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Abstract
The possibilities of explainable artificial intelligence (XAI) in the early diagnosis of drought in plants
based on hyperspectral images (HSI) are investigated. To provide the explainability and high accuracy
to the result, we used the markup of HSI by superimposed Thermal IR (TIR) images of the last day of
the experiment. Traditional HSI-based NDVI (Normalized Difference Vegetation Index) images were
also constructed. The markup of HSIs based on their clustering by the k-means method into 5 classes
was also objectified: wet plants; plants in a state of drought; wet soil; dry soil; background. For HSI,
on the day of the experiment started, the number of clusters was set to 2 less to reflect the absence of
drought circumstances. For use in training and testing, all HSIs channels are marked up with the results
of clustering. The HIS-TIR-combination made it possible to determine the temperature for each plant
pixel in HSI, and as the result to determine the number of days without watering. A fully connected
Double Layer Perceptron (DLP) neural network was used to solve classification and regression problems.
The trained DLP-regressor showed the average accuracy of predicting the temperature of plants on the
control days of the experiment RMSE = 0.52 degrees, providing an error in predicting the day of the
beginning of the drought for near 2 days. The DLP-classifier was able to classify the drought of the
plant in the early stages (the fifth day) with an accuracy of 97.3%. Software tools: pytorch, scikit-learn,
pysptools.
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1. Introduction

Early diagnosis of the state of drought based on the use of artificial intelligence methods is a
trend of today. Moreover, it is interesting to build models of explicable artificial intelligence
(XAI), which make the diagnosis and forecast of plant drought reliable and visual.

Today, most methods of detecting stress and pathologies in plants using artificial intelligence
are based on RGB image data due to their availability. There are many examples of using
artificial intelligence methods [1].
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However, there is a significant disadvantage in detecting plant stresses, including drought
detection, based on RGB data. They reliably detect drought even when the effects of stress are
visible to the naked eye. This approach undoubtedly gives high accuracy, but it does not give a
chance to prevent stress in a timely manner and cure the plant. Early detection of plant stress
can provide a significant reduction in crop losses in precision farming [2].

The presence of hyperspectral (HSI) data with hundreds of channels instead of 3 in RGB
expands the possibilities of early diagnosis due to the possibility of constructing special indexes
based on the data of HSI channels, such as NDVI (Normalized Difference Vegetation Index),
focused on monitoring the state of plants. After creating NDVI images in grayscale (or pseudo-
colors), you can apply the usual processing methods to the image. Direct HSI processing
methods can be divided into pixel and sub-pixel. Sub-pixel algorithms allow us to estimate the
composition of the material within a given pixel. Their goal is to decompose the image cube into
pure spectral signatures of reference materials, and determine the proportion of each material in
each pixel. Such methods include Linear Spectral Mixing (LSU), Matched Filtering (MF), Mixture
Tuned Matched Filtering (MTMF) [3]. Pixel methods are procedures that classify a pixel by
identifying the main component of a given pixel. These include Spectral Angle Mapper (SAM)
and Spectral Information Divergence (SID) [4], Binary Encoding (BE) [5], Spectral Feature
Fitting (SFF) [6], Normalized Cross Correlation (NormXCorr) and Continuum Removed (CR)
[7].

One of the obstacles to effective HSI classification is the lack of data markup or pure spectra for
the objects under study. Despite the existence of a number of methods for automatic extraction
of pure signatures, such as: Pixel Purity Index (PPI), Automatic Target Generation Process
(ATGP), N-FINDR, Fast Iterative Pixel Purity Index (FIPPI) and others [8], there is still a need
for full-scale verification of the decomposition result.

The high efficiency of classification in biology is demonstrated by deep learning, namely
convolutional neural networks, including those with 3d convolutions [9, 10]. Possible options
are methods based on cluster analysis, for example, a regression model without a teacher [11],
discretization into ordinal classes [12], the "Unsupervised domain adaptation" model, presented
in [13] or a data-driven method that combines clustering, band allocation, and a measure of
spectral similarity [14]. Classical clustering by the k-means method is widely used [15].

The following sequence of classification of plant diseases based on HSI data is widely used:
pretreatment (noise removal, radical reduction of the number of channels based on PCA);
segmentation (separation of the background using spectral indexes or a classifier); extracting
features (PCA, DWT - discrete wavelet transform; LESC - local embedding based on spatial
coherence algorithm); the use of a classifier [9]. Image segmentation is used as a pre-processing
stage and is usually performed before formal spectral analysis in order to extract target objects
from the background and form an area of interest for further analysis.

Distinguishing the type of stress (disease) of a plant may require the use of textural (or spatial)
features in addition to spectral ones. Thus, the selection of features can be considered as the
most important step in hyperspectral classification. Its purpose is to extract and form the most
relevant new feature vectors for the detection of plant diseases by combining and optimizing
spectral and spatial features. Methods of image segmentation and feature extraction are usually
used to improve the efficiency of data analysis, which may not always be necessary when
detecting plant diseases [9].



In the work [16], the problem of early detection of drought in plants was solved using a
single-layer perceptron (SLP), for which RGB and TIR images were used for training. The results
of their preprocessing were fed to the SLP input instead of the images themselves: statistical
parameters, quantized histogram values, as well as textural features for solving regression
and classification problems. The achieved accuracy of the SLP regressor in terms of RMSE =
0.617day. The possibilities of using TIR and HSI separately for detecting plant stresses are also
investigated in the review [17]. The high efficiency of TIR images in detecting plant stress is
beginning to be actively used in precision agriculture, since it allows detecting drought in plants
at the earliest possible time by the temperature of the plants themselves. A direct competitor of
this work is [18], in which derivative spectra instead of the full spectra were used for training of
drought detection model, and the achieved accuracy, and the accuracy above 97.5% was achieved
only for late drought detection while for the early stress it was much lower.

2. Dataset

Our research was carried out on the example of wheat plants (Triticum aestivum L.), a variety
of Zlata. After soaking, the seeds were planted in pots filled with soil. The plants were grown
up to the age of 14 days, after which they were divided into control and experimental ones. In
the experimental group, watering was stopped, in the control group it was continued according
to the standard schedule. Thus, the difference in both dry weight and temperature accumulated
between the control and experimental groups. The experiment lasted 25 days, during which the
difference in temperature and weight increased between the control and experimental samples.
The photos were recorded every few days so that the difference in features was noticeable.
The images were extracted using three devices: the Nikon D5100 RGB SLR camera (Nikon
Corporation, Japan); thermal imager Testo 885-2 (Testo SE & Co, KGaA, Germany), with a
measuring range from -30°C to 100°C; Specim IQ hyperspectral camera: range: 400-1000 nm;
spectral resolution: 7 nm; channels: 204; 512 x 512 pixels. For the study, wheat plants were
placed in three boxes, 30 pots in each. Thus, 45 pots were placed for the experimental group,
and the same number for the control group. The pots inside the boxes were placed in such
a way that the control and experimental groups of plants were located from different sides.
For each box, 11 images of each type were obtained at an angle of 90° (top view). Such images
correspond to the acquisition of images by sensors installed on the UAV.

The images were taken from a distance of 100 cm between the sensor and the object. For
the RGB camera, the images were formed in the "JPG" format with a size of 5184x3456 pixels.
Images in the "BMP" format of 320x240 pixels were obtained for the TIR sensor. The HSI sensor
(Specim IQ camera) recorded images using the " dat " format and with a header file of the "HDR"
format, having a size of 512x512 pixels and with the presence of 204 image channels in the range
from 397nm to 1003nm. Figure 1 shows an example of images obtained from an RGB sensor.

On the days of image fixation, the temperature of the leaves and the difference in water
content were measured for control and experimental plants. The graphs in Fig. 2 show that a
noticeable change in the water content in the plant appears only on the 11th day of the drought.
But according to the leaf temperature obtained using the TIR image, it is possible to notice the
beginning of the stress state of the plant on the 5th day.



Figure 1: RGB image of a box with wheat pots for the 1st (left) and 12th (right) days of the experiment.

Figure 2: Dependence on the day from the moment of cessation of irrigation for the difference between
the temperature of the experimental and control wheat plants, recorded by the TIR-sensor (left). De-
pendence of the difference in water content (CW) between the control and experimental wheat plants
(right).

3. Processing and classification of experimental data

3.1. Pre-processing

The values of each hyperspectral image should be reduced to the reflection values. When
shooting HSI, the Specim IQ hyperspectral camera receives a three-dimensional array of hyper-
spectral image, as well as a white standard and a dark frame, also presented as three-dimensional
arrays. This data is used to convert the original HSI data into reflection coefficient values. These
values are necessary in order to compare the data measured in different environments. Formula
1 presents the transformation of the reflection coefficient values, where "Reflectance" is the
reflection coefficient values, "data" is the raw HSI values, "Dark" is the values of the dark frame,
"White" is the values of the white standard, and "𝑡1" and "𝑡2" are additional coefficients. The
Specim IQ hyperspectral camera automatically calculates the values of the reflection coefficient,
and saves the result. Thus, the HSI obtained with the help of this hyperspectral camera is a



three-dimensional data array ready for subsequent processing.

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =
𝑑𝑎𝑡𝑎𝑡1 −𝐷𝑎𝑟𝑘𝑡1

𝑊ℎ𝑖𝑡𝑒𝑡2 −𝐷𝑎𝑟𝑘𝑡2
* 𝑡2
𝑡1

(1)

However, the resulting HSI may contain noise and glare pixels, so the image requires additional
processing. Thus, the image was processed using the Savitzky-Golay filter [19]. The Savitzky-
Golay filter removes high-frequency noise from the data, preserving the original shape and
features of the signal better than other types of filtering methods, thanks to the polynomial
smoothing of the result. This filter with window width = 7 is applied to the signature of each
HSI pixel using a smoothing polynomial of the 3rd degree.

HSI after noise removal is used to calculate the spectral vegetation index NDVI by the formula
(2), where 𝑅𝑖 is the reflection value in the 𝑖 - nanometer HSI channel.

𝑁𝐷𝑉 𝐼 =
𝑅800 −𝑅680

𝑅800 +𝑅680
(2)

Figure 3 shows a NDVI image in pseudo-color before noise removal (using the Savitzky-Golay
filter), and after removal.

Figure 3: The NDVI spectral index calculated for HSI before (left) and after (right) the application of
the Savitzky-Golay filter.

3.2. Segmentation

In the pre-processed HSI, the area of interest is highlighted, for which 2 background masks
are built. The first mask excluded everything that is not a plant and was constructed using the
NDVI index (formula 2) according to the rule: pixels with a value above the specified threshold
belong to the plant, and the remaining pixels belong to the background. The second mask is
based on the spectral index given by the formula (3).

𝑣𝑎𝑙𝑢𝑒 =
𝑅450 −𝑅550

𝑅450 +𝑅550
(3)

She was supposed to add soil to the area of interest in plants. This could also be done
by choosing a threshold, since the background was specially draped with a dark fabric. The
separation of soil and plants was provided by a combination of masks shown in (Fig. 4).



Figure 4: Mask of soil and wheat plants (left); mask of wheat plants (right).

3.3. Marking

The first task of the markup is to bind the temperature data of the TIR images to NDVI and
HSI images using 1 mask. As a result of combining TIR and HSI, the temperature marking of
wheat plants on RGB, HSI and NDVI images was obtained (Fig. 5), which allows to qualitatively
increase the accuracy of the selection of the drying part of the plant and the prediction of the day
since the beginning of the drought (Fig. 2). The most informative marking is the temperature of
the HSI signatures.

Figure 5: A pseudo-colored TIR image for wheat without a background (right), which is the result of
HSI markup (left).

Within the area of interest specified by mask 2, the k-means [20] method, marking of 4 classes
(clusters) necessary for diagnostics was performed on all HSI channels: wet and dry soil, wet
and drying wheat (Fig. 6). The scikit-learn software tool was used. This clustering problem can
also be solved on NDVI images. However, using HSI signatures instead of NDVI values allows
you to build the most correct class separation. To predict the day of drought, a DLP-regressor
model is further constructed.



Figure 6: The result of clustering of all HSI channels by the k-means method. Classes: 1 — background,
2 — wet wheat, 3 — dry wheat, 4 — dry soil, 5 — wet soil.

3.4. Classification and regression

To solve the problem of predicting the day of drought, a fully connected neural network of a
double layer perceptron was used — DLP regressor. The HSI pixel signatures containing 204
channels are fed to the input layer of the regressor, and the output layer contains 35 neurons
corresponding to the 34th temperature values (calculated with an accuracy of 0.1 degrees)
and the background (Fig. 7). An image of the 25th day of the experiment was used to train
the network (Fig. 6), since drought is observed especially clearly on it due to the maximum
temperature difference between control and experimental plants. 50% of randomly selected
signatures of this image were used as a training sample.

Figure 7: A DLP-regressor model for the problem of predicting the day of drought.

The training was conducted on an Intel Core i3-8130U processor with a frequency of 2.20
GHz, 4 cores, 4 GB. The training time of the model was 5 hours and lasted 100 epochs. The
accuracy of the temperature prediction was 56.1%, and the RMSE was 0.52 degrees. The result
of the temperature prediction is shown in (Fig. 8), and the error matrix of this prediction is
shown in (Fig. 9). Using a graph of temperature changes over the days of the experiment, it is
possible to estimate the error of early prediction of a drought day by a value of about 2 days,
which will not cause crop losses due to late detection of the onset of drought.



Figure 8: The result of the temperature prediction (right) of the original image, as well as its true labels
(left).

Figure 9: The confusion matrix for the predicted values.

The predictive ability of the trained DLP-regressor was tested on the HSI of all days of the
experiment. Figure 10 shows the temperature labels for HSI on the 1st, 6th, 8th, 12th, 19th and
25th days of the experiment predicted by the network. According to the values of the labels,
starting from the 6th day, the dynamics of temperature increase in the experimental group is
traced, which corresponds to the defeat of drought, which is easily reversible after watering
until the 10th day inclusive.

To solve the classification problem, a model similar to the DLP regressor was used. The
difference between this model is only in the output layer containing 5 neurons corresponding
to 5 classes. To train the network, 2 groups of 3 marked HSI, the start day and the end day
of the experiment were selected, each of which included 15 pots with control plants and 15
with experimental plants. As a training sample, 25% of the HSI signatures of the 25th day
of the experiment (the 25th day in Fig. 12), marked up into 5 classes, as well as 25% of the
HSI signatures of the 1st day of the experiment (the 1st day in Fig. 12), marked up into 3
classes (background, wet wheat, wet soil) - it was assumed that the plant on the 1st day without
watering is not subject to drought. The training took place on the same equipment, lasted 1
hour and lasted 15 epochs. The result of training the networks were tested on 25% of the HSI



Figure 10: The results of predicting the temperature on the HSI of different days of the experiment. RGB
images (left columns) correspond to the predicted (for the corresponding HSI) labels (right columns).

signatures of the 1st day and 25% of the HSI signatures of the 25th day, which were not used for
training. The accuracy of the network operation was 97.3% (Fig. 11).

Figure 11: Classification results and confusion matrix.

After using different parts of the images of the 1st (containing "wet" classes) and the 25th
(containing "drying up" classes) days for DLP training, the network was able to predict the
necessary labels on other HSI. The results of DLP-classifier, which was trained on HSI of one
box, after using on the other 2 boxes from 25th-experiment-day are shown on (Fig.12). On (Fig.
13) are shown the DLP-classifier results for the different experiment days from first to 25th.

4. Conclusion

The construction possibility of explainable artificial intelligence (XAI) models for the early
diagnosis of plants drought based on hyperspectral images (HSI) data are investigated. The
problem was solving on the basis of data from an experiment to observe the drought stress of
wheat plants during for 25 days, with an interval of 2-3 days. The experiment volume included



Figure 12: Results of DLP-classifier, which was trained on one box, after using on the other 2 boxes
from 25th-experiment-day.

Figure 13: DLP-classifier results for the different experiment days.

of 3 boxes with 30 pots with plants in each: 15 on the left were watered; 15 on the right were
not watered. The states of plants were recorded using HSI and Thermal IR (TIR) cameras.
During experiment the dependencies of mean temperature of plants (via TIR images) and water
losses (%, via plants weighting) from experiment-day were constructed. By these dependencies
the increase of mean plant temperature on 0.2 deg on 5th day, and water losses about 8% on
11th day were fixed, which are the earliest drought evidence by criteria of plant temperature
and water losses. To give the needed explainability to the result of AI-methods applying, the
HSI signatures were trained on temperature values from the Thermal IR (TIR) images. It has
done on the last-experiment-day data, for which the NDVI-based masks of plants, soil, and
background were automatically constructed. Such trained HSI-TIR fusion put as the basis for



plant temperature prediction. The regressor and classifier in this work were constructed as
double-layer perceptrons. DLP-regressor and DLP-classifier have the HSI-channels as input
nodes. The output DLP-regressor layer have 35 neurons to provide the temperature resolution
equals 0.1 deg. After training achieved RMSE value equals 0.52 deg which provide the day-
prediction error about 2 days and prediction drought state of plant before water losses. For the
classification task, in the masks limits, the decomposition of plants and soil onto two classes:
wet and drying up, has executed. It was done via their clustering by the k-means method,
using different types of images: NDVI and HSI. HSI-based clustering was evaluated as more
accurate after its testing on the other experiment days. The k-means method was applied on
the 1st-day-HSI for 3 clusters, including background (without drying up), and the 25th-day-HSI
for 5 clusters. The DLP-classifier had 5 output and its accuracy for early drought detection was
97.3%. It is noticeably more than in [18]. The constructed on HSI input data DLP-regressor and
DLP-classifier, can be considered as XAI networks due to they have the property of explainability
of their results provided by temperature marking of signatures, and will be useful for precision
agriculture.
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