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Abstract. The paper aims to determine the most critical indicators of the 
efficiency of robots for collecting fruits, based on which gardeners can make 
informed decisions about the appropriateness of using such robots. The 
author performs an analysis of the differences between fruit harvesting robots 
from robots that are successfully used in other industries and makes a report 
of indicators used to evaluate the effectiveness of fruit-picking robots by 
developers of such robots prototypes. Based on this analysis, the author 
identifies quality metrics crucial for making decisions on the advent of fruit 
harvesting robots. The analysis of 32 papers devoted to fruit harvesting robots 
revealed that due to the development of convolutional neural networks in 
machine vision systems, the fruit detection speed has significantly increased. 
It indicates the inevitability of the introduction of robotic technology for 
harvesting in gardening. However, the developers of fruit collection robots 
need to evaluate the undetected fruits rate, the objects mistaken for fruits rate, 
the average fruit detection time, the average fruit picking time, the share of 
successfully collected fruits rate among the detected, the damaged fruits rate, 
the lost fruit rate, and the unpicked fruits rate in order to perform the task. 
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1 Introduction 

Horticulture is one of the least automated agricultural sectors to date. In particular, 
most fruit crops are harvested manually, with seasonal workers engaged in heavy 
physical labor. The quality of harvesting by seasonal workers is low; in particular, 
up to 50% of the fruit remains unpicked. 

The use of fruit harvesting robots will increase both the acreage of orchards and 
the efficiency of horticultural enterprises by increasing labor productivity in 
harvesting and reducing crop shortages. 

Fruit picking robots have been developing since the 1970s, while robot 
productivity has not increased over the past thirty years. (Bac, van Henten, Hemming 
& Edan, 2014) analyzed 50 prototypes of fruit harvesting robots. The average fruit 
detection rate was 85%, and the average fruit picking rate was 75% of the detected 
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fruits or 63.75% of the total fruits on the trees. At the same time, robots spend, on 
average, 33 seconds to pick one fruit. 

According to (Alpha Brown, 2017), 27% of 1,300 farmers surveyed would like 
to buy harvest robots. However, the cost of existing robots for harvesting fruits at 
the level of hundreds of thousands of euros does not allow such robots to pay off in 
practical work and does not let farmers consider the potential purchase of these 
robots. 

Therefore, despite many prototypes of fruit harvesting robots developed and the 
potential willingness of farmers to purchase them, not a single horticultural farm 
still uses them due to their high cost and low efficiency. 

One of the factors hindering the robotic technology introduction for fruit 
harvesting is the insufficient attention of prototype developers of such robots to the 
analysis of their efficiency. 

The paper aims to determine the most critical indicators of the efficiency of 
robots for collecting fruits, based on which horticulturists can make informed 
decisions about the feasibility of using such robots. 

The paper analyzes the differences between fruit-picking robots from robots that 
have long been successfully used in industry and other agriculture sectors. It also 
analyzes the indicators used to evaluate the efficiency of fruit harvesting by such 
robot prototype developers. Furthermore, based on this analysis, the author 
identifies quality metrics crucial for making decisions on the introduction of fruit 
harvesting robots. 

2 Materials and Methods 

2.1 Fundamental Features of Fruit Harvesting Robots 

Robots are effectively used for operations that require reduced labor or workloads 
and are best suited for applications that require repeatable accuracy and high 
performance in homogeneous environments (Holland & Nof, 1999). In horticulture, 
there is a need to reduce manual labor with repeatable accuracy of fruit-picking 
operations, but it is almost impossible to ensure uniformity of conditions. 

For quite some time now, robots have been used in industry and some agriculture 
sectors, such as animal agriculture, because a lot can be standardized in these areas: 
to ensure work area cleanliness and make other conditions close to ideal. 

The grain harvesting process can also be standardized. It was standardization 
that allowed humanity to switch from wheat harvesting with a sickle to the use of 
human-driven and autonomous combines. 

In gardening, such ideal standard conditions cannot be created due to various 
environmental conditions: changing light, blowing wind, rain leaving drops on 
fruits and leaves, branches and leaves overlapping fruits, etc. Simultaneously, the 
robot, for the operation of which it is first necessary to go through the garden and 
cut off all the leaves that overlap apples, will not be in demand. 

For example, all apples differ in shape and color, unlike tomatoes, lemons, kiwi, 
and other fruits. 



Fruits are susceptible to environmental and physical conditions, such as 
temperature, humidity, carbon dioxide content, acidity, pressure, friction, and 
shock. Fruit production requires accurate and often complex picking operations to 
ensure sufficient quality. That is why apples are still not harvested by machines like 
wheat combines: robots for harvesting fruits are much more complicated than 
harvesting machines for grains. 

Unlike industrial robots, which deal with relatively simple, clearly defined 
repetitive tasks in stable reproducible (not changing day by day) conditions, 
gardening requires technologies for working with unstructured objects (fruits) in 
complex, highly variable environments (gardens). 

It is a significant problem for commercialization. A robot must be able to move 
in a volatile environment, and there are many situations in which a robot may fail 
due to unexpected events. Therefore, all existing fruit-picking robot prototypes are 
structurally complex and very expensive. 

 

2.2 Approaches to Fruit Harvesting Robots Efficiency Assessment 

Confusion matrixes for pixels classification into those belonging to the fruit and 
those belonging to the background were used for a long time to evaluate the 
efficiency of fruit harvesting robots (Fig. 1). 
 

  Actual 

  Pixel belongs  
to fruit 

Pixel belongs  
to background 

Predicted 

Pixel assigned  
to fruit PTP  PFP  

Pixel assigned  
to background PFN  PTN  

Fig. 1. Confusion matrix for pixels classification in fruit harvesting robots. Source: (Fawcett, 
2006). 

The following notation is used: 
• PTP  (True Positive) – the number of pixels in the image correctly recognized as 

belonging to the fruit;  
• PTN  (True Negative) – the number of pixels in the image correctly recognized 

as belonging to the background; 
• PFP  (False Positive) – the number of errors of the first kind, i.e., background 

pixels, mistakenly attributed by the machine vision system to a fruit; 
• PFN  (False Negative) – the number of errors of the second kind, i.e., pixels that 

actually belong to the fruit but are mistakenly classified by the system of 
machine vision as background. 

Based on the confusion matrix for pixels classification, many authors calculated 
the following quality characteristics of machine vision systems: 
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Tables 1 and 2 represent a summary of quality metrics calculated by the 
developers of known fruit harvesting robots. 

From a practical point of view, such indicators only indirectly determine the 
quality of the robotic harvesting system since the robot collects fruits, not pixels. 

With the development of the use of convolutional neural networks to determine 
the quality of fruit detection systems, the IoU (Intersection over Union) metric has 
become popular. 

In Fig. 2, the navy rectangular frame is described around the ground truth fruit, 
and the red frame is obtained as a result of applying the fruit detection algorithm by 
the machine vision system. 

A fruit detection system is considered to work satisfactorily if 
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However, in practice, this indicator and quality indicators calculated based on 
the analysis of the pixel classification confusion matrix are only an indirect indicator 
of the quality of the fruit-picking system. 

Therefore, current works gradually begin to use quality metrics based on the 
analysis of the fruit detection confusion matrix (Fig. 3). 

The notation in the fruit detection confusion matrix has the following meanings: 
• FTP  (True Positive) – the share of fruits correctly detected by the machine vision 

system; 
• FFP  (False Positive) – the number of errors of the first kind, i.e., background 

objects in the image, mistakenly accepted by the machine vision system as fruits; 
• FFN  (False Negative) – the number of errors of the second kind, i.e., fruits not 

detected by the machine vision system. 



, , ,F F FTP FP FN can calculate the following quality metrics for a fruit detection 
system: 
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Table 1. Fruit detection quality metrics in harvesting robot prototypes (Before CNNs). 

Source  Fruit  N  PAccuracy  pRecall  FPrecision  FRecall  t  

(Sites & Delwiche, 1988) 
Apple, 
peach 

 0.90     

(Plebe & Grasso, 2001) Orange 673   0.15 0.87 7.1 

(Zhao, Tow & Katupitiya, 2005) Apple 20    0.90  

(Mao, Ji, Zhan, Zhang & Hu, 2009) Apple  0.90     

(Hannan, Burks & Bulanon, 2009) Orange 82    0.90  

(Bulanon, Burks & Alchanatis, 2009) Citrus   0.74    

(Seng & Mirisaee, 2009) 
Various 
fruits 

14 0.90     

(Bulanon & Kataoka, 2010) Citrus 22    0.89 7.1 
(Wachs, Stern, Burks & Alchanatis, 
2010) 

Apple 180  0.74    

(Kurtulmus, Lee & Vardar, 2011) Citrus 64    0.75  
(Arefi, Motlagh, Mollazade & 
Teimourlou, 2011) 

Tomato 110 0.96     

(Patel, Jain & Joshi, 2011) Apple   0.90    

(Linker, Cohen & Naor, 2012) Apple 9 0.85     

(Ji et al., 2012) Apple 22    0.89  

(Zhan, He & Shi, 2013) Kiwi 215   0.93 0.97  

(Wei et al., 2014) Apple 80    0.95  

(Lu, Sang & Hu, 2014) Citrus 20 0.87     

(Zhao, Gong, Huang & Liu, 2016) Tomato 171   0.84 0.97  

(Tao & Zhou, 2017) Apple 59   0.95 0.90  

Source: Compiled by the author. 



Table 2. Fruit detection quality metrics in harvesting robot prototypes (CNN models). 

Source  Fruit  N  PAccuracy  IoU  FPrecision  FRecall  F1  t  

(Sa et al., 2016) 
Various 
fruits 

118   0.81 0.84 0.90 0.40 

(Liu et al., 2020) Kiwi 2518   0.90 0.91  0.13 

(Bargoti & Underwood, 
2017) 

Apple,  
mango,  
almond 

488   0.96 0.86 0.90  

(Mureşan & Oltean, 2018) 
Various 
fruits 

15.563 0.96      

(Gan, Lee, Alchanatis, 
Ehsani & Schueller, 2018) 

Citrus 50    0.96 0.90  

(Williams, Jones, Nejati, 
Seabright & MacDonald, 
2018) 

Kiwi 1456    0.76   

(Peebles, Lim, Duke & 
McGuinness, 2019) 

Asparagus 74     0.73  

(Yu, Zhang, Yang, Zhang, 
2019) 

Strawberry 100  0.90  0.96 0.95  

(Jia, Tian, Luo, Zhang & 
Zheng, 2020) 

Apple 120    0.97 0.96  

(Gené-Mola et al., 2020) Apple 1021     0.87  
(Tian, Yang, Wang, Li & 
Liang, 2019) 

Apple 480  0.90   0.81 0.30 

(Kang & Chen, 2020) Apple 560  0.87 0.87 0.88 0.87 0.70 

(Wan & Goudos, 2020) 
Orange, 
apple, 
mango 

490    0.90  0.58 

Source: Compiled by the author. 

3 Results 

From a practical point of view, the following indicators are the essential metrics of 
the machine vision systems quality to assess the quality of fruit harvesting robots: 
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objects mistaken for fruits, which affects the harvesting speed. 



It is also necessary to understand which part of the detected fruits a robot can 
pick in order to make decisions on the fruit harvesting robot’s purchase. In the 
process of robot creation, it is essential to assess the share of successfully harvested 
fruits among those identified. Besides, essential characteristics of the robot are the 
average fruit detection time (this indicator in seconds is presented in column t of 
Tables 1 and 2), as well as the average fruit harvesting time, the share of damaged 
fruits, the share of lost fruits, and the share of uncollected fruits. 

 

 
(a) Ground truth fruit bounding box and detected fruit bounding box 

 
  (b) Intersection        (c) Union 

Fig. 2. Intersection over Union for fruits detection. Source: Compiled by the author. 
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Fig. 3. Confusion matrix for fruit detection in harvesting robots. Source: (Fawcett, 2006). 

4 Discussion 

The proportion of fruits not detected by the robot and the percentage of objects 
mistakenly considered to be fruits are estimated by less than half of robot 
developers, which can be seen from Tables 1 and 2. 

An absolute minority of developers provide data on the average time of fruit 
detection, and almost no one gives information on the average time of fruit picking 
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and the shares of successfully picked fruits among the detected, damaged fruits, lost 
fruits, and uncollected fruits. 

Of all the papers examined, only (Williams et al., 2018) noted that the robot 
could detect 76% of kiwi, while the manipulator could reach 55% of the fruits. In 
the field trials, the robot harvested in the garden, which had 1,456 kiwi fruits. As a 
result, 50.9% of the fruits were harvested, 24.6% were lost during the harvesting 
process, and 24.5% remained in the trees. Picking one fruit took, on average, about 
five seconds. The work of neural networks took most of the time. Nevertheless, 
nowadays, it is one of the fastest harvesting robots. 

5 Conclusion 

The development of fruit-picking robots will replace the heavy manual labor in 
horticulture, increase the area of orchards, reduce cost, and reduce crop shortages. 

The analysis shows that the speed of fruit detection had increased significantly 
with the development of the use of convolutional neural networks in machine vision 
systems of fruit harvesting robots. It indicates that robotic harvesting technology 
will be introduced to horticulture very shortly. Nevertheless, robots should become 
much cheaper for gardeners to start thinking about switching to robotic technology. 
Thus, gardeners should get a clear justification for the efficiency of the robots. 

If the first problem is solved by itself due to technological development, then to 
solve the second problem, developers should pay more attention to the evaluation 
of the effectiveness of robots and analysis of the quality metrics noted in this paper. 
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