference
MF1 ACC MF1 ACC MF1 ACC

HaSpeeDe 61.62% 67.23% 63.22% 64.17% +1.60 -3.07
AMI A 64.34% 65.53% 69.10% 68.70% +4.76 +3.17
AMI B 52.80% 51.94% 48.76% 48.28% -4.04 -3.66
DANKMEMES 53.38% 53.00% 51.34% 52.67% -2.04 -0.33
SENTIPOLC 1 61.23% 65.70% 63.56% 66.58% +2.33 +0.88
SENTIPOLC 2 41.42% 49.66% 45.45% 52.09% +4.03 +2.43

Task BERT500 MT-GAN-BERT500 Difference
MF1 ACC MF1 ACC MF1 ACC

HaSpeeDe 63.50% 68.93% 62.83% 67.93% -0.67 -1.00
AMI A 70.24% 71.17% 71.81% 73.83% +1.57 +2.67
AMI B 56.70% 56.65% 58.48% 55.46% +1.78 -1.20
DANKMEMES 56.58% 57.00% 54.64% 55.00% -1.94 -2.00
SENTIPOLC 1 58.94% 66.88% 65.29% 70.48% +6.35 +3.60
SENTIPOLC 2 43.12% 51.92% 49.79% 56.18% +6.67 +4.26

BERT-based model vs MT-GAN-BERT . This section shows the performances of
the experiments carried out to compare the results obtained with the BERT-based
model with those obtained with the MT-GAN-BERT model. Two results are shown
in Table 4, where the results of the two models are compared, being trained
respectively with 200 and 500 data labeled. From the results, it can be seen that
MT-GAN-BERTmodel, trained on 200 labeled examples, improves learning, except in
the AMI B and DANKMEMEs tasks. By training the model with 500 examples,
the tasks that suffered a worsening with 200 examples, obtain performance
similar to that of the BERT-based model. In conclusion, from the experiments
can be seen that MT-DNN , trained simultaneously on different tasks, is able to
maintain the performance of the BERT-based model, trained individually on
each task. By introducing Adversarial Semi-Supervised learning, the experiments
obtained notable results and for this reason it was decided to implement a model
(MT-GAN-BERT) that combined the GAN-BERT and MT-DNN model. The resulting
model achieves overall equivalent or better results, although not in all tasks. This
limitation is evident for small datasets, such as in DANKMEMES, where the size
of the labeled dataset almost corresponds to the size of the original material.

4 Conclusion
This paper presents MT-GAN-BERT, a Transformer-based architecture for multi-
faceted classification problems. The proposed solution represents a sustainable
way that generally improves the adoption of multiple BERT-based models with
less stringent requirements in terms of annotated training data. Results in a
problem involving 6 tasks suggest that an 80% reduction in computational costs
can be achieved without a significant reduction in prediction quality. In contrast,
it shows improvements in datasets where only a few examples are manually
annotated while larger sets of unlabeled material exist. In future, we will study
the adoption of structured losses in order to make stronger dependencies between
classification results in the multi-task setting, to impose consistencies w.r.t. to
outputs in strictly related tasks.
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