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Abstract  
In this paper problems of cutting and packing objects of complex geometric shapes are 

considered. To solve these NP-hard problems, it is proposed to use an approach based on 

geometric transformation of polygonal objects to composite objects (orthogonal polyhedrons) 

made up of rectangles or parallelepipeds of a given dimension. To describe the free space inside 

a voxelized container, a model of potential containers is used as the basic model that provides 

the ability of packing orthogonal polyhedrons. A number of specialized algorithms are 

developed to work with orthogonal polyhedrons including: algorithms for placing and 

removing composite objects, an algorithm for forming a packing with a given distance between 

objects to be placed. Two algorithms for the placement of orthogonal polyhedrons are 

developed and their efficiency is investigated. An algorithm for obtaining a container of 

complex shape presented as an orthogonal polyhedron based on a polygonal model is given. 

The article contains examples of placement schemes obtained by the developed algorithms for 

solving problems of packing two-dimensional and three-dimensional non-rectangular 

composite objects. 
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1. Introduction 

The problem of finding the best way to place objects of complex geometric shapes is characterized 

by a wide range of its practical applications. Among the most common areas of such practical 

applications are [1–7]: 

 cutting industrial materials (metal sheets, cardboard, plywood and etc.); 

 rational usage of free spaces (for example, spaces of aircraft, tankers, spaceships and etc.); 

 geometric surface coverage with specified shapes; 

 modeling the microstructure of composite materials; 

 generation of active electronically scanned arrays. 

All packing problems are NP-hard optimization problems for which there are no algorithms of 

polynomial complexity to solve them [1, 8], which makes it urgent to develop algorithms that provide 

suboptimal solutions in an acceptable time. Modern methods for solving problems of packing objects 

of complex geometric shape require usage of the hodograph vector function of dense placement, which 

requires the subsequent application of nonlinear programming methods characterized by high 

computational complexity [9–15]. The paper proposes an approach that allows you to reduce the 

complexity of the problem. It consists in voxelization of objects to be packed [16–18], subsequent 

transforming the obtained voxelized objects to orthogonal polyhedrons after their decomposition [19] 

and finally application of algorithms especially developed for placement of orthogonal polyhedrons. 
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We will consider the problem of placement orthogonal polyhedrons in the general D -dimensional 

case. A container is specified as a D -dimensional parallelepiped with the dimensions  DWWW ;;; 21   

(the superscript in formulas means the number of the coordinate axis). Objects to be packed are 

specified by a set of n  compound objects iO  as orthogonal polyhedrons (  ni ;1 ). Every compound 

object consists from a set of im  simple objects (rectangles or parallelepipeds) at the same time, each 

simple object  iik mko ;1,   has the overall dimensions  D
ikikik www ;;; 21   as well is located at point 

 D
ikikik zzz ;;; 21   of the considered orthogonal polyhedron. When all compound objects consist of only 

one simple object, then the problem is reduced to the classical problem of orthogonal packing or 

rectangular cutting [2, 20]. 

2. Developed algorithms for working with orthogonal polyhedrons 
2.1. Description of container free spaces 

To describe a packing entire is used the developed model of potential containers [20, 21]. A potential 

container is an imaginary orthogonal region ( D -dimensional parallelepiped) for which there is free 

space inside a packing. The model of potential containers used forms the set of all possible potential 

containers of minimum capacity. The designation  D
hhh ppp ;;; 21   is used to indicate the overall 

dimensions of a potential container hP  and its position inside the considered packing is determinate by 

a set of values  D
hhh xxx ;;; 21  . When a new orthogonal object has to be put into a container it is 

necessary to check the condition that it does not intersect with objects already placed in the placement 

scheme. When using the model of potential containers, it is possible to guarantee the correctness of the 

resulting packing if each placed object can be completely placed inside at least one potential container. 

Obviously, this check is performed quickly, and the speed of orthogonal packing formation is high. 

To update a set of potential containers after placing an orthogonal polyhedron iO  at the point 

 D
iii XXX ,,, 21   of a D -dimensional container, the entire of which is fully described by a set of 

potential containers 0 , the following algorithm is performed. 

Step 1. Create a set 00   of potential containers   d
i

d
i

d
h SXxDdh  :,,1:  , where 

 D
iii SSS ,,, 21   denotes the overall dimensions of a D -dimensional parallelepiped bounding the 

orthogonal polyhedron iO :  d
ik

d
ik

d
i wzS  max ,  Dd ;1 ,  imk ;1 . 

Step 2. Place an orthogonal polyhedron iO  in the specified position  D
iii XXX ,,, 21   of a new 

identical empty container, as a result of which a set of potential containers   will be formed in it. 

Placement of the orthogonal polyhedron is performed by sequentially placing of all its orthogonal 

objects  iik mko ;1,  . 

Step 3. Apply the intersection operation [19] to sets of potential containers 0  and   to get a set 

of potential containers  00  that describes all free spaces of the original container in the area 

of the compound object iO . The operation of intersection of sets of potential containers is implemented 

in the same way as the operation of intersection of two orthogonal polyhedrons, each of which contains 

the same parameters (position, overall dimensions) of orthogonal objects as the corresponding 

parameters of potential containers. 

Step 4. Replace in the set 0  all potential containers that are also in the set 0  with potential 

containers from the set 0  . 

This algorithm for updating potential containers is presented in Figure 1. 

 



 
 

Figure 1: Updating of potential containers when placing an orthogonal polyhedron 

2.2. Packing an orthogonal polyhedron 

Two algorithms have been developed for packing an orthogonal polyhedron into a container, which 

are implemented with a generalization in dimension. 

Algorithm 1 consists in the sequential formation of an orthogonal polyhedron and performing a 

series of offsets during its placement in the container [22]. Figure 2 presents an example of the 

sequential formation of a composite object when it is placed inside a container with geometrical 

restrictions (shown in gray in the figure). 
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Figure 2: Orthogonal polyhedron in the packing process (Algorithm 1): (a) original container with 
restrictions; (b) placement of the first object; (c) subsequent placement of the second object; (d) final 
result of placement the entire orthogonal polyhedron 

 

The second algorithm (denoted by Algorithm 2) for placing an orthogonal polyhedron is based on 

determining the common area of acceptable placement for intermediate orthogonal polyhedrons 

composed of separate objects of the original composite object [19]. 

Table 1 contains the results of computational experiment which was conducted for comparing these 

two algorithms. 

In the course of the computational experiment, the problem of placing two identical orthogonal 

polyhedrons into a container was solved, the height ( 2W ) of which coincides with the height of the 

rectangle bounded around the placed orthogonal polyhedron. When solving the problem, a personal 

computer was used (processor – Intel Core i5-8400, 2.8 GHz; RAM – 8 GB). 

Table 1 uses the following notation: 

 m  – the number of simple objects in the orthogonal polyhedron; 

 1T  – the time spent on the placement of orthogonal polyhedrons by Algorithm 1; 

 2T  – the time spent on the placement of orthogonal polyhedrons by Algorithm 2. 

The computational experiment was performed for various intermediate orthogonal polyhedrons 

consisting of orthogonal objects. When placing an orthogonal polyhedron consisting of objects whose 



number is less than 11, both algorithms ensure the placement of composite objects in the same time 

(0.03-0.04 s), so Table 1 shows the results obtained when  28;11m . 

 

Table 1 
Comparison of algorithms for placing an orthogonal polyhedron 

m  1T , s 2T , s 2W  Visualization  m  1T , s 2T , s 2W  Visualization 

11 0.08 0.04 26 

 

 

20 1.30 0.04 29 

 

12 0.07 0.04 26 

 

 

21 0.22 0.04 29 

 

13 0.16 0.04 27 

 

 

22 0.55 0.04 29 

 

14 2.89 0.04 28 

 

 

23 0.28 0.05 29 

 

15 7.58 0.04 29 

 

 

24 2.71 0.05 29 

 

16 118.13 0.04 29 

 

 

25 1.60 0.05 29 

 

17 0.64 0.04 29 

 

 

26 14.18 0.07 29 

 

18 1.20 0.04 29 

 

 

27 8.38 0.07 29 

 

19 0.22 0.04 29 

 

 

28 9.08 0.07 29 

 
 

The results obtained showed that for all problems, Algorithm 2 provides placement in a time that is 

not less than the time spent by Algorithm 1, while for all values  28;11m , Algorithm 2 provides 

placement of objects at a speed that is on average two orders of magnitude higher. 

Since Algorithm 2 places orthogonal polyhedrons without shifting, their optimal placement is 

obtained without using the algorithm for determining the optimal position described in article [22]. 

In Figure 3, a is presented an example of packing 11 ellipses in a rectangular container. It was 

obtained by Algorithm 2 in 2.8 s while Algorithm 1 did not provide a solution in a time limited to 300 s. 

Algorithm 2 provides a significant increase in the speed of placement of both two-dimensional and 

three-dimensional orthogonal polyhedrons. As an example, consider the problem of placing two 

identical orthogonal bowl-shaped polyhedrons consisting of 110 orthogonal objects in a three-

dimensional container (Figure 3, b). Algorithm 1 provides placement of these orthogonal polyhedrons 

in 13.32 seconds, while Algorithm 2 spends only 0.40 seconds. 
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Figure 3: Test packing problems: (a) placing of 11 ellipses in a rectangular container; (b) placing of 
2 bowl-shaped objects in a parallelepiped 

2.3. Removing a compound object from a packing 

To increase the density of a placement of orthogonal polyhedrons, their local redistribution within 

the formed packing can be performed. In this case, after removing some orthogonal polyhedron of a 

given dimension, it is necessary to perform the procedure for updating the set of potential containers in 

the area of its initial placement. 

The algorithm for deleting one object which described in article [23] can be used to implement the 

algorithm for deleting a compound object represented by a set of simple objects.  

We assume that the orthogonal polyhedron iO  being removed is located in the container j  at point 

 D
ijijij XXX ,,, 21  . 

The developed algorithm for updating the set of potential containers after removing an orthogonal 

polyhedron of arbitrary dimension D  contains 10 steps. 

Step 1. Create an empty copy of container j  and denote it as a container j . 

Step 2. Set the number 1:k  for the currently deleted simple object iko . 

Step 3. Place the simple object iko  at the point  D
ik

D
ijikijikij zXzXzX  ,,, 2211   of the container 

j . 

Step 4. Increase the number of the current simple object ( 1:  kk ). If mk   then go to step 3, 

otherwise go to step 5. 

Step 5. Select in the container j  potential containers, the overall dimensions of which can be 

changed after deleting the composite object. This set 1  
includes potential containers for which the 

inequality d
i

d
ij

d
k

SXx   is true (the vector  D
iii SSS ,,, 21   stores overall dimensions of the AABB 

parallelepiped bounding the orthogonal polyhedron iO ). 

Step 6. Fill the container j  with objects that completely fill the space described by a set 1  of 

potential containers. Denote the set of remained potential containers in the container j  by 2 . 

Step 7. Create an empty copy of container j  and denote it as a container j  . 

Step 8. Fill the container j   with objects that completely fill the space described by a set 1  of 

potential containers. Denote the set of remained potential containers in the container j   by 3 . 

Step 9. Remove the compound object iO  from the container j . 

Step 10. Remove all potential containers from set 1  from the container j  and add into it all 

potential containers from set 3 . 



Figure 4, a presents an example of a container containing two placed orthogonal polyhedrons and 

its free spaces. Figure 4, b shows the contents of the container after removing the red orthogonal 

polyhedron (No. 2). 

 

(a) 

 

(b) 

 
Figure 4: Removing a two-dimensional orthogonal polyhedron: (a) objects and potential containers 
before removing OM No. 2; (b) entire of the container after removing the orthogonal polyhedron 

2.4. Algorithm for forming a complex-shaped container 

To transform a container represented in the form of a D -dimensional parallelepiped into an 

orthogonal polyhedron, it is proposed to place a set of virtual orthogonal objects into it (they are denoted 

as constraint objects) before forming the placement scheme. The set of constraint objects will be 

represented finally by a single orthogonal polyhedron Ô  of geometric constraints of a container. 

We will consider a container in the form of a D -dimensional parallelepiped with overall dimensions 

 DWWW ,,, 21  , as well as an original set A  of orthogonal constraint objects. The constraint object 

with a number k  in the form of a D -dimensional parallelepiped will be denoted by kô , its position in 

the coordinate system of the container will determine the vector  D
kkk zzz ,,, 21  , and its overall 

dimensions will determine the vector  D
kkk www ,,, 21  . For each constraint object kô , the type of 

operation applied to it (addition or subtraction of an orthogonal object [19]), which is set when it is 

created, is known in advance. 

All constraint objects from the set A  are transformed according to the overall dimensions of the 

container, so that no constraint object extends beyond the container boundaries. To do this, the 

following algorithm is performed (steps 1-5). 

Step 1. Create an empty set Â  of orthogonal constraint objects (  ˆ A ). 

Step 2. Set the number of the current constraint object 1:k . 

Step 3. For the constraint object kô , perform a check for its placement entirely outside the container 

boundaries: dd
k Wz   or 0 d

k
d
k wz  for everyone  Dd ,,1 . If the constraint object is located 

outside the container, then go to step 5, otherwise go to step 4. 

Step 4. Based on the constraint object kô , create a new constraint object ô  whose position vector 

 Dzzz ˆ,,ˆ,ˆ 21 
 
and overall dimensions  Dwww ˆ,,ˆ,ˆ 21   are defined as follows: 

 0ˆ dz  and d
k

d
k

d zww ˆ  if 0d
kz   Dd ,,1 ; 

 d
k

d zz ˆ  and d
k

dd zWw ˆ  if dd
k Wz    Dd ,,1 . 

The same operation (addition or subtraction) is set for the constraint object ô  as for the original 

constraint object kô . 

Place the constraint object ô  in the set Â . 

Step 5. Go to the next constraint object 1:  kk . If Ak   then go to step 3, otherwise stop the 

algorithm. 



When creating an orthogonal polyhedron of geometric constraints, the following sets are formed 

based on the resulting set Â : 

 a set of constraint objects 
Â  to which the set-theoretic addition operation is applied; 

 a set of constraint objects 
Â  to which the set-theoretic subtraction operation is applied. 

To form an orthogonal polyhedron Ô  of geometric constraints with the sets 
Â  and 

Â , the 

algorithms described in the article [19] are used. This orthogonal polyhedron of geometric constraints 

of the container may include constraint objects that will not have common points with each other. 

The process of creating a container based on a polygonal model includes the following steps. 

1. Voxelization of the model contour and filling the voids of the resulting orthogonal polyhedron. 

2. Decomposition of the resulting orthogonal polyhedron of geometric constraints into large 

objects to increase the speed of packing formation. 

3. Apply a subtraction operation with an orthogonal polyhedron of geometric constraints to a 

AABB parallelepiped bounding the given polygonal model. 

Figure 5 presents an example of a container based on a three-dimensional model of the Latin letter R, 

as well as the result of packing a set of orthogonal polyhedrons into it. 

 

(a) 

 

(b) 

 

(c) 

 
Figure 5: A complex-shaped container: (a) container obtained after application the proposed 
algorithm; (b) result of packing a set of orthogonal objects; (c) visualization of the resulting packing in 
a polygonal form 

 

2.5. Forming an equidistant packing 

To obtain a packing with a given fixed gap   between orthogonal polyhedrons (an equidistant 

packing), the position and overall dimensions of all orthogonal objects that are part of these orthogonal 

polyhedrons are corrected during their placement. 

When placing a D -dimensional orthogonal polyhedron O  at a point  DXXX ,,, 21   of a 

container, each orthogonal object Ook   will be placed at a point with the gap   in the direction of the 

origin:   D
k

D
kk zXzXzX ,,, 2211  , and also will have an increased overall size by an 

amount 2 :   2,,2,2 21 D
kkk www  . After obtaining a set of potential containers describing 

free entire of the container (which formed as a result of placing this orthogonal polyhedron), the original 

values of the vectors describing the position and overall dimensions of its orthogonal objects are 

restored. 

Figure 6 shows examples of the formation of an equidistant packing of a large number of objects 

when setting different gaps   (the overall dimensions of a rectangle bounding the container are 

300300). 
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Figure 6: Forming equidistant placement schemes: (a) packing of 826 objects with zero gap; 
(b) equidistant packing of 467 objects with gap 2 ; (c) equidistant packing of 370 objects with 

gap 4  

3. Conclusion 

The article presents a number of algorithms designed for packing objects of complex shape, 

represented as orthogonal polyhedrons. These algorithms are the basis for a new method for solving 

problems of cutting and packing irregular objects, which consists in reducing the solved problems to 

the problems of placing orthogonal polyhedrons of a given dimension, which can be solved in 

significantly less time. 

An algorithm for placing orthogonal polyhedrons of arbitrary dimension was proposed, based on the 

sequential formation of an orthogonal polyhedron and performing a series of displacements during its 

placement in the container (Algorithm 1). This algorithm provides fast production of dense placement 

schemes of orthogonal polyhedrons made up of a small number of orthogonal objects (usually 

consisting of no more than 10 objects). To increase the speed of placement of orthogonal polyhedrons 

with a larger number of orthogonal objects, an improved algorithm (Algorithm 2) is developed, based 

on the creation of orthogonal polyhedrons that determine the areas of acceptable placement for each 

object from this compound object. Algorithm 2 significantly increases the speed of packing formation 

(on average by two orders of magnitude) without losing the quality of placement, which makes it 

advisable to use it in solving any types of problems of pacing orthogonal polyhedrons. 

The developed algorithm for removing an orthogonal polyhedron and the use of the model of 

potential containers that describes all existing free areas inside the containers makes it possible to apply 

methods for local reallocation of compound objects placed in the container. 

A method for forming an equidistant packing where all objects are located at a given minimum 

distance from each other has been developed. This method is used, in particular, when forming the 

arrangement of complex-shaped parts on a 3D printer platform. 

An important distinguishing feature of the presented algorithms is their implementation for the case 

of an arbitrary dimension of the problem. All the described algorithms are programmatically 

implemented and tested in the author's software «Packer» [20, 24, 25]. 
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