=Paper=
{{Paper
|id=Vol-3079/ial2021_3_contents
|storemode=property
|title=None
|pdfUrl=https://ceur-ws.org/Vol-3079/ial2021_3_contents.pdf
|volume=Vol-3079
}}
==None==
Table of Contents Research Papers MetaREVEAL: RL-based Meta-learning from Learning Curves . . . . . . . . . 1 Manh Hung Nguyen, Isabelle Guyon, Lisheng Sun-Hosoya and Nathan Grinsztajn Uncertainty and Utility Sampling with Pre-Clustering . . . . . . . . . . . . . . . . . 21 Zhixin Huang, Yujiang He, Stephan Vogt and Bernhard Sick Evidential Nearest Neighbours in Active Learning . . . . . . . . . . . . . . . . . . . . . 35 Daniel Zhu, Arnaud Martin, Yolande Le Gall, Jean-Christophe Dubois and Vincent Lemaire SLAYER: A Semi-supervised Learning Approach for Drifting Data Streams under Extreme Verification Latency . . . . . . . . . . . . . . . . . . . . . . . . . 50 Maria Arostegi, Jesus Lobo and Javier Del Ser A Concept for Highly Automated Pre-Labeling via Cross-Domain Label Transfer for Perception in Autonomous Driving . . . . . . . . . . . . . . . . . 65 Maarten Bieshaar, Marek Herde, Denis Huselijc and Bernhard Sick Active Class Selection with Uncertain Class Proportions . . . . . . . . . . . . . . . 70 Mirko Bunse and Katharina Morik Sample Noise Impact on Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Alexandre Abraham and Léo Dreyfus-Schmidt Contrastive Representations for Label Noise Require Fine-Tuning . . . . . . . 89 Pierre Nodet, Vincent Lemaire, Alexis Bondu and Antoine Cornuéjols Combining Gaussian Processes with Neural Networks for Active Learning in Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Jiřı́ Růžička, Jan Koza, Jiřı́ Tumpach, Zbyněk Pitra and Martin Holena Stochastic Adversarial Gradient Embedding for Active Domain Adaptation 121 Victor Bouvier, Philippe Very, Clément Chastagnol, Myriam Tami and Hudelot Céline