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Abstract
In this paper, we provide an overview on hyperspectral image denoising techniques. Additionally, we compare the conventional
techniques with the deep learning ones applied to simulated and real datasets. The comparisons are performed in terms of
signal to noise ratio and spectral angle distance for a simulated noisy dataset. Finally, we demonstrate the visual performance
of the techniques applied to a real hyperspectral dataset. The results show that the established low-rank conventional
techniques outperform the recent deep learning-based techniques used in the experiments.
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1. Introduction
In the past decade, hyperspectral image (HSI) denoising
has considerably evolved, from 2D and 3D full-rank con-
ventional methods to low-rank ones. Recent advances
in deep learning-based techniques have considerably in-
fluenced the application of denoising in the computer
vision community. However, HSIs have unique charac-
teristics which distinguish them from the other digital
images, e.g., RGB images. In this article, we provide an
overview of the HSI denoising techniques. Additionally,
we compare the conventional denoising techniques with
the deep-learning ones.

2. Hyperspectral Denoising
An HSI can be modeled using

H = X + N, (1)

where H ∈ ℝ𝑛×𝑝 contains the observed spectral bands
in its columns, X ∈ ℝ𝑛×𝑝 is the noise free signal which
needs to be estimated, and N ∈ ℝ𝑛×𝑝 denotes the noise.
The denoising task is to estimate the unknown noise-free
signal X.
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Generally, hyperspectral denoising is an inverse image
restoration task, which can be formulated as

X̂ = argmin
X

1
2
‖H − X‖2𝐹 + 𝜆𝜙(X), (2)

where 𝜆 determines the trade-off between the fidelity
term and the penalty term 𝜙(X). We assume that the
noise is uncorrelated spectrally, i.e.,Ω = diag (𝜎21 , 𝜎22 , … , 𝜎2𝑝)
is the noise covariance matrix where 𝜎𝑖 is the noise stan-
dard deviation of band 𝑖.

2.1. Conventional Techniques
The conventional denoising approaches can be divided
into two independent groups: full-rank and low-rank
approaches.

2.1.1. Full-rank Approaches

Full-rank denoising approaches assume that X is full-
rank. Since HSI is a collection of spectral bands, denois-
ing approaches that have been developed for gray scale
images (e.g., wavelet denoising and mean/median filter-
ing) can be applied on HSIs band by band. However, rich
spectral information existing in HSIs is ignored in this
way. On the other hand, HSI is also a combination of spec-
tral pixels and, therefore, 1D signal denoising approaches
such as multiple linear regression (MLR) proposed in [1]
can be applied on spectral pixel vectors and, therefore,
spatial information is ignored in this way. As a result,
HSI denoising considerably benefits by exploiting both
spatial and spectral information. 3D modeling and filter-
ing such as 3D wavelets [2] and 3D (blockwise) nonlocal
sparse denoising (Nonlocal SR) methods [3] are the ear-
liest attempts for spatial-spectral denoising approaches.
Later on, penalized least squares exploiting spatial [4],
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spectral [5], and spatial-spectral penalties [6] were pro-
posed for HSI denoising. An efficient edge-preserving
denoising approach is obtained with a prior 𝜙(X) in (2)
corresponding to the total variation (TV) of the signal
[7].

Several TV denoising approaches including Cubic TV
(CTV) [8, 9] and spatio-spectral TV [10] were adapted for
HSI denoising to capture the spectral correlation using
TV.

2.1.2. Low-Rank Approaches

Low-rank models assume that X is low-rank so to cap-
ture the high spectral correlation of HSI. The low-rank
property can be applied in two different ways:

(1) Using a low-rank model

H = FV𝑇 + N, (3)

where F and V are of rank 𝑟 (𝑟 « min{𝑛, 𝑝}).
(2) Using a low-rank penalty or constraint such as the

nuclear norm in the cost function:

̂X = argmin
X

1
2
‖H − X‖2𝐹 + 𝜆1𝜙(X) + 𝜆2 ‖X‖∗ , (4)

where ‖X‖∗ is the nuclear-norm of the matrixX, obtained
by the sum of the singular values.

Several hyperspectral denoising approaches were pro-
posed using Tucker3 decomposition [11, 12]. In [13], a
wavelet-based low-rank model and ℓ1 regularization was
proposed for HSI denoising (SVDSRR). An automatic hy-
perspectral restoration technique (HyRes) was proposed
in [14] using the ℓ1 penalized least squares and a low-rank
wavelet-based model.

In [15], thewavelet-based reduced-rank (WSRRR)model
was proposed for simultaneous HSI denoising and feature
extraction using a non-convex optimization problem.

Low-rank TV regularization was also proposed in [16,
17] for both HSI denoising and feature extraction.

Noise-adjusted image recovery using low-rank matrix
approximation (NAIRLMA) was suggested in [18] exploit-
ing both low-rank and sparsity norms. Fast hyperspectral
denoising (FastHyDe) proposed in [19] is also a low-rank
technique that first project the HSI into a subspace and,
then, applies BM3D denoising [20] on the eigen images.
Spectral linear unmixing techniques are also considered
as a low-rank HSI denoiser [21, 22].

2.2. Deep learning-based Techniques
Deep learning-based denoising approaches are the state-
of-the-art in the signal and image processing community
but they have been mostly developed for RGB images.
Although they can usually be used for HSI denoising,
they cannot model the specific characteristics of HSIs,
e.g., low-rank and spectral dependency.

Since 2017, deep learning have been utilized for HSI
denoising. The fundamental challenge for applying deep
learning for HSI denoising is the high-dimensionality of
HSIs. The high-dimensionality leads to a huge number
of trainable parameters but, at the same time, the number
of training samples is often limited in the remote sensing
community. The imbalance between the number of train-
ing samples and trainable parameters makes the network
training cumbersome to achieve a universal DL-based
denoising technique for HSIs [23]. With regard to the
availability of training samples, HSI deep-learning-based
denoising techniques can be split into two categories:

2.2.1. Unsupervised/self-supervised

The unsupervised techniques do not utilize any training
set and only rely on the observed image. One example of
such approaches is deep HSI prior (HSI-DIP) introduced
in [24]. HSI-DIP is based on deep image prior (DIP) [25],
which utilizes a convolutional encoder-decoder network
to implicitly induce a universal regularizer (the so-called
image prior) in inverse problems including denoising. In
[24], 2D convolution was extended to a 3D one to model
the specific characteristics of HSIs, however, it was not as
efficient as the 2D version. Self-supervised techniques are
dependent on the observed image for training while they
create their own training sets from the observed noisy
image. In [26], a self-supervised (Zero-shot) denoising
technique was introduced for HSIs.

2.2.2. Supervised

These techniques demand training sets to train the net-
work. Most of the deep-learning-based denoising tech-
niques are supervised and their performances are highly
dependent on the availability of a high number of train-
ing data. In HSI denoising, the deep networks are trained
in three ways: (1) using a database by collecting many
patches [27], (2) using a database containing many real
HSIs such as ICVL [28] developed in [29], or (3) using
a database by simulating HSIs based on RGB images us-
ing deep generative networks [30]. A spatial–spectral
deep residual CNN (HSID-CNN) was introduced in [27]
in which 2D and 3D convolutional filters were utilized
to model spatial and spatial-spectral correlation in HSIs.

A 3D U-Net was introduced in [30] based on 2D convo-
lutional filtering in spatial direction and 1D convolutional
filtering in the spectral direction. A single model denois-
ing CNN-based framework (SDeCNN) was introduced
in [31]. In SDeCNN, spectral channels were extended
along the spectral direction in the first place so that all
spectral channels have centered by the same number of
adjacent bands. Then, one band at a time was restored
by applying the CNN on a downsampled HSI.



2.3. Experimental Results
Here, we compare the results of different hyperspectral
denoising algorithms including 3DWavelet [2], FORPDN
[5], SSTV [10], NAIRLMA [18], HyRes [14], HSI-DIP [24],
FastHyDe [19], and SDeCNN [31]. 3Dwavelets, FORPDN,
and HyRes are parameter-free techniques. We set the
subspace dimension to 10 for FastHyDe. For HSI-DIP,
all the hyperparameters and the layers of the encoder-
decoder architecture are adjusted as suggested in [25] to
optimize the performance. In the case of SDeCNN, we set
the noise parameter 𝜎 to 1 since it gives the best results
for the simulated data while, for the real dataset, we used
the default value suggested by its authors i.e., 𝜎 = 20.

The hyperspectral denoising techniques are applied on
a simulated noisy dataset and the results are compared
based on different levels of the noise power, i.e., PSNR=20,
30, and 40 dB. The uncorrelated (the same variance for all
bands) zero-mean Gaussian noise was added to a portion
of the Washington DC Mall dataset. Fig. 1 (a) and (b)
compare the results of the techniques in terms of PSNR
and spectral angle distance (SAD). The results are mean
values over five experiments. The standard deviations
are shown using error bars. The results confirm that the
low-rank techniques used in the experiments outperform
the other techniques in terms of both PSNR and SAD.
Additionally, HSI-DIP outperforms the full-rank conven-
tional techniques, i.e., 3D wavelet, FORPDN, and SSTV.
On the other hand, SDeCNN performs poorly.

For the real HSI denoising experiment, we apply all the
denoising techniques on the Indian Pines dataset. The
results of denoising for band 1 are compared visually
in Fig. 2. The outcome of the visual comparison can
be summarized as follows: NAIRLMA fails to restore
band 1. 3D Wavelet restores band 1 with moderate visual
quality. SDeCNN shows the poorest results. Band 1 is
highly over-smoothed. We should note that SDeCNN
was also applied to Indian Pines in [31], however, the
authors removed the noisy bands from the dataset (re-
sulting in a dataset having 206 bands) before applying
the denoising techniques. Here, all 220 bands were used
to evaluate the methods since the aim of HSI denoising
techniques is to recover all the corrupted bands. SSTV,
HyRes, and FastHyDe successfully and similarly recon-
struct band 1. HSI-DIP also restores band 1 successfully,
however, the restored band seems over-smoothed and
blurred. FORPDN outperforms the other techniques vi-
sually. We should note that considering numerous bands
existing in HSIs, this comparison might not reflect the
performance of the techniques on the whole image. Band
1 is selected for comparison since it is noisy and it is often
more challenging to recover the first and last few bands
in HSIs due to the absence of the adjacent bands.

2.3.1. Discussion and Conclusion

The superiority of the low-rank techniques compared
to the full-rank ones can be attributed to the spectral
redundancy of HSIs. Low-rank techniques capture the
most variations of the signal by projecting it into a sub-
space which helps to decorrelate the signal spectrally
from the noise. Denoising techniques such as HyRes
and FastHyDe further denoise the signal spatially in its
subspace. HSI-DIP is an unsupervised denoising tech-
nique, i.e., the network is trained using the observed data.
SDeCNN exploits only one CNN model which is trained
based on one dataset. Therefore, SDeCNN cannot per-
form well for all types of HSI data with different noise
levels. We should note that, in the case of HSIs in par-
ticular HSI denoising, the training is often challenging
due to the absence or the limited number of training sets.
Therefore, Low-rank-basedHSI denoising techniques still
outperform the deep learning-based ones.
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A. Online Resources
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results are available via
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