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Modern machine learning (ML) tasks and neural network (NN) architectures require huge amounts of 
GPU computational facilities and demand high CPU parallelization for data preprocessing. At the 
same time, the Ariadne library, which aims to solve complex high-energy physics tracking tasks with 
the help of deep neural networks, lacks multi-GPU training and efficient parallel data preprocessing on 

the CPU. 
In our work, we present our approach for the Multi-GPU training in the Ariadne library. We will 
present efficient data-caching, parallel CPU data preprocessing, generic ML experiment setup for 
prototyping, training, and inference deep neural network models. Results in terms of speed-up and 
performance for the existing neural network approaches are presented with the help of GOVORUN 
computing resources. 
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1. Motivation 

Modern high-energy physics (HEP) experiments produce large amounts of data and require 
specific computer software to operate. Particle tracking is an important part of software of HEP 
experiments and there are many algorithms for performing such tasks and one of the most well-proven 
tracking approach is based on Kalman filter. Unfortunately, it does not scale sufficiently to perform 

efficient computations on modern hardware such as graphics processing units (GPU). At the same 
time, studies [1,2] indicate that machine learning (ML) and deep neural networks (NN) can be an 
efficient replacement for the well-known tracking algorithms. Their authors achieve competitive 
results in terms of track reconstruction accuracy, and they are orders of magnitude faster in terms of 
processing speed. Modern ML approaches are mostly developed in the Python programming language 
and use specific tensor-based libraries to implement NN models and deploy them to the GPU. 
Considering the novelty of the ML tracking there are no generally known Python library which goal is 
to study deep learning in HEP tracking tasks. Considering all the above mentioned we decided to start 

the development of the Ariadne [3] library – the first Python open-source library for particle tracking 
based on deep learning methods. The goal of Ariadne is to help researchers investigate their ML-based 
tracking methods with a simple but standardized setup. Ariadne is still in development but has already 
provided great benefits for our tasks. The initial Ariadne description and motivation one can find 
in.[3]. 

2. Current state of Ariadne 

Current Ariadne application programming interface (API) from the researcher point of view is 
shown in Figure 1.  

 

Figure 1. Ariadne API 

For an experimental run, researcher implements such following components, as preprocessor, 
model, and dataset, while then he can override already implemented components such as parse, 
transforms, criterion and optimizer. 

After the implementation, the user should run the ‘prepare’ phase which computes needed 
preprocessing steps. Initial data processing steps are shown in Figure 2a. Later, one can train his NN 
model with the preprocessed data.  
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3. Caching and Multi-CPU prepare 

After the previous work [3] there were already 5 different NN approaches developed with the 
help of Ariadne. Every approach shares the common library API but implements its own 
preprocessing and training components. During the implementation and investigation of a potential 
approach researchers often run parsing, preprocessing, and training phases sequentially one-by-one in 

a single Python process. So, for example, after any change in preprocessing algorithms all training 
data (which can occupy hundreds of gigabytes of disk space) must be recomputed from scratch. 
Running such scripts as a single-process Python is a huge time-consumer and cannot scale well with a 
hardware computing facility. In this work we reimplemented ‘prepare’ core scripts with the help of 
multi-processing. The comparison of old and new implementations is shown in Figure 2. 
Implementation consists of 3 main parts: 

● Caching module – realtime memorization of any processing unit (such as parsing, coordinate 
transformations, and any other data mutation procedure) 

● Multiprocessing of target preprocessing routine (a preprocessor is being run in worker pool in 
parallel with the help of Python multiprocessing framework) 

● Data serialization – with the help of HDF5 format [4] data could be efficiently read & write to 
the disk. 
 

  
(a) (b) 

Figure 2. Comparison of the old (a) and new (b) ‘prepare’ core implementation. For the new 

implementation, worker pool creates as many parallel processing processes as a count of cores on the 
target hardware.  

4. Batch bucketing and Multi-GPU training 

With the help of a new caching module, we implemented the batch bucketing routine. Batch 
bucketing routine is a common algorithm[5] for effective dataset data processing which allows placing 
the NN input with the equal dimensions to the same training batch. Such routine can reasonably speed-
up training time on a single GPU device and allow to use the batch sizes which would not fit in GPU 
memory without such approach. We also enabled the Multi-GPU training with the help of PyTorch 

Lightning [6] library. Now researchers can run their NN training on up to 8 GPUs in parallel which 
also greatly reduces model training times. 
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5. Measured performance impact 

After applying new functionalities described above, we measured the typical researcher 
workflows on 2 target hardware: 

● Laptop (MacBook Pro 13) // Intel(R) Core(TM) i5-8259U CPU @ 2.30GHz (8 cores) 
● Hybrilit (JINR HOVORUN) // Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz (80 cores) 

In Table 1, one can observe more than x25 event processing speed-up compared to the initial 
implementation and up to 6 times faster ‘prepare’ phase. In Figure 3 one can observe a great NN 
training speed improvement for the f1_score metric for the revised implementation compared to the 

original. (for the same 1-hour training on the same data, the same GraphNet model converges much 
more rapidly with the multi-GPU or batch bucketing training).  

Table 1. Processing speed and time preparation for the initial and revised implementation. 

 

Figure 3. F1 score metrics for the original (graphnet original) implementation and revised 

implementation (graphnet bucketing – training with the batch bucketing routine, graphnet multi-gpu 
(2) – training on the 2 GPU units in parallel, graphnet multi-gpu (4) – training on the 4 GPU units in 

parallel).  

6. Conclusion 

In our work, we successfully implemented a new ‘prepare’ module for Ariadne. The module 
now can run in parallel utilizing all CPU cores on the target hardware which led up to 25x faster event 
processing for the GraphNet NN model. For the ‘training’ module we enabled the multi-GPU training 
and batch bucketing algorithm which greatly reduces training time for the existing NN model 

Machine Processing speed,  

events per second  

Full dataset (250k events) preparation, 
minutes 

Old New Old New 

MacBook ~17 ~120 (x7 speed-up) n/a n/a 

Hybrilit ~26 ~630 (x25 speed-up) 396 minutes 62 minutes (x6 speed-up) 
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implementation. Such results show great potential for the future implementations of the other NN 
approaches within the Ariadne library – users can now utilize more hardware resources, therefore, 
increasing processing capacity for more complex neural network models and preprocessing routines. 
Source code is available at [7]. 
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