
HiSaRL: A Hierarchical Framework for Safe Reinforcement Learning

Zikang Xiong, Ishika Agarwal, Suresh Jagannathan
Computer Science Department, Purdue University,

West Lafayette, Indiana 47906
xiong84@cs.purdue.edu, agarwali@purdue.edu, suresh@cs.purdue.edu,

Abstract

We propose a two-level hierarchical framework for safe rein-
forcement learning in a complex environment. The high-level
part is an adaptive planner, which aims at learning and gen-
erating safe and efficient paths for tasks with imperfect map
information. The lower-level part contains a learning-based
controller and its corresponding neural Lyapunov function,
which characterizes the controller’s stability property. This
learned neural Lyapunov function serves two purposes. First,
it will be part of the high-level heuristic for our planning algo-
rithm. Second, it acts as a part of a runtime shield to guard the
safety of the whole system. We use a robot navigation exam-
ple to demonstrate that our framework can operate efficiently
and safely in complex environments, even under adversarial
attacks.

1 Introduction
Although deep reinforcement learning has achieved promis-
ing results in various domains, ensuring its safety still is a
concern. One line of work (Bastani, Pu, and Solar-Lezama
2018; Zhu et al. 2019; Chang, Roohi, and Gao 2020; Dai
et al. 2021) provides rigorous safety guarantees by using an-
alytic approaches. These proposals generally require knowl-
edge of a system’s underlying dynamics and constraints,
making it challenging to generalize their method to han-
dle complex dynamics. On the other hand, hierarchical rein-
forcement learning algorithms (Levy, Jr., and Saenko 2017;
Nachum et al. 2019; Kreidieh et al. 2019) are attractive
because they can support complex tasks without requiring
knowledge of an underlying environment structure. How-
ever, this lack of knowledge and the non-stationary MDP
problem make these algorithms be time-intensive without
providing any assurance of safety after training.

In contrast, our framework assumes, in the specific plan-
ning setting we consider, that our learning algorithm can as-
sess the map information of one environment. Such informa-
tion can be a priori modeled with a high-definition map or
collected during runtime using techniques such as SLAM.
With map information, a high-level planner can generate a
safe and efficient path. This planner frees our agents from
unsafe and inefficient exploration for generating a high-level

Copyright © 2022 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

navigation policy. However, a safe plan cannot guarantee
safety at runtime. Because the low-level controller is not re-
quired to follow the plan perfectly, agents can deviate from
a safe plan and produce unsafe behaviors, such as hitting
obstacles. To solve this problem, we apply a learned neural
Lyapunov function (Berkenkamp et al. 2016; Chang, Roohi,
and Gao 2020) as a runtime monitor and harness its stability
property to enforce that the agent stays in a region specified
by the function. We also incorporate the neural Lyapunov
function as part of our planner heuristic. This incorpora-
tion fuses our high-level planner and the low-level controller
seamlessly. Moreover, our learned neural Lyapunov func-
tion does not require any knowledge about system dynam-
ics. Hence, compared with (Bastani, Pu, and Solar-Lezama
2018; Zhu et al. 2019), our approach can extend to complex
unknown dynamics.

The backend algorithms of our planner are A∗ (Hart, Nils-
son, and Raphael 1972) and RRT∗ (Urmson and Simmons
2003). When we have accurate map information, both A∗
and RRT∗ work correctly. However, if map information is
inaccurate or outdated, our backend algorithm is unlikely to
work as expected. Hence, we further strengthen our planner
with a refinement policy. The refinement policy’s mission
is repairing and refining planning decisions during runtime.
Inspired by the elastic band algorithm (Quinlan and Khatib
1993), we propose a learning-based approach to generate the
refinement policy.

It is well-known that most deep learning algorithms suffer
from robustness issues. Adversarial attacks (Sun et al. 2018;
Mankowitz et al. 2020; Chen et al. 2019; Zhang et al. 2020)
can effectively test the robustness of a learning-enabled sys-
tem. Hence, we formulate an attack mechanism against our
framework to force an agent (i.e, robot) to deviate outside
the region specified by the Lyapunov function. Our results
show that unless we apply an unrealistically high attack fre-
quency and force significant perturbation, our framework is
robust and can keep the robot within a safe region.

The contributions of this work can be summarized as fol-
lows:

• We propose a hierarchical framework that reconciles
both efficiency and safety. Our framework can enhance
the safety of an agent in complex environments, where
the dynamics of the controlled robots are unknown, and
the environment information (i.e., map and obstacle in-

Figure 1: Sweeping robot in room example. We need to con-
trol the sweeping robot to reach the charger without hitting
cats and walls. The green lines are planed path.

formation) can be imperfect.
• We consider an approach to adapt the high-level planner

to deal with imperfect information.
• We demonstrate the robustness of our framework under

adversarial attack.

2 Motivation Example
2.1 Hierarchical Framework
The simple navigation task in Figure 1 requires navigat-
ing the sweeping robot from the initial position s0 to the
goal position gT (the charger). We solve this problem with a
two-level hierarchical framework. First, a high-level planner
finds a safe plan (i.e., no collision with walls and cats) from
the initial position s0 to the goal position gT . The plan is a
sequence of subgoals shown as the green line in Figure 1.
We denote it as P (s0, gT) = (g0, g1, . . . , gT), where gi is
a subgoal, g0 = s0. Then, A low-level controller πl(s|g)
is introduced to execute the plan. The low-level controller
is conditioned by a subgoal g, and it is trained to predict
the optimal action under state s to reach g. The low-level
controller is trained with TD3 (Fujimoto, Hoof, and Meger
2018) using a reward for achieving the given subgoal g with
the shortest path.

2.2 Runtime Safety
Although the high-level planner can provide a safe plan,
the low-level controller does not necessarily follow the plan
strictly. Especially when we train the low-level controller
with a model-free reinforcement learning algorithm, it is
quite common that the agent finds an unexpected approach
to achieve the goal. Once the unstable low-level controller
leads our robot to deviate from our safety plan, we cannot
guarantee the safety of our robot.

Stability of Low-level Controller We measure the stabil-
ity of a low-level controller with the deviation between the
actual trajectory and the plan. In Figure 2, the robot’s po-
sition at time t is post, the deviation dt is defined as the
Euclidean distance from post to the plan fragment between
2 subgoals.

Subgoal 𝑔! Subgoal 𝑔!"#

𝑑$

𝑝𝑜𝑠$

Figure 2: A demonstration on how the low-level controller
executes a plan. The star is a subgoal, and the green line is
the plan. The low-level controller may drift from the plan
and generate the dotted path. Although our plan avoids hit-
ting the cat, the low-level controller still cannot ensure safety
during the runtime.

Lyapunov Function The large deviation dt can cause un-
safe behaviors. Hence, we hope to constrain the robot around
our plan. The Lyapunov function is a positive-definite func-
tion for analyzing the stability of a system. A Lyapunov
function V (x) characterizes a control system’s Region Of
Attraction (ROA). The ROA binds the robot to stay around
the plan. We will introduce the technical details for the neu-
ral Lyapunov in Section 3.2.

Subgoal 𝑔!

Subgoal 𝑔!"#

Subgoal 𝑔!"$

Subgoal 𝑔!"%ROA

Captured

Figure 3: The way to apply the Lyapunov function. We built
a sequence of ROAs around the subgoals. One ROA is a re-
gion that the robot will stay in when the robot is heading to
the corresponding subgoal (i.e., the sink of the ROA). Each
ROA has intersections with its neighbors.

Runtime Shield With the plan and ROAs built by the Lya-
punov function, we can construct a runtime shield to guard
the safety of our robot. Unlike the previous method (Bas-
tani, Pu, and Solar-Lezama 2018; Zhu et al. 2019), we do
not require an additional safe policy for the recovering pur-
pose. Instead, we construct the runtime shield by switching
the robot’s heading toward different subgoals. Specifically,
we select two consecutive subgoals during the runtime. The
first one is the latest subgoals achieved; the second one is
the next subgoals. Then, we select the first subgoal’s ROA
to monitor our robot. While the robot stays in the selected
ROA, we set its subgoal to the second subgoal that we have
not achieved yet. When the robot goes beyond the selected
ROA, we check whether it is “captured” by the next ROA
(i.e., the robot enters the intersection part of two ROA, see
Figure 3). If the robot is captured, we will change the se-
lected ROA to the next ROA until the robot achieves the
second subgoal. Nevertheless, if the robot is not captured by

the next ROA and slides out of the selected ROA, we will set
its subgoal to the first subgoal to pull it back. The runtime
shield binds a robot to stay around its plan. We can consider
the ROA while planning and generating a plan with safety
boundaries. Consequently, the runtime safety of our system
is guarded. A more formal description is provided in Sec-
tion 3.3.

2.3 Planner
The backend algorithm of our planner is A∗ and RRT∗. Both
of them require a heuristic guiding the efficient search. The
most straightforward heuristic might be the Euclidean dis-
tance. However, this heuristic cannot guarantee that the gen-
erated path is safe for our system. For example, a planning
path may get close to the wall, which does not leave enough
space for the shield to switch the subgoal for avoidance.
Thus, we have to consider the Lyapunov function as part
of the heuristic. We further consider scenarios that we do
not have the perfect map data. In this case, we need to col-
lect the sensor data during the runtime and refine our plan.
We achieved the refinement by employing a high-level re-
inforcement learning policy. This refinement policy enables
our system to operate safely with imperfect map data.

(a) Robot sensors (b) Refinement in U-maze environment

𝑔!

𝑔!"#

𝑔!"#

Figure 4: (a) demonstrates the sensors on the robot. The Li-
DARs scans 16 positions around, which generates an obser-
vation vector with 16 distance elements. (b) is an example
for refinement policy. The dashed region does not exist in
real word, but the map used for planning marks it as obsta-
cle.

Heuristic A simple Euclidean distance heuristic is the L2

distance from current subgoal position to the final goal po-
sition, heuc(gt) = ||gT − gt||. This heuristic guides the
search toward the final goal. For the U-maze example in
Figure 4(b), the path generated by heuc(gt) will stick to the
wall in the lower part because this path is closer to the fi-
nal goal. However, such a path does not provide any space
as a safety distance. Thus, we also need to consider a Lya-
punov heuristic hlyap(gt). Given xt, the relative position
from the sink of ROA gt to the closest obstacle, we define
the hlyap(xt) to characterize the safety. If the closest ob-
stacle is located outside the ROA, hlyap(xt) returns 0. Oth-
erwise, hlyap(xt) returns −∞ to disable the search on this
path. We compose the Euclidean heuristic for efficiency and
the Lyapunov heuristic for safety, and guide the planning
search with heuc(gt) + hlyap(xt).

Refinement Policy Naturally, the map will change after
the data is collected. Hence, the plan made in the outdated
map may cause undesired results. Thus, we consider a re-
pair schema during runtime. The key idea is the elastic
band (Quinlan and Khatib 1993) which optimizes a planning
“string” with the internal and repulsive force. The internal
force, formally, can be described as

Fin = kin ·
(

gi−1 − gi
‖gi−1 − gi‖

+
gi+1 − gi
‖gi+1 − gi‖

)
where kin is the elasticity coefficient. The internal force for
subgoal gi is computed with the sum of the two direction
vectors toward its neighbors. In addition to the internal force,
a repulsive force is applied to prevent the ROA from inter-
secting with obstacles. When we have perfect map data, we
can compute the repulsive force easily. However, it can be
a problem when the map data is imperfect. In this case, we
only have the raw sensor data during runtime. To address
this problem, we learn a function kre(gi|hi) to predict the
repulsive coefficient, given the subgoal gi and a sequence
of sensor data history hi. Finally, the applied force ∆f for
subgoal gi is

∆F = (kin − kre(gi|hi)) ·
(

gi−1 − gi
‖gi−1 − gi‖

+
gi+1 − gi
‖gi+1 − gi‖

)
We can iteratively update the gi with g′i = gi +α∆F to find
the equilibrium where ∆F = 0. α here is a small constant.
An example is provided in Figure 4(b). The blue gi was up-
dated to the yellow position with iteratively applying ∆F .

2.4 Adversarial Attack

ı30 cm

50 cm

~ 40 cm

90 cm

Figure 5: Cat parade environment for robustness evaluation

To better evaluate the robustness of our framework, we
consider attacking the framework from two aspects. Firstly,
the neural network is criticized for being unrobust to the in-
put perturbations. Thus, we add adversarial noise to the low-
level controller and the neural Lyapunov function’s inputs in
the first type of attack. Secondly, the robustness of a system
is not only affected by the upstream perception data fed to
the neural network controller, but also the actual action exe-
cuted by downstream modules. That means even if the con-
troller outputs the right action, the noise in the downstream

models can still cause undesired results. Hence, we further
attack our framework with noise added to the action.

We evaluate the robustness of our system with this simple
but safety-sensitive cat parade environment in Figure 5. The
adversary needs to fool our neural Lyapunov function and
guide the robot to hit the cats. We assume that we can access
the parameters of the neural Lyapunov function and the low-
level controller. Because our framework aims to work on the
robot with complex dynamics, it is generally challenging to
model the robot’s dynamics required by a gradient-based at-
tack such as FGSM (Goodfellow, Shlens, and Szegedy 2014)
and PGD (Madry et al. 2017). Hence, similar to (Zhao et al.
2020), we learn approximated surrogate dynamics. We pro-
vide the technical details in Section 3.5.

3 Approach
Our work incorporated a Lyapunov function into a learning-
enabled control system. First, because it is challenging to
reason about the behavior of a RL-trained controller, we use
the Lyapunov function to characterize its stability property.
The Lyapunov function provides us with the power to bind a
robot to a specified region. Second, we assemble the speci-
fied ROA with a high-level planner. By considering the Lya-
punov function and the planning heuristic jointly, we can
generate a safety plan. When executing the plan, a safety
shield guards the controlled robot. Additionally, we enhance
our high-level planner with a learning-based high-level pol-
icy. This policy refines plans with the sensor data collected
during runtime, which gives our high-level planner the abil-
ity to work on imperfect map data. Finally, we evaluate the
robustness of our system against adversarial attacks.

3.1 Low-Level Controller
A low-level controller πl(s|g) is introduced to achieve a sub-
goal g. The controller is trained with TD3. We designed its
reward function as

r(st) = ||st−1 − gt−1|| − ||st − gt||
We compute the distance-to-goal at the previous time step
t− 1 and the current time step t. The reward function is the
difference between the two distances. TD3 maximizes this
reward w.r.t the Bellman function. As a result, the trained
agent is expected to get closer to the given goal in the fastest
direction.

3.2 Neural Lyapunov Function and ROA
We use the neural Lyapunov function to characterize the sta-
bility property. The Lyapunov function is a positive-definite
function satisfying three constraints.

V (xo) = 0 (1)
∀x 6= x0, V (x) > 0 (2)
V (xt+1)− V (xt) < 0 (3)

In Eq. (1), a Lyapunov function’s value is 0 on the origin. 1

Eq. (2) is the position property of a Lyapunov function.
1The Lyapunov function’s input x and state s are in the same

space. The only difference is their coordination origin. The origin

Eq. (3) is known as the lie derivative. When the lie derivative
is smaller than 0, V (xt) strictly decreases along with time.
We compute the Lyapunov function with a neural network
and train the neural network with a loss function based on
the Zubov-type equation (Grune and Wurth 2000). The loss
function is

Lθ(xt, xt+1) = |Vθ(x0)|
+
∣∣Vθ(xt)(Vθ(xt+1)− Vθ(xt))− ||xt||2

∣∣
The Monte-Carlo estimation of L is

Lθ =
1

N
(

∑
xt,xt+1∼πl

|Vθ(x0)|

+
∣∣Vθ(xt)(Vθ(xt+1)− Vθ(xt))− ||xt||2

∣∣)
To characterize the stability of πl, xt and xt+1 are sampled
with the πl. We can compute the gradient with L and op-
timize the network’s parameters θ. The optimal parameters
are θ∗ = arg minθ(Lθ).

The neural Lyapunov function specifies the ROA with a
constant CROA.

ROA = {g + x|V (x) < CROA}
Where g is the sink of a ROA.

3.3 Runtime Shield
The Lyapunov function specifies a single ROA that a robot
stays in. However, a runtime shield binds a robot to stay
around a given plan P (s0, gT) = (g0, g1, . . . , gT). To deal
with the sequence of subgoals, we check the ROAs of any
two consecutive subgoals. Given the lower-level controller
πl, previous system state si−1, current system state si, ROAt
with sink gt, and ROAt+1 with sink gt+1, the algorithm 1
shows the details of the runtime shield.

Algorithm 1: Sequential Shield

function SHIELD(πl, si−1, si, gt, gt+1,ROAt,ROAt+1)
if si ∈ ROAt ∨ si ∈ ROAt+1 then

return πl(si|gt+1)
else if (si−1) ∈ ROAt ∧ si /∈ ROAt+1 then

return πl(si|gt) . Pull back to ROAt
else

return πl(si|gt+1)

When si ∈ ROAt ∨ si ∈ ROAt+1, the πi is parameter-
ized with the next subgoal gt+1, and the robot moves toward
gt+1. When (si−1) ∈ ROAt∧si /∈ ROAt+1, the robot moves
from the ROAt to a region other than ROAt+1. We need to
pull the robot back to ROAt, thus the πi is parameterized by
gt. The last condition is (si−1) ∈ ROAt+1 ∧ si /∈ ROAt+1,
although this is not supposed to happen. If it happens due to
any aspect of imprecision, we return action πi(si|gt+1).

of s is determined by the system. The origin of x, however, is a
selected subgoal during the runtime. x = s− g.

3.4 Planner
Heuristic Our planning heuristic has two parts. The heuc
for efficiency and the hlyap for safety. heuc is the Euclidean
distance to the final goal.

heuc(gt) = ||gT − gt||
This heuristic is designed to search for the shortest path, but
does not consider safety. Hence, it can generate paths that
are close to obstacles, which may cause undesired behaviors
during the runtime. To address this problem, we introduce a
Lyapunov heuristic.

hlyap(xt) =

{
0 V (xt) > CROA,

−∞ V (xt) ≤ CROA
Suppose the closest obstacle position to gt is ot, xt = ot −
gt; CROA is the constant specified the ROA. This heuristic
ensures that the ROAs do not intersect with obstacles.

Refinement Policy We provided an example for the re-
finement policy in Section 2.3. Force ∆F was applied to
update the subgoal gi of a path.

∆F = (kin − kre(gi|hi)) ·
(

gi−1 − gi
‖gi−1 − gi‖

+
gi+1 − gi
‖gi+1 − gi‖

)
The updating is iterative,

g′i = gi + α ·∆F
The new subgoal g′i should converge to a fixed point where
kin = kre(g

′
i|hi). The kre(g

′
i|hi) was learned using an

encoder-decoder structure. First, we train an auto-encoder
ENC to encode the history. Then, we concatenate the em-
bedding ENC(hi) with subgoal gi, and train an MLP to
predict the kre. The training data was sampled with simula-
tions in different scenarios.

3.5 Robustness to Adversarial Attack
Surrogate Dynamics The surrogate dynamics is a func-
tion

fdyn(st, at|ht) = st+1

where the st is the state and at is the action. ht is the his-
tory states of the agent. If a system is fully-observable, we
can ignore the ht. The fdyn computes the next state of the
system.

Attack Controller We define an objective function fobj
that measures the distance to the planning path. Maximiz-
ing the fobj(st+1) guides the robot to deviate from the plan.
We considered a simple FGSM attack. When attacking the
input state of the low-level controller, we can compute the
attacked state ŝt with

ŝt = st + ε · sign(
∂fobj (fdyn(st, at|ht))

∂st
)

On the other hand, if we want to attack the action, the at-
tacked action ât can be computed with

ât = at + ε · sign(
∂fobj (fdyn(st, at|ht))

∂at
)

where ε is the attack noise size. Because we can compute
the gradient of st and at, we can also apply PGD or other
attack techniques similarly.

Attack Neural Lyapunov Function We want to fool the
neural Lyapunov function with an attacked input x̂t. In this
case, we expect a small V (x̂t), where V is the Lyapunov
function. The attacked input x̂t can be computed with gradi-
ent dV (xt)

dxt
.

x̂t = xt + ε · sign(
dV (xt)

dxt
)

Note that we optimize the attacked input x̂t of the Lyapunov
function and the attacked state ŝt of the low-level controller
separately. That makes the attack more potent.

4 Primary Evaluation
In this section, we report the primary evaluation results on
our motivation examples introduced in Section 2.

4.1 Low-level controller
We train the low-level controller πl(s|g) with TD3. The
training results are provided in Figure 6. Each training it-
eration indicates updates on the low-level controller. The
updates are executed periodically in every 2000 simulation
steps. All the reward curves in Figure 6 converge to a reward
around -2.5.

Figure 6: Training reward of πl(s|g). This figure includes
results of 5 runs with different random seeds.

4.2 Neural Lyapunov Function
We train the neural Lyapunov function with a dataset con-
taining 106 transitions and test the neural Lyapunov with a
test dataset with 2 × 105 transitions. Both the training and
test dataset are sampled with the same low-level controller.
During the test time, we check the properties in Eq. (1),
Eq. (2) and Eq. (3) on the test dataset with five neural Lya-
punov functions trained with different splits on the training
and testing dataset.

The statistics are in Table 1. The minimum percentage of
property violations is 0%, and the maximum is 0.3%. Thus,
out of around 10,000 simulations, only 30 simulations are
violated.

Stat. min max mean std
Vio. 0 0.00294 0.000656 0.00115

Table 1: Neural Lyapunov function training results.

4.3 Refinement Policy
We generated the sensor data and computed the accurate re-
pulsive constant for training repulsive prediction network
kre(gi|hi) in different scenarios (i.e., the obstacles appear
in different positions). 10, 000 trajectories are generated,
which includes 9, 500 training trajectories and 500 test tra-
jectories. Each trajectory contains 5 seconds of sensor data.
However, our repulsive prediction network only uses latest
1 seconds sensor data as the history hi in kre(gi|hi). The
range of the kre is [−1, 1], the prediction has error around
0.01. In our toy example provided in Figure 4, we measure
the average distance between plan and center obstacle. We
hope this distance be small while the ROA should not collide
with the obstacle. Before applying our refinement policy, the
average distance is 51.32. After 100 runs and refinements,
our refinement policy changed the average distance to 45.27
and avoided the collision between obstacles and ROAs.

4.4 Robustness to Adversarial Attack
We attacked both the state and action with different attack
frequency and noise size ε. The Figure 7 and 8 provide the
results of attacks on the state and action respectively. Each
column is generated with 100 experiments with attacks at
random times. The attack frequency ranges from 0.2 to 1.0,
indicating the percentage of attacked transitions. The ∗ in
the legend means that we also attack the Lyapunov function
in these experiments and the unit of ε is cm. The y−axis is
the max deviation to our plan. When the dmax > 30 cm, the
robot will hit cats in the example provided in Figure 5.

0.2 0.4 0.6 0.8 1.0
attack frequency

0

5

10

15

20

25

30

d m
ax

attack state results

0.0
0.0*
1.0
1.0*
2.0
2.0*
3.0
3.0*
4.0
4.0*

Figure 7: Attack state results

In Figure 7, when we do not attack the Lyapunov func-
tion, the dmax is always bounded below 15 cm. Hence, the
protection provided by the shield works as expected. Never-
theless, when the Lyapunov function is under attack, we no-
tice that all the dmax is significantly larger, which means the
Lyapunov function and shield can be affected by the attack.
On the other hand, the dmax grows as the attack frequency
and ε increases. The first safety violation happens when the
attack frequency is 60%, and the noise size is 4.0 cm, while
we also attack the Lyapunov function.

0.2 0.4 0.6 0.8 1.0
attack frequency

0

5

10

15

20

25

30

d m
ax

attack action results

0.0
0.0*
1.0
1.0*
2.0
2.0*
3.0
3.0*
4.0
4.0*

Figure 8: Attack action results

Figure 8 provides the attack action results. Our robot’s
action range is [−5, 5]. The action represents the displace-
ment every 0.1 seconds. We set the attack noise from 0 to 4.
The dmax is smaller when we do not attack the Lyapunov
function. Overall, the dmax increases as the ε and attack
frequency raises. We also observe that sometimes larger ε
results in smaller dmax. This is because a stronger attack
sometimes can cause intensive calling on the shield’s pull-
back action. For example, when the attack frequency is 1.0
when the ε = 1.0, the dmax is smaller compared with when
ε = 0.0. Finally, we notice that the first safety violation hap-
pens when the attack frequency is 60% and ε = 4.0.

5 Future work

One issue we want to explore further is the scalability of
our framework. There is a sequence of work has shown
the scalability (Gaby, Zhang, and Ye 2021; Dawson et al.
2021) of the neural Lyapunov function and deep reinforce-
ment learning (Pérez-Dattari et al. 2019; Fujimoto, Hoof,
and Meger 2018). Hence, it is natural to demonstrate the
scalability of our framework better on more complicated
benchmarks (Achiam and Amodei 2019; Todorov, Erez, and
Tassa 2012). On the other hand, the neural Lyapunov func-
tion we learned does not provide a verifiable guarantee (Dai
et al. 2021; Chang, Roohi, and Gao 2020; Zhu et al. 2019;
Bastani, Pu, and Solar-Lezama 2018) because we do not as-
sume the access of the dynamics of a system. However, in
the case that the dynamics can be easily modeled, extend-
ing our work with the verifiable tools can provide a strong
guarantee on the system safety. This is a direction we are
working on. Regarding the system robustness, we only eval-
uated a limited number of adversarial attacks. It is interest-
ing to see how our framework performs under various attack
techniques (Weng et al. 2020; Mankowitz et al. 2020; Zhang
et al. 2020) while also consider the attack on the high-level
planner (Xiang et al. 2018). Moreover, the current frame-
work only considers a single agent and static obstacles. A
challenging but fruitful direction is to extend our framework
to multiagent planning and control (Guestrin, Koller, and
Parr 2001; Nissim, Brafman, and Domshlak 2010). Lastly,
our high-level planner is closely related to the safe neural
motion planning (Huang et al. 2021; Qureshi et al. 2019).
We propose to investigate further on these works and better
refine our high-level planner.

References
Achiam, J.; and Amodei, D. 2019. Benchmarking Safe Ex-
ploration in Deep Reinforcement Learning. In arxiv.
Bastani, O.; Pu, Y.; and Solar-Lezama, A. 2018. Verifi-
able Reinforcement Learning via Policy Extraction. CoRR,
abs/1805.08328.
Berkenkamp, F.; Moriconi, R.; Schoellig, A. P.; and Krause,
A. 2016. Safe Learning of Regions of Attraction for Un-
certain, Nonlinear Systems with Gaussian Processes. arXiv
e-prints, arXiv:1603.04915.
Chang, Y.-C.; Roohi, N.; and Gao, S. 2020. Neural lyapunov
control. arXiv preprint arXiv:2005.00611.
Chen, T.; Liu, J.; Xiang, Y.; Niu, W.; Tong, E.; and Han,
Z. 2019. Adversarial attack and defense in reinforcement
learning-from AI security view. Cybersecurity, 2(1): 1–22.
Dai, H.; Landry, B.; Yang, L.; Pavone, M.; and Tedrake,
R. 2021. Lyapunov-stable neural-network control. arXiv
preprint arXiv:2109.14152.
Dawson, C.; Qin, Z.; Gao, S.; and Fan, C. 2021. Safe Non-
linear Control Using Robust Neural Lyapunov-Barrier Func-
tions. arXiv preprint arXiv:2109.06697.
Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In In-
ternational Conference on Machine Learning, 1587–1596.
PMLR.
Gaby, N.; Zhang, F.; and Ye, X. 2021. Lyapunov-Net: A
Deep Neural Network Architecture for Lyapunov Function
Approximation. arXiv e-prints, arXiv:2109.13359.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and Harnessing Adversarial Examples. arXiv e-prints,
arXiv:1412.6572.
Grune, L.; and Wurth, F. 2000. Computing control Lya-
punov functions via a Zubov type algorithm. In Proceedings
of the 39th IEEE Conference on Decision and Control (Cat.
No.00CH37187), volume 3, 2129–2134 vol.3.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent Plan-
ning with Factored MDPs. In NIPS, volume 1, 1523–1530.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1972. Correc-
tion to ”A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”. SIGART Bull., 28–29.
Huang, X.; Feng, M.; Jasour, A.; Rosman, G.; and Williams,
B. 2021. Risk Conditioned Neural Motion Planning. arXiv
e-prints, arXiv:2108.01851.
Kreidieh, A. R.; Berseth, G.; Trabucco, B.; Parajuli, S.;
Levine, S.; and Bayen, A. M. 2019. Inter-Level Coopera-
tion in Hierarchical Reinforcement Learning. arXiv preprint
arXiv:1912.02368.
Levy, A.; Jr., R. P.; and Saenko, K. 2017. Hierarchical Actor-
Critic. CoRR, abs/1712.00948.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Mankowitz, D. J.; Levine, N.; Jeong, R.; Abdolmaleki, A.;
Springenberg, J. T.; Shi, Y.; Kay, J.; Hester, T.; Mann, T.;
and Riedmiller, M. 2020. Robust Reinforcement Learning

for Continuous Control with Model Misspecification. In In-
ternational Conference on Learning Representations.
Nachum, O.; Gu, S.; Lee, H.; and Levine, S. 2019. Near-
Optimal Representation Learning for Hierarchical Rein-
forcement Learning. In International Conference on Learn-
ing Representations.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm.
In Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems: volume 1-Volume
1, 1323–1330.
Pérez-Dattari, R.; Celemin, C.; Ruiz-del-Solar, J.; and
Kober, J. 2019. Continuous Control for High-Dimensional
State Spaces: An Interactive Learning Approach. arXiv e-
prints, arXiv:1908.05256.
Quinlan, S.; and Khatib, O. 1993. Elastic bands: connecting
path planning and control. [1993] Proceedings IEEE Inter-
national Conference on Robotics and Automation, 802–807
vol.2.
Qureshi, A. H.; Simeonov, A.; Bency, M. J.; and Yip, M. C.
2019. Motion planning networks. In 2019 International
Conference on Robotics and Automation (ICRA), 2118–
2124. IEEE.
Sun, Y.; Huang, X.; Kroening, D.; Sharp, J.; Hill, M.; and
Ashmore, R. 2018. Testing deep neural networks. arXiv
preprint arXiv:1803.04792.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
5026–5033.
Urmson, C.; and Simmons, R. 2003. Approaches for heuris-
tically biasing RRT growth. In Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS 2003) (Cat. No.03CH37453), volume 2, 1178–1183
vol.2.
Weng, T.-W.; Dvijotham*, K. D.; Uesato*, J.; Xiao*, K.;
Gowal*, S.; Stanforth*, R.; and Kohli, P. 2020. Toward Eval-
uating Robustness of Deep Reinforcement Learning with
Continuous Control. In International Conference on Learn-
ing Representations.
Xiang, Y.; Niu, W.; Liu, J.; Chen, T.; and Han, Z. 2018.
A PCA-Based Model to Predict Adversarial Examples on
Q-Learning of Path Finding. In 2018 IEEE Third Interna-
tional Conference on Data Science in Cyberspace (DSC),
773–780.
Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Boning, D. S.; and
Hsieh, C.-J. 2020. Robust deep reinforcement learning
against adversarial perturbations on observations. ICLR.
Zhao, Y.; Shumailov, I.; Cui, H.; Gao, X.; Mullins, R.; and
Anderson, R. 2020. Blackbox attacks on reinforcement
learning agents using approximated temporal information.
In 2020 50th Annual IEEE/IFIP (DSN-W), 16–24. IEEE.
Zhu, H.; Xiong, Z.; Magill, S.; and Jagannathan, S. 2019.
An inductive synthesis framework for verifiable reinforce-
ment learning. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 686–701.

