
bcfOWL: A BIM collaboration ontology

Oliver Schulz1,2, Jyrki Oraskari1,3[0000−0002−4723−3878], and Jakob Beetz1,4

1 Department of Design Computation, RWTH Aachen University, Aachen, Germany
2 schulz@dc.rwth-aachen.de

3 Jyrki.Oraskari@dc.rwth-aachen.de
4 j.beetz@caad.arch.rwth-aachen.de

Abstract. The BIM Collaboration Format (BCF) is a buildingSMART
standard used to exchange issues in a digital model between heteroge-
neous software applications and planners. Although the BCF issues are
spatially located in a model and provide links to building elements, the
format is only loosely connected to the actual BIM model. While the
format is well suited for its original use case, it lacks the flexibility to
retrieve information from the BCF in conjunction with the BIM model.
In this paper, we introduce the BIM Collaboration Format Ontology
(bcfOWL), which translates the format to the Semantic Web and har-
nesses the expressive richness of OWL. We present the structure of the
ontology and highlight the differences with existing implementations of
BCF. Using example queries, we show how extended relationships be-
tween a BIM model and BCF information are enabled by bcfOWL. We
show that by transferring BCF to Linked Data, the format’s applicability
is enhanced without losing compatibility with existing implementations
and workflows. In doing so, the ontology aims to integrate into the Linked
Building Data environment and facilitates access to synergies between
heterogeneous building data.

Keywords: BCF · SPARQL · OWL · REST API · XML · Linked Data

1 Introduction

Issue management is an integral part of most BIM processes in the Architec-
ture, Construction, Engineering, Owner and Operator (AECOO) industry. To-
day this is often implemented by using the BIM Collaboration Format (BCF)
of the buildingSMART organization. It represents a standardized way of com-
municating issues between heterogeneous software applications. There are two
standard approaches for exchanging data: a file-based workflow, where Issues are
written into a ZIP container using the BCF XML5 schema, and a server-based
approach, which uses the BCF API6 specification for the data exchange. It is
based on the principles of a RESTful API. It allows users of different disciplines
using different software to communicate the reported Issues online, eliminating
the need to exchange files via email or a data device. [4]

5 https://github.com/buildingSMART/BCF-XML
6 https://github.com/buildingSMART/BCF-API

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

142

Copyright 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

Common use cases for such Issues include clash detection during partial
domain model integration and change or information request in the design phase
of a building. They often result in hundreds of Issues in a single information
handover or integration scenario. For such common scenarios, the management
of Issues captured in individual files is highly impractical and queries for specific
data are challenging to implement via the API.

Over the last years, there have been many approaches to compose Linked
Building Data. The ifcOWL ontology [3, 10] was designed to be as equivalent as
possible a Semantic Web representation of the IFC EXPRESS schema. IfcWoD
was designed to express the object-oriented constraints of the IFC schema as
an OWL ontology [6]. BimSPARQL [17] proposed an extension for SPARQL
Query Language (SPARQL) to query geometrical and BIM specific data of IFC
models. Like ifcWoD and BimSPARQL, SimpleBIM was an attempt to create a
more accessible view on ifcOWL data. [9]. Recently, the evolution culminated in
the development of the Building Topology Ontology (BOT) [13], which reduced
the extensiveness compared to ifcOWL and enabled modular ontology design
when describing buildings in the Linked Data context.

The Linked Building Data Community Group (LBD-CG)7 of the World Wide
Web Consortium (W3C) is devoted to advance the adoption of the Linked Data
and Semantic Web technologies in AECOO. The vision is to enable web-based
information exchange and workflows, provide open and versatile standards for
different domains, and facilitate distributed data integration. [13]

In this paper, we present the BIM Collaboration Format Ontology (bcfOWL)8

that shares the principles of Linked Building Data, and which provides a way to
create BCF information that is interlinked in the context of a building. We de-
scribe the design principles used and demonstrate the benefits of the approach by
example queries. We discuss the differences from the BCF API server definition
and argue how the representation of Issues as semantic graphs are beneficial in
continuous information integration scenarios in common BIM-based workflows.
The underlying research questions are:

1. How can Issues that arise in common workflows be integrated and linked
with the BIM workflow?

2. How to express the core ideas of BCF by following the best practices of
ontology design and still keeping the result compatible with the original
BCF API and BCF XML standards?

The paper is structured as follows: The first section describes the current
implementations of BCF and highlights a first approach of converting BCF to an
ontology. The following section deals with the newly created ontology, bcfOWL,
and focuses on which design principles and best practices were considered when
creating it, and how it compares to the current implementations of BCF. In
section 4, we provide example use-cases and show how SPARQL can be used to
query BCF information. We discuss the results of bcfOWL, conclude the paper,
and give an overview of future work in section 6.

7 https://www.w3.org/community/lbd/
8 http://lbd.arch.rwth-aachen.de/bcfOWL#

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

143

2 BIM collaboration Formats

2.1 BCF XML

BCF was initially developed by the companies Solibri and Tekla, and the In-
stitute of Applied Building Informatics to exchange problems within a digital
building model between different software applications.9 The format is often used
in the area of issue management and collision checking. The original version of
BCF is based on an XML format, and the Issues are organized in sub-folders
within a ZIP file. This file can then be distributed and imported into other soft-
ware applications that support the standard. The BCF XML format also allows
round-tripping, where the same file can be extended with additional Issues, and
existing Issues can be modified. Thereby preventing that the Issues are stored
over several files, and thus a clear structure is lost.

2.2 BCF API

Although this round-tripping of the BCF XML files already reduces ambiguity
and helps stricter, machine-readable representations of Issues, the exchange of
files via e-mail or data storage media is a weak point of related processes and
workflows. [4] To address these shortcomings, the BCF API was developed to
replace the file-based exchange of Issues in the digital building. This is achieved
through a server infrastructure that enables communication via a RESTful API
with client applications. Rather than in XML, the data is captured and processed
using the JSON format. Providers of BCF servers enable the retrieval, viewing
and editing of Issues by external software applications or on websites, which
allows a wide range of stakeholders within a project to be integrated into the
planning process.

2.3 Common Data Environments

The 2.1 version of the BCF API contains a Public Service, responsible for a
rudimentary User Management, and a Documents Service, which can be used
to interchange BIM models via the BCF server and link an Issue to a spe-
cific Document or File. Version 3.0 already separates the Public Services to
an API, called the Foundation API and serves as a common base layer on an
upcoming multi-tier architecture for open standards for Common Data Envi-
ronments10 (openCDE APIs). For the Document Service, a Documents API is
under development as well. These APIs are intended to enable a standardized,
vendor-independent exchange of BIM models and their associated data. BCF is
an integral part of this infrastructure, as it can be used within an openCDE to
document issues and create change requests across multiple documents.

9 https://technical.buildingsmart.org/standards/bcf/
10 https://technical.buildingsmart.org/projects/opencde-api/

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

144

2.4 General structure of BCF

Although BCF XML and BCF API are based on different data serialization
formats, both variants are compatible on a structural level. They are based on
the basic concepts of Projects, Topics, Comments, and Viewpoints, which are
organized hierarchically. The combination of Topics, Viewpoints, and Comments
is often referred to as an Issue. When talking about an Issue, this is to be
equivalent to the Topic, which is the connecting element for the Viewpoints and
Comments. In the file structure of the BCF XML, the term Markup is used. The
general structure can be reviewed in Figure 1.

Fig. 1. General structure of the BCF. The dark blue boxes form the Issue. Each hier-
archy level represents a request to the server in the BCF API.

Except for free text parameters, the Topics must be filled with data defined
in the Extension Schema. The concept of Viewpoints establishes a spatial link to
the BIM model and conveys the information about which parts of the building
are visible or selected in the respective camera view. The position and rotations
are specified in a Cartesian coordinate system with vectors (X—Y—Z).

2.5 Drawbacks of current BCF implementations

In [14], the hierarchy was identified as one of the key problems of the BCF API
since the nested structure demands a specific way of requesting information. If
e.g. all Comments created by a particular person are requested from the server,
all Topics must be loaded first, and their IDs can then be used to request the
Comments associated with the Topics. Thus an overhead of requests to a server is
created. The same matter applies to the Viewpoints, which contain sub-concepts
that have to be requested from the server separately. This is a common problem
when working with REST APIs and is regarded as the ”N+1 problem”11.

Furthermore, the connection to BIM happens via two parameters in the BCF
Format. On the one hand, the Issues are spatially linked with the model via

11 https://restfulapi.net/rest-api-n-1-problem/

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

145

location and rotation in the Viewpoints. On the other hand, the Components sub-
concept can link to a building element via Globally Unique Identifier (GUID).
Nevertheless, currently neither allows to query BCF information in a spatial
context or a context of the accompanying building elements referenced by the
Issue. Already downloaded Issues and BCF XML could be queried with custom-
designed functions in such a way, but just in the context of the BCF information
currently loaded into the model.

2.6 BCF in Linked Data

A first approach of mapping the BCF format to Linked Data can be seen in
[5] where a BCF ontology was created by converting the XSD schema of BCF
XML, using the XsdImport plugin for TopBraid Composer. The created on-
tology is very close to the file-based principles of BCF XML. It thereby uses
concepts like the Markup and multiple properties that are redundant for an on-
line distributed approach and add to the complexity of the ontology. Moreover,
most ontology properties are converted into Datatype Properties and used as a
string. Cardinality constraints for the properties are not provided for the ontol-
ogy classes. Furthermore, the ontology was not published, and it remained as a
test use case in a larger prototype.

3 bcfOWL

bcfOWL aims to lift BCF to the Linked Data domain and thereby enable the
format to be put in a larger context within the Linked Building Data, including
the BOT and ifcOWL ontology. The conversion should not just be a translation
of the BCF API or the BCF XML but specifically tailored to the needs in a
Linked Data context. At the same time, compatibility with existing formats
should not be jeopardized. Therefore we considered guides, checkers, and best
practices to achieve this goal:

– In [7], the author argues that the complexity of classes inside an ontology
should be kept simple for the ontology to be usable by implementers and
system developers. This is exemplified by Container classes that hold no
actual data and thus should be avoided when designing an ontology.

– In [12], the authors define good and bad practices, referred to as pitfalls
when publishing vocabulary on the web and provide detection methods for
these practices.

– In [11], an online tool is provided to scan ontologies for these pitfalls, which
was used to validate bcfOWL.

– Moreover, best practices were also defined by the World Wide Web Consor-
tium12 (W3C) that were also put into consideration when designing bcfOWL.

12 https://www.w3.org/TR/ld-bp/

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

146

Since the work aims to translate the BCF format into an ontology, the main
difference between the two formats is the description in the respective schema.
However, a notable characteristic is that BCF exists in both a file-based and a
server-based approach (Section 2). The bcfOWL approach exists between these
two and exploits both variants.

Fig. 2. A snippet from the ontology, displaying the Topic as a graph

bcfOWL is covering the core abstraction and concepts of the BCF standard
relating the Issue Management. The subsets of Event Services, File Services,
and Document Services are not included into this core ontology. Supplementary
transfers of these modules into ontologies would also have to be provided and
form a Linked Data Common Data Environment, together with bcfOWL.

3.1 Projects

The Projects are a core element of BCF responsible for assigning each Issue to
a project, and thus a specific building. The link to the Project in the BCF API
happens via URL (Listing 1.1), where the Projects GUID is provided. In BCF-
XML, the Project is defined per file and there is no further assignment to it.
Since resources from bcfOWL are not queried via parameters in the URL, and
a file-based approach is not the sole scope of our work, the link to the Project
has to be provided in the classes of the Topics, Comments, and Viewpoints.
(Listing 1.2) The Project itself links to the Extension Schema, described in the
following section.

GET /bcf/3.0/projects/{project_id}/topics

Listing 1.1. GET request to a BCF server. The Project is provided as parameter

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

147

@prefix bcfOWL: <http://lbd.arch.rwth-aachen.de/bcfOWL/> .

bcfOWL:Comment rdf:type owl:Class ;

rdfs:subClassOf

[rdf:type owl:Restriction ;

owl:onProperty bcfOWL:hasProject ;

owl:cardinality "1"^^xsd:int] ,

[...] .

Listing 1.2. The Project has to be provided for the Topics, Viewpoints, and Comments
and therefore a cardinality of 1 is specified.

3.2 Extensions

In the BCF context, the Extensions are used to create project-specific parameters
when inserting new Issues. In a Project, parameters such as Status, Labels, and
Users are defined in advance in the Extensions. With parameters such as Title
or Comment, on the other hand, free texts are used. Especially with the BCF
API, the correct parameters are controlled by the server during the upload since
it only allows the parameters mapped in the Project’s Extensions.

bcfOWL also provides the possibility to define these Extensions to be used
in the Projects. However, since the allowed values can change from project to
project, we provide only a generic and backwards-compatible way to define the
property sets. The extension and validation mechanisms will be studied further
in future work.

3.3 Topics, Comments, and Viewpoint

Same as in the Projects, the Topics, Comments, and Viewpoints need to be
linked to each other to generate a complete Issue. In the BCF API, these links
are primarily provided in the URL parameters. For example, the link of the
Viewpoint to its Topic is only provided by the URL and is not part of the JSON
schema. In the BCF XML, this link is provided by the Markup. In bcfOWL,
these connections are provided in the respective classes of the Comments and
Viewpoints as Object Properties, linking to the Topic. The Markup concept was
discarded, thus reducing the complexity of the ontology. This is in line with BCF
API, where it had been left out.

3.4 Issue transformation

The transformation of an Issue is an integral part of the principles of the BCF.
It is described with a Camera View Point in a Cartesian coordinate system, a
Camera Direction, an Camera Up Vector for describing the rotation of the view
in the coordinate system, and an Aspect Ratio. Depending on if the camera is
described as an Orthogonal Camera or a Perspective Camera, a View to World-
Scale or a Field Of View has to be provided. The transformation of the camera
is described in the Viewpoint of an Issue. To express the vectors and points,

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

148

bcfOWL relies on the representation in well-known-text (WKT) as proposed
for the ifcOWL format in [8]. Using WKT, compatibility with GeoSPARQL
[2] should be achieved, a standard of the Open Geospatial Consortium (OGC).
bcfOWL is also inspired by BimSPARQL [17], which describes points with the
WKT. It is an extension of the SPARQL query language, with a specific focus
on BIM and ifcOWL. Both query languages allow to query data in a spatial
context from the graph and apply constraints to the query like a maximum
distance between two points [17].

3.5 Snapshots

In BCF, most Issues are accompanied by a Snapshot from the source application
to help understand the problem described since not all models are loaded in every
software in which an Issue is considered. Thus, the problem cannot be verified
without further context. In the BCF XML, the images are stored as PNG or
JPEG in the sub-folder with the Markup. They are linked to the Viewpoint via
an GUID. In the BCF API, when a new Snapshot is created, the image is passed
in base64 format, included in a JSON. When requesting a Snapshot, the image is
passed as a binary file from the BCF server. Since including images with base64
strings in RDF leads to extensive and slow graphs, the locations of the images
are linked in bcfOWL by URI. For compatibility reasons, the URI is the same as
in the BCF API approach and the up- and download of the Snapshots can be
achieved by simple GET and POST requests.

4 Example use-case

By introducing BCF to OWL, we can now use this format with more advanced
queries, where the user can specify what data should be fetched from a server.
In this section, we provide an example use case for bcfOWL. The queries were
tested with Apache Jena Fuseki.

4.1 Querying BCF information

While a request with the BCF API, for example, for a Topic, can be handled via
a simple GET request (Listing 1.1), the same request in the SPARQL context
is more extensive (Listing 1.3). However, this problem can be partially circum-
vented by using template functions to map the standard requests to the BCF
server used in the REST API.

PREFIX bcfOWL: <http://lbd.arch.rwth-aachen.de/bcfOWL/>

SELECT ?s ?p ?o

WHERE {

?s a bcfOWL:Topic ;

?p ?o .

}

Listing 1.3. Sample SPARQL query for getting Topics.

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

149

4.2 Query by Selection

An important feature to bring building data closer together with BCF is to
query building elements to see if Issues related to them already exist. Software
applications such as Solibri discovered the need for such information and have
integrated a corresponding feature into their application. However, the feature
only supports a local (offline) context and cannot align the Issues for the building
elements with the Issues stored on a server without downloading them first.
Specific queries like these are not possible with the current API, or only to a
limited extent, because the existing hierarchy requires all Issues on the server
to be searched first to get the IDs of the building elements. [14] However, by
implementing the bcfOWL ontology it is now possible with a single request. By
providing the ID of a selected building element, an application can send a query
to the database with the searched for GUID and the server responses with all
Topics referring to the GUID.

PREFIX bcfOWL: <http://lbd.arch.rwth-aachen.de/bcfOWL/>

SELECT ?topic

WHERE {

?topic a bcfOWL:Topic .

?viewpoint a bcfOWL:Viewpoint ;

bcfOWL:hasTopic ?topic ;

bcfOWL:hasSelection ?selection .

?selection bcfOWL:hasComponent ?component .

?component bcfOWL:hasIfcGuid "1ZwJH$85D3YQG5AK5ER1Wc" .

}

Listing 1.4. SPARQL example for querying Topics with a specific GUID in the selec-
tion.

4.3 Referencing Building Elements

Referencing a Building Element in the Selection or the Visibility can either
be achieved by a GUID, an Authoring Tool ID, or by linking an object (by a
dereferenceable URL). The first two options seem to be less in line with Semantic
Web concepts but is helpful if the IFC and its elements do not exist in a Linked
Data context. This ensures compatibility with a wide range of formats while
linking with a Linked Data object is still possible.

inst:Element_1 a bcfOWL:Component;

bcfOWL:hasIfcElement inst:BotElement_1;

bcfOWL:hasIfcGuid "1zMXMGg3H1MOhxQ9qjUS4B" ;

bcfOWL:hasAuthoringToolId "312213" ;

bcfOWL:hasOriginatingSystem inst:ExampleCAD .

Listing 1.5. Components provide a link and/or the GUID of the element.

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

150

5 Discussion

The examples show that bcfOWL can address use cases beyond the capabilities
of the current BCF formats. It was demonstrated by the example of querying a
graph database for building elements for which Issues exist. The connection to
the building elements can be described with the ontologies of BOT and ifcOWL
via URIs and a conventional IFC or native BIM model via GUID. bcfOWL can
thus be integrated into existing workflows. Although individual parts have been
excluded from bcfOWL , the underlying concepts remains the same. A conversion
of bcfOWL data to BCF XML or BCF API is still applicable.

However, this extended functionality comes at the cost of using the SPARQL
language, which can be a hurdle for users and developers [15]. Especially when
compared to requests to a REST service, requests via SPARQL become more
complex and require a deep understanding of the format to properly represent
BCF in a graph while maintaining compatibility with the existing format. By
the absence of validation of newly created resources, which can cause data to be
uploaded incorrectly in the context of the BCF format, this is even intensified.
Furthermore, the GeoSPARQL ontology was used for describing the position of
the Issues in a three-dimensional context with WKT. However, GeoSPARQL
in its current version is mainly limited to a spatial context in a 2D domain.
Although three-dimensional vectors can be represented in the WKT system, only
the XY coordinates are checked for spatial queries to the graphs. Nevertheless,
use cases for three-dimensional queries have been recognized [1] by the OGC and
have been included as a milestone13 in the further development of the format.
Because of the limitation no spatial queries were tested for bcfOWL.

Since the concept of inverse relationships does not exist in BCF, it has not
been incorporated into the ontology at this time. It should be discussed in the
future whether the advantages of inverse relations justify a more complex ontol-
ogy.

6 Conclusion and future work

We have shown in this paper that a transformation of BCF into a Linked Data
approach is viable and opens new possibilities for the format. While BCF XML
and BCF API applications can actualize and interpret the indirect GUID ref-
erences of a BIM model when the BIM models are loaded to the memory, the
proposed Linked Data approach allows better integration. The new data format
makes it easier to retrieve relevant issue data and attach and track provenance
information over different life-cycle stages. Further, deeper analysis is left for
future work. Using Linked Data, the BCF and BIM data models can be inte-
grated into a shared knowledge graph, making it possible to harness the power
of semantic queries, e.g. using a SPARQL engine. Spatial localization is achieved
via the WKT format, but further emphasis needs to be placed on enabling and
testing spatial queries.

13 https://github.com/opengeospatial/ogc-geosparql/issues/19

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

151

bcfOWL is by no means intended to replace the existing formats but merely
to add further possibilities. A conceivable scenario would be to use bcfOWL as
an internal data format for a BCF server, which can then be exposed via a
SPARQL endpoint, and via an intermediary service using the BCF API. Thus
the strengths and weaknesses of the respective formats could be balanced, and
compatibility to already existing approaches could remain. The proposed method
allows using Linked Building Data content like assertions that use ifcOWL or
the BOT ontologies connected with or beside regular IFC and BIM models. The
data can also be linked to available Linked Data sources.

When creating bcfOWL, we focused on the core functions necessary when cre-
ating Issues within a building. Subjects such as handling and linking to and from
Documents and Files and user management were excluded from the bcfOWL def-
inition. Like bundling the different buildingSMART APIs, a Linked Data based
Open CDE infrastructure could also be applied here. First approaches to such
considerations can already be observed in [16]. Also, the tracking of the BCF
events is not integrated into bcfOWL, and further work should show how these
can be used in a meaningful way in the Linked Data context. BCF Events have
an essential role in Issue management, as they can be used to track who changed
what data in a BCF and when.

Another starting point in conjunction with bcfOWL could be a connection
to the Shapes Constraint Language14 (SHACL), which is used to validate RDF
graphs. Since in the BCF context, Projects are provided with Extensions, and
thus no parameters should be used in these Projects that do not appear in them,
a SHACL implementation would be a potential complement to bcfOWL.

By introducing BCF into the Semantic Web, we hope that the application
possibilities of the format will be extended. This includes increased possibilities
to analyze BIM processes and harness the underlying data graphs to interlink
and trace dependencies, provenance, and historical evolvement of Issues. We also
see potentials in the interoperable interlinking of Issues with heterogeneous, non-
IFC, and legacy information types for multi-model containers, e.g., the ICDD
and OpenCDE-APIs. bcfOWL should enable synergies with other ontologies such
as ifcOWL and the Building Topology Ontology and thus contribute to the goal
of Linked Building Data.

7 Acknowledgments

This research had been funded by the EU through the H2020 project BIM4REN.

References

1. Abhayaratna, J., Brink, L., Car, N., Atkinson, R., Homburg, T., Knibbe, F.,
Mcglinn, D.K., Wagner, A., Bonduel, M., Rasmussen, M.H., Thiery, F.: OGC Ben-
efits of Representing Spatial Data Using Semantic and Graph Technologies. Tech.
rep., Open Geospatial Consortium (Oct 2020)

14 https://www.w3.org/TR/shacl/

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

152

2. Battle, R., Kolas, D.: Geosparql: enabling a geospatial semantic web. Semantic
Web Journal 3(4), 355–370 (2011)

3. Beetz, J., van Leeuwen, J., Vries, d.: IfcOWL: A case of transform-
ing EXPRESS schemas into ontologies. AI EDAM 23, 89–101 (Feb 2009).
https://doi.org/10.1017/S0890060409000122

4. van Berlo, L., Krijnen, T.: Using the bim collaboration format in a server based
workflow. Procedia Environmental Sciences 22, 325–332 (2014)

5. Bernal Ferrer, F.: Internal design validation attestation in BIM models: a combina-
tion of semantic web technologies and BIM collaboration format. Master’s thesis,
Eindhoven University of Technology, Eindhoven (Oct 2017)

6. Mendes de Farias, T., Roxin, A.M., Nicolle, C.: IfcWoD, Semantically Adapting
IFC Model Relations into OWL Properties. In: Proc. of the 32nd CIB W78 Con-
ference 2015, 27th-29th October 2015, Eindhoven, The Netherlands. pp. 175–185
(2015)

7. Hammar, K.: Ontology design principles for model-driven applications. In: Ad-
vances in Pattern-Based Ontology Engineering, pp. 273–278. IOS Press (2021)

8. Pauwels, P., Krijnen, T., Terkaj, W., Beetz, J.: Enhancing the ifcOWL ontology
with an alternative representation for geometric data. AUTOMATION IN CON-
STRUCTION 80, 77–94 (2017). https://doi.org/10.1016/j.autcon.2017.03.001,
publisher: ELSEVIER

9. Pauwels, P., Roxin, A.: SimpleBIM : From full ifcOWL graphs to simplified building
graphs. In: Christodoulou, S., Scherer, R. (eds.) eWork and eBusiness in Architec-
ture, Engineering and Construction (ECPPM). pp. 11–18. CRC Press, Limassol,
Cyprus (2016)

10. Pauwels, P., Terkaj, W.: Express to owl for construction industry: Towards a rec-
ommendable and usable ifcowl ontology. Automation in Construction 63, 100–133
(2016)

11. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS! (OntOlogy
Pitfall Scanner!): An On-line Tool for Ontology Evaluation. International Journal
on Semantic Web and Information Systems (IJSWIS) 10(2), 7–34 (2014)

12. Poveda-Villalón, M., Vatant, B., del Carmen Suárez-Figueroa, M., Gómez-Pérez,
A.: Detecting good practices and pitfalls when publishing vocabularies on the web.
In: WOP (2013)

13. Rasmussen, M.H., Lefrançois, M., Schneider, G., Pauwels, P.: Bot: the building
topology ontology of the w3c linked building data group. Semantic Web (11 2020).
https://doi.org/10.3233/SW-200385

14. Schulz, O., Beetz, J.: Image-documentation of existing buildings using a server-
based bim collaboration format workflow. In: Abualdenien, J., Borrmann, A., Un-
gureanu, L.C., Hartmann, T. (eds.) EG-ICE 2021 Workshop on Intelligent Com-
puting in Engineering. pp. 108–107 (2021)

15. Werbrouck, J., Senthilvel, M., Beetz, J., Pauwels, P.: Querying heterogeneous
linked building datasets with context-expanded graphql queries. In: 7th Linked
Data in Architecture and Construction Workshop. vol. 2389, pp. 21–34 (2019)

16. Werbrouck, J., Taelman, R., Verborgh, R., Pauwels, P., Beetz, J., Mannens, E.:
Pattern-based access control in a decentralised collaboration environment. In: Pro-
ceedings of the 8th Linked Data in Architecture and Construction Workshop.
CEUR-WS. org (2020)

17. Zhang, C., Beetz, J., de Vries, B.: BimSPARQL: Domain-specific functional
SPARQL extensions for querying RDF building data. Semantic Web 9(6), 829–
855 (2018). https://doi.org/10.3233/SW-180297

Proceedings of the 9th Linked Data in Architecture and Construction Workshop - LDAC2021

153

