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We study neural network approximation of the solution to boundary value problem for Black-Scholes-

Merton partial differential equation for a European call option price, when model volatility is a 
function of underlying asset price and time (local volatility model). Strike-price and expiry day of the 
option are assumed to be fixed. An approximation to option price in local volatility model is obtained 
via deep learning with deep Galerkin method (DGM), making use of the neural network of special 
architecture and stochastic gradient descent on a sequence of random time and underlying price points. 
Architecture of the neural network and the algorithm of its training for option pricing in local volatility 

models are described in detail. Computational experiment with DGM neural network is performed to 
evaluate the quality of neural network approximation for hyperbolic sine local volatility model with 
known exact closed form option price. The quality of the neural network approximation is estimated 
with mean absolute error, mean squared error and coefficient of determination. The computational 
experiment demonstrates that DGM neural network approximation converges to a European call 
option price of the local volatility model with acceptable accuracy. 
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1. Introduction 

In a local volatility model (LVM) [1], in contrast to Black-Scholes constant volatility model 
[2, 3], the volatility depends on underlying asset price 𝑆 and time 𝑡. Well-known LVM with exact 

closed form solutions include CEV model [4], shifted lognormal model [5] and normal model (a clone 
of Ornstein–Uhlenbeck model [6]). 

When evaluating derivatives with LVM, the boundary (terminal) value problem for Black-
Scholes-Merton (BSM) partial differential equation (PDE) is to be solved. Exact closed form solutions 
of terminal value problem for BSM PDE are known only in a few special cases, therefore, in general 
case application of numerical methods such as binomial trees, Monte Carlo simulations, Fourier or 
finite difference methods is required. Alternatively, derivative prices in LVM can be approximated 
with an artificial neural network (ANN).  

The idea to use ANNs for option pricing is several decades old (see [7] and the references 

therein), however, the need to improve the quality of option price approximation stimulates further 
research. Deep Galerkin Method (DGM), introduced recently in [8] for the solution of PDEs, makes 
use of the neural network of special architecture and stochastic gradient descent (SGD) [9] on a 
sequence of random time and space points. The method has been successfully applied to various PDEs 
[8], including BSM PDE with constant volatility. 

Our goal is to study application of DGM approach [8] to option pricing when volatility 
function is not constant and evaluate the quality of ANN approximation for an LVM with known exact 
analytical closed form solution. 

2. Deep option pricing with local volatility models 

For pricing of a European call option with strike-price 𝐾 and expiry day 𝑇 in LVM with a 

volatility function σ(𝑆, 𝑡) and a risk-free interest rate 𝑟 > 0, the solution of BSM PDE [2, 3]  
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with terminal condition 

u(𝑆, 𝑇, 𝐾, 𝑇) = max(𝑆 − 𝐾,  0) #(2)  

is to be determined. Strike-price 𝐾 and expiry day 𝑇 are assumed to be fixed.  

To determine ANN approximation to PDE (1) with condition (2) using DGM approach the 

neural network of special architecture [8] is to be built and trained. The architecture of the ANN is 
similar to architectures of LSTM [10] and Highway [11] networks. It consists of the layers in Fig.1: an 
input layer, 𝑑 hidden (LSTM) layers and an output layer. 

 

Figure 1. Architecture of DGM neural network 

The input to DGM ANN is a set of randomly sampled price-time points x = (𝑆, 𝑡). In the input 

layer, the price-time points x are transformed into the output X0 
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X0 = σ(w0 x + b0) 

with a nonlinear activation function σ and input layer parameters w0 and b0. 

Each hidden (LSTM) layer receives as an input the original set of price-time points x and the 

output of the previous layer. In hidden layers, the price-time points x and the outputs of the previous 

layer Xi−1 are processed with the following transformations: 

Zi = σ(ui
z  x + wi

z  Xi−1 + bi
z), Ri = σ(ui

r  x + wi
r  Xi−1 + bi

r), 

Gi = σ(ui
g
 x + wi

g
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g
), Hi = σ(ui

h  x + wi
h (Xi−1⊙Ri) + bi

h), 

where ⊙ denotes element-wise multiplication, and the outputs of the layer are 

Xi = (1 − Gi) ⊙ Hi + Zi⊙ Xi−1. 

In the output layer, the outputs of the last LSTM layer Xd are transformed into the neural 

network outputs y with a linear transform 

y = f(x;  θ) = w′ Xd + b
′ , 

where w′ and b′ are the output layer parameters. The output of the DGM neural network y is the 
approximation of option price u at the initial price-time points x. 

 

Figure 2. Architecture of LSTM layer in DGM network 

The number of parameters (weights and biases) in DGM ANN can be calculated as follows. 
Let 𝑁 be the number of neurons (nodes) in each hidden layer of DGM neural network. 

In the input layer, the shape of the weight parameter w0 is  2 × 𝑁 and the shape of the bias 

parameter b0 is  1 ×𝑁. 

In hidden LSTM layers, the shape of the weight parameters ui
z, ui

g
, ui
r, ui

h is  2× 𝑁, the shape 

of the weight parameters wi
z, wi

g
, wi

r, wi
h is 𝑁× 𝑁, the shape of the bias parameters bi

z, bi
g
, bi
r, bi

h is 

1 ×𝑁. 

In the output layer, the shape of the weight parameter w′ is  𝑁 ×1 and b′ is a scalar 

parameter. The neural network parameter set 𝜃 contains all weight and bias parameters mentioned 
above. Thus, the total number of parameters in DGM neural network is equal to 

|𝜃| = 4 d (N + 1)2 + 4 N + 1. 

DGM neural network is trained with adaptive algorithm Adam [12], which is an extension to 
classical SGD algorithm. General outline of DGM algorithm for the solution of BSM PDE (1)-(2) is 
shown below in Algorithm 1. 
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Algorithm 1: Approximation of option price in local volatility model with DGM neural network 

Data: a volatility function 𝜎(𝑆, 𝑡), strike-price 𝐾, time to maturity 𝑇, risk free interest rate 𝑟, distributions 

𝜈1 and 𝜈2, absolute tolerance 𝜀 >  0; 

Result: optimal parameter set 𝜃∗ for the approximation of option price in LVM; 

– choose initial parameter set 𝜃0 and learning rate 𝛼0; 

repeat 

– generate random time-price points (𝑆𝑛, 𝑡𝑛) from 𝛺 × [0,𝑇] with distribution 𝜈1 and random price 

points 𝑆𝑛
′  from 𝛺 with distribution 𝜈2, 𝛺 =  [𝑠𝑙 , 𝑠ℎ]  ⊂  ℝ; 

– calculate the loss function 𝐿(𝜃𝑛, 𝜉𝑛) at the randomly sampled points ξ𝑛 = {(𝑆𝑛, 𝑡𝑛), 𝑆𝑛
′ } , where 

𝐿(𝜃𝑛, 𝜉𝑛)

← (
𝜕𝑓(𝑆𝑛, 𝑡𝑛; 𝜃𝑛)
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𝜕𝑆

 

+
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2

+ (𝑓(𝑆𝑛′ , 𝑇; 𝜃𝑛)–max(𝑆𝑛′–𝐾))
2

. 

– update parameter set 𝜃 for a gradient descent step at the random points 𝜉𝑛 for the learning rate 𝛼𝑛 
with adaptive algorithm Adam [12]: 

𝜃𝑛+1 ← 𝜃𝑛 − 𝛼𝑛𝛻𝜃𝐿(𝜃𝑛, 𝜉𝑛). 

until ‖𝜃𝑛+1 − 𝜃𝑛‖ < 𝜀; 

𝜃∗ ← 𝜃𝑛+1; 

 

As a result of Algorithm 1, an approximation of the price of a European call option in LVM 
with volatility function σ(𝑆, 𝑡) is obtained in the form u(𝑡, 𝑆)  =  𝑓(𝑡, 𝑆; 𝜃∗). 

3. Computational experiment for hyperbolic sine LVM 

Consider hyperbolic sine LVM [13] with underlying asset price driven by SDE 

𝑑𝑆 = 𝑟 𝑆 𝑑𝑡 + √2 𝑟 𝑆2 + 𝜆2 𝑑𝑊,  𝑟 > 0,  𝜆 > 0#(3)  

with the following BSM PDE for a derivative price 

∂u

∂𝑡
+ 𝑟 𝑆 

∂u

∂𝑆
+
1

2
(2 𝑟 𝑆2 + 𝜆2) 

∂2u

∂𝑆2
− 𝑟 u = 0. #(4)  

The goal is to find a DGM estimate of a European option price in hyperbolic sine LVM (3), 
compare it with known analytical option price [13] and evaluate the quality of approximation. 

DGM ANN for PDE (4) was implemented with TensorFlow framework [14]. 

The computational experiment is performed with the following parameters: the number 𝑑 of 

hidden layers is 3, the number 𝑁 of nodes (neurons) per hidden layer is 50, the number of training 

stages is 100 with 10 SGD steps in each stage, and other parameters of the model are as follows  
r  =  0.05,  λ  =  0.25,  K  =  50,  T  =  1,  S0  =  0.5. Quality of obtained ANN approximation is 
characterized by the following metrics: 

 mean absolute error (MAE) is 0.2014; 

 mean squared error (MSE) is 0.2483; 

 coefficient of determination (𝑅2) is 99.93%. 
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The resulting error of approximation, i.e. difference between exact analytical option prices in 
hyperbolic sine LVM (3) [13] and option prices, predicted by DGM ANN, is visualized in Fig. 3. 

 

Figure 3. Absolute Error Surface of DGM Option Price Approximation 

The computational experiment shows that the approximation, obtained with DGM ANN, 
predicts option prices in hyperbolic sine LVM (3) with acceptable accuracy, but the quality of 

approximation deteriorates for options ATM (At The Money) at expiry day and for options ITM (In 
The Money) with long time to maturity.  

4. Conclusion and Future plans 

Generally, option exchange trades various options on the same underlying with a range of 
exercise (strike) prices and expiry days, so to price all these options ANN shall receive as an input the 
set of price-time-strike price-expiry day points (𝑆, 𝑡, 𝐾, 𝑇) instead of price-time points (𝑆, 𝑡). This 

transition from input (𝑆, 𝑡) to input (𝑆, 𝑡, 𝐾, 𝑇) may require different architecture of ANN and another 
strategy of its training.  

As noted in [15,16], the loss function in the form of energy functional (potential) is preferable 
for loss minimization, so construction of variational formulation for BSM PDE (1) can contribute to 
deep option pricing. Energy functional (potential) for BSM PDE (1) may be obtained using methods of 
the inverse problem of the calculus of variations [17]. 

The computational experiment with deep option pricing in hyperbolic sine LVM demonstrates 
that the algorithm converges to exact analytical European call option price of the LVM with 
acceptable accuracy, but oscillating behavior of the option price approximation makes it desirable to 
modify the neural network architecture for smoothing its output.  
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