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Abstract  
Digital rock analysis is a prospective approach to estimate properties of oil and gas reservoirs. 

This concept implies constructing a 3D digital twin of a rock sample. Focused Ion Beam - 

Scanning Electron Microscope (FIB-SEM) allows to obtain a 3D image of a sample at 

nanoscale. One of the main specific features of FIB-SEM images in case of porous media is 

pore-back (or shine-through) effect. Since pores are transparent, their back side is visible in the 

current slice, whereas, in fact, it locates in the following ones. A precise segmentation of pores 

is a challenging problem. Absence of annotated ground truth complicates fine-tuning the 

algorithms for processing of FIB-SEM data and prevents successful application of machine-

learning-based methods, which require a huge training set. Recently, several synthetic FIB-

SEM images based on stochastic structures were created. However, those images strongly 

differ from images of real samples. We propose fast approaches to render semisynthetic FIB-

SEM images, which imply that intensities of voxels of mineral matrix in a milling plane, as 

well as geometry of pore space, are borrowed from an image of rock sample saturated by epoxy. 

Intensities of voxels in pores depend on the distance from milling plane to the given voxel 

along a ray directed at an angle equal to the angle between FIB and SEM columns. The 

proposed method allows to create very realistic FIB-SEM images of rock samples with precise 

ground truth. Also, it opens the door for numerical estimation of plenty of algorithms for 

processing FIB-SEM data. 
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1. Introduction 

The construction of a precise digital twin of a rock sample is one of the cornerstones of digital rock 

concept in the oil and gas industry. It is used for reservoir evaluation in addition to traditional laboratory 

experiments. Digital rock workflow implies mathematical simulations of fluids flow in the digital twin 

and estimations of numerous physical and chemical characteristics of oil-bearing rocks [1]. The 

advanced methodology consists of simulation on various scales including the nanoscale [2]. 

Focused Ion Beam - Scanning Electron Microscope (FIB-SEM) is a powerful device for 3D serial 

imaging at the nanoscale. The FIB column has a source of ions, which are accelerated and focused into 

the beam. The ions mill a thin layer of substance from the surface of a sample, and after that SEM scans 

the surface to produce current slice. The angle α between FIB and SEM columns usually equals 52°. 

Multiple repetitions of these two operations produce a stack of slices of a specimen. Figure 1 illustrates 

the FIB-SEM image acquisition procedure. 

The construction of accurate digital twin of a rock sample from FIB-SEM data is a challenging 

problem. There are a lot of peculiarities of FIB-SEM images: misalignment of slices, curtaining effect, 

instable intensity across a stack of slices, charging, etc. One of the main specific features of FIB-SEM 

images of porous media is, so-called, pore-back or shine-through effect. Pores are transparent, and we 
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see lower sides of pores in the current slice due to material from deeper slices being visible through the 

voids. For each slice, the intensity distributions of pixels of mineral matrix and pores are partially 

overlapped. The situation becomes even more complicated in the case of several phases of solid matrix 

or organic inclusions in a sample. That is why segmentation of FIB-SEM images of porous specimens 

is rather difficult [3, 4, 5].   

 

 
Figure 1: A scheme of FIB-SEM data acquisition 

 

A lack of annotated ground truth for FIB-SEM data prevents fine-tuning the algorithms for 

preprocessing and segmentation of FIB-SEM images as well as an application of machine-learning-

based techniques due to absence of representative datasets. A manual annotation is long, tiresome and 

inaccurate work. Typical FIB-SEM image has several hundreds of slices, and the size of each slice can 

be up to 3000x2000 pixels. Painting regions of interest in 3D without breaks, discontinuities, and ragged 

edges between the regions in adjacent slices requires huge efforts. In addition, there is uncertainty in 

labeling of some fragments even for a human. There is no essential number of available datasets 

containing a real FIB-SEM image accompanied by high-quality segmentation outcomes. For example, 

digital twin [6] of multiphase sandstone [7] is far to be perfect. A use of such inaccurate results of 

segmentation as ground truth cannot provide any progress in algorithms development and adjustment.     

In the case of lack annotated real data, a common approach in computer vision is usage of synthetic 

images. For instance, synthetic image rendering helps to solve annotation problem in deep learning 

nanoparticle segmentation [8]. Recently, several methods for generation of synthetic FIB-SEM images 

of various materials appeared [9, 10, 11]. Though such synthetic images fill the gaps of large data 

demand, the more realistic datasets are still needed due to the variances between synthetic data and real 

images of rock samples.  

In this paper, we propose novel approaches to render of 3D FIB-SEM images with pore-back effect, 

in which intensities of voxels of mineral matrix in a milling plane as well as geometry of pore space are 

taken from a real image of a rock sample, and intensities of voxels in pores are rendered depending on 

the distance from the milling plane to the given voxel along a ray directed at an angle equal to the angle 

between FIB and SEM columns. The proposed methods allow to generate very realistic FIB-SEM 

images of rock samples with precise ground truth. Following [12], we call such images as semisynthetic, 

because the image is a combination of the real data and synthetic one. 

The paper is organized as follows. In Section 2, we briefly consider existing approaches for creation 

of synthetic FIB-SEM images. Section 3 contains a description of the proposed methods. The results 

are presented and discussed in Section 4. Finally, in Section 5, we make conclusions and outline future 

works. 

2. Previous work 

There are a couple of papers where effectiveness of FIB-SEM segmentation is demonstrated by 

synthetic images of stochastic geometrical objects such as unions of independently identically 



uniformly distributed random grains, packed spheres, and straight circular cylinders. It is claimed, those 

simple models look like nanoporous FIB-SEM images of electrodes of fuel cells [4] and membranes 

from a zirconium dioxide [9, 10]. The simulation based on the physical model was used to generate 

SEM slices in concordance with the method described in [13]. To compute the electrons diffusion, 

method from [13] uses the Monte-Carlo approach, which simulates one electron at a time. For the 

generation of track of each electron, MONSEL 2 algorithm [14] with several optimization tricks is 

applied. A tracking of about 1000 electrons is necessary for simulation intensity of a voxel. So, it is a 

time-consuming approach, requiring at least several hours for simulation of a 3D FIB-SEM image. 

Despite of usage of a well-grounded physical model and good reproduction of pore-back effect, 

simulated images look rather artificial due to the absence of typical defects of FIB-SEM data such as 

accumulation of charge in pores, curtaining effect, intensity irregularities, etc. In addition, images of 

stochastic geometrical objects significantly differ from images of rock samples.  

In contrast to physical-based simulation, Python library PoreSpy [15] uses fast simple heuristic 

approach to create pore-back effect: pixels of a slice are colored according to their depth into the image, 

darker pixels are further away. For modelling an arbitrary binary image, coded pore space can be 

applied. A small similarity with real pore-back effect takes place, but in general a simulated image looks 

unnatural.  

Outcome of multiclass segmentation of sandstone image is used to generate synthetic data in [11]. 

Intensities of voxels for both solid phase and pores set to be equal to average value for a given phase 

obtained from initial grayscale image. To simulate pore-back effect, a 1D convolutional ramp kernel is 

applied in Z direction towards the front of the image. The angle between FIB and SEM columns is not 

taken into account. Finally, additive Gaussian noise is added. An advantage of that approach is more or 

less adequate geometry of the rock sample. Shortcomings are unnatural pore-back effect and absence 

of typical peculiarities of FIB-SEM data. 

FIB and SEM columns are inclined to each other, therefore, there is a view angle α in the images. 

To take this fact into account, it is reasonable to use of one of well-known 3D rendering engine. The 

paper [16] describes an application of in Avizo® software (Thermo Fisher Scientific) for rendering 3D 

image of pores media. Avizo uses Open Inventor® engine for 3D visualization by ray-casting. The 

software allows to cut off (i.e., not to show) required number of slices and to emulate ion milling process 

in such a way. Angle of camera view can be set close to the tilt angle of the electron column relative 

the ion one. X-ray microtomography image of a real rock sample is employed as initial data in [16] 

because such source of data provides perfectly aligned slices. Figure 2 demonstrates the same 

visualization approach for segmented real FIB-SEM image. That approach provides correct (that is 

identical to real images) movement of structures located in pores during playback slices as video frames. 

However, a darkening in pores depending on its depth looks unnatural. Also, such synthetic images 

have no typical defects of FIB-SEM.   

 

 
Figure 2: A synthetic FIB-SEM data by ray-casting in Avizo software 

 



3. Approaches for rendering of semisynthetic FIB-SEM image 

It is required to generate synthetic FIB-SEM image that is as more similar to a natural one as 

possible. For this purpose, it is reasonable to take characteristics and fragments of a natural image, so 

the image becomes semisynthetic. If there is an accurate segmentation of the pore space, then all the 

voxels of the mineral matrix can be transferred to a semisynthetic image. Sometimes the pore space of 

the sample can be filled with epoxy. In this case, there is no pore-back effect in the image, and precise 

segmentation can be performed by intensity thresholding. Figure 3 demonstrates a slice of FIB-SEM 

image of such sample. 

Unfortunately, only sometimes epoxy intrusion is technically possible. The existing methods of 

segmentation of FIB-SEM images with pore-back effect do not provide a high-quality separation into 

solid and void phase, so taking solid voxels directly from segmentation results leads to mistakes in the 

semisynthetic image. Nevertheless, the geometry of the pore space in these segmentations is quite 

adequate. Filling solid voxels with textures manually extracted from fragments of natural images allows 

to get a good reproduction in the part of mineral matrix. 

 

 
Figure 3: A slice of FIB-SEM image of a sample filled by epoxy 

 

 

Thus, there are two approaches: 

 We have accurate segmentation outcome due to processing of a sample filled by epoxy. In this 

case, all voxels of solid phase are transferred to semisynthetic image. 

 We have inaccurate segmentation outcome due to processing of a sample with transparent 

pores. In this case, manually selected texture (or several textures) from solid is used to pave voxels 

of solid in semisynthetic image.  

For both approaches, the key problem is simulation of pore-back effect in pores considering the 

angle between FIB and SEM columns. We propose a method based on: 

 darkening the intensity of the pore voxel depending on the distance to the nearest solid voxel 

in the direction of the SEM beam; 

 lightening the intensity of the pore voxel, depending on the local orientation of the surface at 

the bottom of the pore; 

 adding of additive white gaussian noise to pore regions with the same characteristics as the 

noise in the regions corresponding to mineral matrix.  

This approach allows the creation of pores in which the intensity decreases with the depth of the 

pore, and the accumulation of charge is simulated. As a result, the voxel intensity distribution of the 

pores partially overlaps with the voxel intensity distribution identically to natural FIB-SEM images of 

rock samples.  

The steps of the proposed algorithm for rendering semisynthetic FIB-SEM image with pore-back 

effect are the following (see Figure 4 for an explanation of the designations). 



 
Figure 4: An illustration of the calculation of intensity of voxels in pores. Light cells designate voxels of 
solid phase, which are taken from segmented image of the sample with epoxy; dark cells belong to 

pores and have zero intensity; 𝛼 is the angle between ion and electron beams; (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is current 

pore voxel where pore-back is calculated; 𝐼𝑛𝑒𝑎𝑟(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is an intensity of the nearest voxel of solid 

phase laying on the ray from SEM; �⃗� is a normal to local edge between solid and voids; 𝛾 is an angle 
between �⃗� and Z-axis 

 

1) Obtaining image 𝐼𝑛𝑜 𝑝𝑜𝑟𝑒𝑠(𝑥, 𝑦, 𝑧), for which voxels of pores equal zero:  

𝐼𝑛𝑜 𝑝𝑜𝑟𝑒𝑠(𝑥, 𝑦, 𝑧) = {
  𝐼(𝑥, 𝑦, 𝑧),      𝑀(𝑥, 𝑦, 𝑧) = 1

  0,      𝑀(𝑥, 𝑦, 𝑧) = 0
, 

(1) 

where 𝐼(𝑥, 𝑦, 𝑧) is an initial grayscale FIB-SEM image of natural rock sample or an image constructed 

from tiled fragments of textures related to solid; 𝑀(𝑥, 𝑦, 𝑧) is binary segmentation result of 𝐼(𝑥, 𝑦, 𝑧), 
where 0 designates voxels of voids, and 1 designates voxels of solids; 𝐼(𝑥, 𝑦, 𝑧) and 𝑀(𝑥, 𝑦, 𝑧) have 

size 𝑀 ×𝑁 × 𝐷. 
2) Dilation of 𝐼𝑛𝑜 𝑝𝑜𝑟𝑒𝑠(𝑥, 𝑦, 𝑧) with aperture 𝐾𝑚𝑜𝑟𝑝ℎ for suppression of unwanted structures on the 

edge between voxels of solid phase and pores:  

𝐼𝑑𝑖𝑙(𝑥, 𝑦, 𝑧) = 𝑀(𝑥, 𝑦, 𝑧) ⋅ (𝐼𝑛𝑜 𝑝𝑜𝑟𝑒𝑠⊕𝐾𝑚𝑜𝑟𝑝ℎ)(𝑥, 𝑦, 𝑧). (2) 

3) Finding intensity 𝐼𝑛𝑒𝑎𝑟(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) of the nearest voxel of solid phase laying on the ray from SEM 

for each voxel of pore {𝐼𝑑𝑖𝑙(𝑥, 𝑦, 𝑧)|𝑀(𝑥, 𝑦, 𝑧) = 0}. To do that, the following steps should be 

performed for each (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) ∈ 𝐼𝑑𝑖𝑙: 

a) Forming array of coordinates from (0,0,0) to (0,
𝐷

tan𝛼
− 1,𝐷 − 1) by Bresenham 

algorithm [17]: {(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) | 𝑘 = 0,… , 𝐷 − 1}. That array is auxiliary to find coordinates for 

SEM rays.   

b) Incrementing 𝑘 while coordinate (𝑥𝑝 + 𝑥𝑘 , 𝑦𝑝 + 𝑦𝑘 , 𝑧𝑝 + 𝑧𝑘) is inside bounding box ((0,0,0), 

(𝑀 − 1,𝑁 − 1,𝐷 − 1)) and 𝐼𝑑𝑖𝑙(𝑥𝑝 + 𝑥𝑘 , 𝑦𝑝 + 𝑦𝑘 , 𝑧𝑝 + 𝑧𝑘) = 0. The aim is finding 

𝐼𝑛𝑒𝑎𝑟(𝑥𝑝, 𝑦𝑝, 𝑧𝑝), that is intensity of the nearest voxel of solid laying on the ray. If coordinate 

(𝑥𝑝 + 𝑥𝑘 , 𝑦𝑝 + 𝑦𝑘 , 𝑧𝑝 + 𝑧𝑘) is out of bounding box ((0,0,0), (𝑀− 1,𝑁 − 1,𝐷 − 1)), then 

𝐼𝑛𝑒𝑎𝑟(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) = 0 and items c)-g) can be omitted for this voxel. 

c) Calculating the distance from coordinate (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) to (𝑥𝑝 + 𝑥𝑘 , 𝑦𝑝 + 𝑦𝑘 , 𝑧𝑝 + 𝑧𝑘):  

𝑑𝑖𝑠𝑡(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) =
𝑧𝑘
sin 𝛼

. (3) 

d) Obtaining mask of edge between solid and void based on morphological erosion and exclusive 

OR (XOR): 
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𝑀𝑒𝑑𝑔𝑒(𝑥, 𝑦, 𝑧) = 𝑀(𝑥, 𝑦, 𝑧) XOR (𝑀⊖𝐾𝑚𝑜𝑟𝑝ℎ)(𝑥, 𝑦, 𝑧). (4) 

e) Calculation of inertia tensor for cubic local region of image 𝑀𝑒𝑑𝑔𝑒 with center in 

(𝑥𝑝 + 𝑥𝑘 , 𝑦𝑝 + 𝑦𝑘 , 𝑧𝑝 + 𝑧𝑘): 

𝐻 = [

𝜇020 + 𝜇002 −𝜇110 −𝜇101
−𝜇110 𝜇200 + 𝜇002 −𝜇011
−𝜇101 −𝜇011 𝜇200 + 𝜇020

], 
(5) 

where 𝜇011, 𝜇101, 𝜇110, 𝜇002, 𝜇020, and 𝜇200 are central second order moments.  

f) Calculation of eigen values and vectors of matrix 𝐻. We need to find eigen vector �⃗� =

(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) corresponding maximal eigen value. That vector is normalized as: 

�⃗�′ =

{
 
 

 
 −

�⃗�

‖�⃗�‖
,   𝑣𝑧 ≥ 0

�⃗�

‖�⃗�‖
, 𝑣𝑧 < 0

. 

 
(6) 

g) Obtaining the angle 𝛾 between normal to local edge between solid and voids and Z axis: 

𝛾(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) = 𝜋 − arccos𝑣𝑧
′. (7) 

4) Blurring slices of images  𝐼𝑛𝑒𝑎𝑟(𝑥, 𝑦, 𝑧) and 𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑧) by Gaussian blur.  

5) Calculation of semisynthetic FIB-SEM image with pore-backs as: 

 

𝐼𝑝𝑏(𝑥, 𝑦, 𝑧) = {
𝐼(𝑥, 𝑦, 𝑧), 𝑀(𝑥, 𝑦, 𝑧) = 1

𝐼𝑛𝑒𝑎𝑟(𝑥, 𝑦, 𝑧) ⋅ 𝑓(𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑧)) ⋅ 𝑔(𝛾(𝑥, 𝑦, 𝑧)) + 𝛮(𝜇, 𝜎
2),    𝑀(𝑥, 𝑦, 𝑧) = 0

  , 
(8) 

where 𝑓 is function for darkening of voxel intensity depending on distance 𝑑𝑖𝑠𝑡 to the nearest voxel of 

solid; 𝑔 is function for lightening of voxel intensity depending on angle 𝛾; 𝛮(𝜇, 𝜎2) is additive white 

gaussian noise with mean  𝜇 = 0 and variance 𝜎2.  

We use the following function 𝑓: 

𝑓(𝑑𝑖𝑠𝑡) =
1.1

1 + 𝑒
0.5(40

𝑑𝑖𝑠𝑡−𝑙𝑜𝑤
ℎ𝑖𝑔ℎ−𝑙𝑜𝑤

−5)
  , 

(9) 

where 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ are minimal and maximal values of 𝑑𝑖𝑠𝑡 for entire image; 

Function 𝑔 is given by: 

𝑔(𝛾) = |1 − 2 ∙ |
𝛾

𝜋
− 0.5|| (𝑚𝑢𝑙𝑡 − 1) + 1, 

(10) 

where 𝑚𝑢𝑙𝑡 is the maximum value by which the intensity is multiplied when the angle between the 

normal vector and the axis Z is equal 
𝜋

2
, it is reasonable to use 𝑚𝑢𝑙𝑡 = 1.5. 

The variance 𝜎2 is estimated based on the analysis of variance of uniform fragment of solid phase.  

6) Blurring edges between pores and solid by alpha-blending of  𝐼𝑝𝑏 with its copy blurred by Gaussian 

filter 𝐼𝑓𝑝𝑏. Alpha-channel is calculated as morphological gradient of image 𝑀. It is necessary to 

avoid unnatural too sharp edges between solid and pores. 

There is small modification of the algorithm described above. Instead of vector �⃗�′ it is possible to 

use a vector from SEM column reflected from the local surface. If �⃗�𝑠𝑒𝑚
′  is a unit vector directed from 

SEM, then reflected vector is calculated as: 

�⃗�𝑟𝑒𝑓
′ = �⃗�𝑠𝑒𝑚

′ − (�⃗�𝑠𝑒𝑚
′ , �⃗�′)�⃗�′. (11) 

Accordingly, the angle 𝛾 is calculated in (7) based on z-coordinate of  �⃗�𝑟𝑒𝑓
′  instead of 𝑣𝑧

′. 

4. Results and discussion 

Figure 5 allows comparison of various methods for generation of synthetic FIB-SEM images. Also, 

these slices of synthetic and semisynthetic images can be compared with the natural one from Figure 6. 

The image in Figure 6 has stronger curtaining effect (that is vertical stripes) in comparison with the 

initial image from Figure 3, but it is not an issue. 



The image rendered with Avizo using ray-casting (Figure 5) looks visually good, but the intensity 

changes in the pores are not similar to the real ones. Even deep pores do not become dark. Intensity of 

voxels of mineral matrix is unnaturally uniform.  

Images created by PoreSpy (Figure 5b) are very rough approximation of the natural pore-back. 

Visually slices by PoreSpy are far from any practical usefulness. Synthetic image created by method 

from [11] looks much better (Figure 5c). However, intensity in pores is always less than that of the 

voxels of the mineral matrix, therefore, using such images, for example, to select a segmentation method 

leads to the fact that simple thresholding gives the best results, which does not work for real images.  

Both proposed approaches allow to render FIB-SEM images, which are very similar to the real ones. 

On closer inspection, one can see that in the texture-filled image (Figure 5d) this texture is repeated. In 

the Figure 5e, all solid voxels are taken from the real image of the sample and all defects of mineral 

matrix such as noise and curtaining are natural. The disadvantages of the proposed approaches include 

more blurred surface in the pores compared, for example, to Figure 5a, as well as simulation of charge 

accumulation in the pores depending on the orientation of the local surface, whereas this effect has a 

random nature. We are going to overcome enumerated shortcomings in the nearest future. 

   

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 5: A slice of FIB-SEM image rendered by different techniques: a) ray-casting by Avizo; b) 
visualization with usage of PoreSpy for simulation of pore-back effect; c) synthetic image by [11]; d) 
proposed approach with filling of solid phase by texture; e) proposed approach with usage of all voxels 
of solid phase from initial image 

 



 
Figure 6: A slice of a natural FIB-SEM image 

 

Proposed approaches for rendering of semisynthetic FIB-SEM image are extremely fast. CPU-based 

parallelized code for creation image with size 1870×860×801 voxels takes about 2 minutes on the 

workstation with CPU Intel® Xeon® E5-2630 v3 @ 2.40 GHz 2.40 GHz (32 logical cores) and 128 

GB RAM. 

5. Conclusion and future work  

The proposed approach for creating semisynthetic FIB-SEM images of rock samples allows to obtain 

realistic images with ground truth. Additionally, typical FIB-SEM defects such as geometrical 

distortions between slices [18], instable intensity, etc., can be added to these images. Based on these 

data, it is possible to adjust the parameters of the correction and segmentation algorithms. 

The proposed approach opens the door to the automatic generation of a huge dataset for using 

machine learning methods to solve FIB-SEM image segmentation problems. To generate such a dataset, 

the pore space geometry is taken from one subset of real images and subjected to random elastic 

distortions. Intensity of solids is taken from another subset of real images and is applied with random 

intensity distortions to the resulting image with random geometry. The pore-back effect is created using 

the proposed method. 
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