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Abstract

Applying standard machine learning approaches for classi-
fication can produce unequal results across different demo-
graphic groups. When then used in real-world settings, these
inequities can have negative societal impacts. This has mo-
tivated the development of various approaches to fair clas-
sification with machine learning models in recent years. In
this paper, we consider the problem of modifying the pre-
dictions of a blackbox machine learning classifier in order
to achieve fairness in a multiclass setting. To accomplish this,
we extend the ’post-processing’ approach in Hardt, Price, and
Srebro (2016), which focuses on fairness for binary classifi-
cation, to the setting of fair multiclass classification. We ex-
plore when our approach produces both fair and accurate pre-
dictions through systematic synthetic experiments and also
evaluate discrimination-fairness tradeoffs on several publicly
available real-world application datasets. We find that overall,
our approach produces minor drops in accuracy and enforces
fairness when the number of individuals in the dataset is high
relative to the number of classes and protected groups.

Introduction
As machine learning begins moving into sensitive predic-
tions tasks, it becomes critical to ensure the fair performance
of prediction models. Naively trained machine learning sys-
tems can replicate biases present in their training data, re-
sulting in unfair outcomes that can accentuate societal in-
equities. For example, machine learning systems have been
discovered to be unfair in predicting time to criminal re-
cidivism (Dieterich, Mendoza, and Brennan 2016), ranking
applications to nursing school (Romano, Bates, and Candès
2020), and recognizing faces (Buolamwini and Gebru 2018).
Most prior work in this area has focused on ensuring fairness
for binary outcomes. However, there are many important
real-world applications with multiclass outcomes instead.
For example, a self-driving car will need to be able to dis-
tinguish clearly between humans, non-human animals (such
as dogs), and non-sentient objects while nonetheless main-
taining fair performance for both wheelchair users and non-
wheelchair users. Most work has also been done with the
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assumption that model parameters are accessible to the algo-
rithm, but there is increasing availability of powerful black-
box models whose internal parameters can be either inacces-
sible or too costly to train. In this paper, we address the case
where outcomes are multiclass and the user has received a
pre-trained blackbox model. The main contributions of our
work are as follows:

• We show how to extend Hardt, Price, and Srebro (2016)
to multiclass outcomes.

• We demonstrate in what data regimes multiclass postpro-
cessing is likely to produce fair, useful, and accurate re-
sults via a set of rigorous synthetic experiments.

• We demonstrate the results of our post-processing algo-
rithm on publicly available real-world applications.

Code and Dataset Availability All of the code used to
produce our experimental results as well as the synthetic and
real-world datasets can be found on our github page1.

Technical Approach
As in Hardt, Price, and Srebro (2016), we consider the prob-
lem of enforcing fairness on a blackbox classifier without
changing its internal parameters. This means that our ap-
proach only has access to the predicted labels ŷi from the
blackbox classifier, the true labels yi, and the protected at-
tributes ai for i ∈ {1, ..., N} where N is the number of
individuals. The goal of our approach is to produce a new
set of updated and fair ’adjusted’ predictions yadj

i that sat-
isfy a desired fairness criterion. For each of ŷi, yi, and ai,
we define corresponding random variables Ŷ , Y , A. Then,
following Hardt, Price, and Srebro (2016) we define the ran-
dom variable for the adjusted predictions Y adj to be a ran-
domized function of Ŷ and A. We extend the approach in
Hardt, Price, and Srebro (2016) by allowing multiclass out-
comes, such that the sample spaces of Ŷ , Y , and Y adj are
a collection of discrete and mutually exclusive outcomes
C = {1, 2, ...., |C|}. We in principle allow the sample space
of the protected group A, A , to contain any number of dis-
crete values as well: A = {1, 2, ..., |A |}.

1https://github.com/scotthlee/fairness/tree/aaai



Linear Program Our approach involves the construc-
tion of a linear program over the conditional probabilities
of the adjusted predictor Pr(Y adj = yadj|Ŷ = ŷ, A =
a) such that a desired fairness criterion is satisfied by
those probabilities. In order to construct the linear program,
both the loss and fairness criteria must be linear in terms
of the protected attribute conditional probability matrices
Pa = Pr(Y adj|Ŷ , A = a) which have dimensions |C|×|C|.

Types of Objective Functions We consider objective
functions which are linear in the group conditional adjusted
probabilities Pa. More specifically we consider minimizing
expected losses of the form:

E[l(yadj, y)] =∑
a∈A

|C|∑
i=1

∑
j 6=i

Pr(Y adj = i, Y = j, A = a)l(i, j, a)

=
∑
a∈A

|C|∑
i=1

∑
j 6=i

W a
ij Pr(A = a, Y = j) l(i, j, a)

where W a
ij = Pr(Y adj = i|Y = j, A = a) are the pro-

tected attribute conditional confusion matrices. Under the
independence assumption Y adj ⊥ Y |A, Ŷ , we can write
Wa = PaZa where Za = Pr(Ŷ |Y,A = a), the class
conditional confusion matrices of the original blackbox clas-
sifier’s predictions. The matrices Za are estimated empiri-
cally from the training data (yi, and ai) and blackbox pre-
dictions of the model (ŷi). Therefore, this formulation of the
objective function remains linear in the protected attribute
conditional probability matrices, Pa, as is necessary for the
linear program. This definition is similar to Hardt, Price,
and Srebro (2016) except we let the loss l(i, j, a) also be a
function of protected attributes instead of just the true and
adjusted labels, which allows controlling the strictness of
penalties for errors made for specific protected groups and
classes. The most straightforward version of this loss is let-
ting l(yadj, y, a) be the zero-one loss (ignoring the protected
attributes) which results in minimizing the sum of the joint
probabilities of mismatch between Y adj and Y . We refer to
this approach as unweighted loss. Another approach is to set
l(yadj, y, a) equal to one over the joint probabilities of the
true label and protected attribute 1/Pr(Y = y,A = a) (es-
timated empirically), which we refer to as weighted loss. In-
tuitively, this option reweights the loss to give rarer protected
groups and label combinations equal importance to the opti-
mization which could improve fairness when very low mem-
bership minority protected groups exist in the dataset. This
option for the objective function can be equivalently mini-
mized by maximizing the diagonals (true detection rates) of
the group conditional confusion matrices Wa.

Types of Fairness We consider several versions of multi-
class fairness criteria, all of which can be written as a collec-
tion of |A |−1 pairwise equalities setting a fairness criterion
of interest equal across all groups. Moreover, each of the
terms in these equalities can be written as some |C| × |C|
matrix Ma times the adjusted probability matrix Pa, and

therefore are linear in the adjusted probabilities as needed
for the linear program (see appendix A for the exact form
Ma takes for the different fairness criteria).

The first definition involves requiring strictly equal per-
formance across protected groups.
Definition 1 (Term-by-Term Multiclass Equality of Odds).
A multiclass predictor satisfies term-by-term equality of
odds if the protected group conditional confusion matrices
Wa are equal across all protected groups:

W1 = W2 = · · · = W|A | (1)

where Wa = Pr(Y adj|Y,A = a).
This is a straightforward extension to the multiclass case

of equality of odds defined in Hardt, Price, and Srebro
(2016). Notice that since this definition requires equality of
each off-diagonal term of Wa across all groups, it enforces
that not only are errors made at the same overall rate across
groups, but also that the rate of specific types of errors are
equal. For some practical applications, term-by-term equal-
ity of odds is important, such as predicting criminal recidi-
vism times binned into three years, two years, one year, and
”never recommits”. In this case, making the error of predict-
ing 3 years until recidivism when the actual time is 1 year is
much worse than predicting 3 years when the actual time is
2. Therefore, it is critical for fairness in this application that
the rates of specific types of errors are strictly equal across
groups.

Instead of requiring strict equality of off-diagonal terms
of Wa we can instead enforce equality across the classwise
overall false detection rates FDR, which leads to the next
fairness definition:
Definition 2 (Classwise Multiclass Equality of Odds). A
multiclass predictor satisfies classwise multiclass equality
of odds if the diagonals of the protected group conditional
confusion matrices and the protected attribute conditional
vector of false detection rates are equal across all protected
groups:

diag(W1) = diag(W2) = · · · = diag(W|A |)
FDR1 = FDR2 = · · · = FDR|A | (2)

where FDRa = Pr(Y adj|Y adj 6= Y,A = a).
This version of fairness can ’trade’ better performance for

a specific protected group on one off diagonal term in Wa

(i.e. lower error probability for that term) for poorer perfor-
mance of the same group on a different off diagonal term
(i.e. higher error probability for another term). Individually
each class label has it’s true detection rate, and overall false
detection rate set equal across groups. Thus, this type of fair-
ness is ’classwise’.

For some problems it is sufficient to maintain fair true de-
tection rates across classes and allow false detection rates to
differ across groups. This is even less restrictive than Defi-
nition 2. This may be desirable when, for example, deciding
whether an accepted college application should be accepted
into a honors program, accepted with scholarship, or regu-
larly accepted. Since all the outcomes are positive, unfair-
ness across false detection rates may not be critical, as long



as the true detection rates are fair across groups. This moti-
vates the following fairness criteria:
Definition 3 (Multiclass Equality of Opportunity). A multi-
class predictor satisfies equality of opportunity if the diag-
onals of the protected group conditional confusion matrices
Wa are equal across all groups:

diag(W1) = diag(W2) = · · · = diag(W|A |) (3)

where Wa = Pr(Y adj|Y,A = a).

A common and even more relaxed version of fairness
called demographic parity only requires the rate of class pre-
dictions across different groups to be equal (Calders, Kami-
ran, and Pechenizkiy 2009).
Definition 4 (Multiclass Demographic Parity). A multiclass
predictor satisfies demographic parity if the protected group
conditional class probabilities are equal across groups:

Pr(Y adj|A = 1) =
Pr(Y adj|A = 2) = · · · = Pr(Y adj|A = |A |) (4)

Enforcing this version of fairness for certain datasets may
produce effectively unfair outcomes (Dwork et al. 2012).
However, in synthetically produced data, this definition has
been shown to reduce the reputation of disadvantaged pro-
tected groups when repeatedly applied over a long period of
time to sensitive decision-making tasks such as hiring (Hu
and Chen 2018).

Note that while the learned adjusted probabilities after
running the linear program, Pa are guaranteed to be fair, tak-
ing the max value over the learned probabilities when pre-
dicting on an individual level will not maintain fairness. In
fact, it can occur that taking the max over the adjusted proba-
bilities will just result in identical predictions as those made
by the original blackbox classifier. Instead, when predict-
ing the class of an individual, the corresponding learned ad-
justed probabilities must be sampled from in order to main-
tain the fairness guarantee.

Related Work
Most prior work done on post-processing based fairness ap-
proaches focus on binary task prediction. Wei, Ramamurthy,
and Calmon (2019) create a post-processing algorithm that
modifies the raw scores of a binary classifier (instead of
thresholded hard predictions) in order to achieve desired
fairness constraints expressed as linear combinations of the
per-group expected raw scores. Ye and Xie (2020) develop
a general in-processing fairness framework which alternates
between a process of selecting a subset of the training data
and fitting a classifier to that data.

Several adversarial approaches to multiclass fairness have
been investigated recently; although these are not blackbox
post-processing algorithms. Zhang, Lemoine, and Mitchell
(2018) first present the idea of adversarial debiasing, while
Romano, Bates, and Candès (2020) present a multiclass ap-
proach for in-process training based on adversarial learning,
with the discriminator distinguishing between the distribu-
tion of the model’s current predictions, the true label, and
artificial protected attributes resampled to be fair, and the

true distribution of the predictions, true labels, and true pro-
tected attributes.

Multiclass blackbox post-processing techniques are less
studied; although there have been a few new approaches re-
cently. Notably, Denis et al. (2021) derive an optimally fair
classifier from a pre-trained model and show several nice
theoretical guarantees, including the asymptotic fairness of
their proposed plug-in estimator. We see 3 key differences
between their approach and the extension to Hardt, Price,
and Srebro (2016) that we propose: they only consider bi-
nary protected attributes (|A | = 2), while we allow cate-
gorical protected attributes (|A | > 2) and can take on any
number of unique values, at least theoretically; their method
requires fitting a new estimator to the test data, whereas ours
only requires computing probabilities and solving a linear
program, which is relatively efficient; and, perhaps most im-
portantly, their approach is limited to the demographic par-
ity fairness constraint, whereas our approach applies to any
constraint that is linear in Pa.

In broader terms, Hossain, Mladenovic, and Shah (2020)
unify many of the published methods for learning fair clas-
sifiers by showing that equalized odds, equal opportunity,
and other common measures of fairness in the binary set-
ting are subsumed by their proposed generalizations of the
economic notions of envy-freeness and equitability. They
show that these generalizations of fairness apply to the mul-
ticlass setting, but post-processing techniques are incapable
of achieving them. We show here that this notion is not en-
tirely correct, at least in a narrow sense, and that fairness
can be achieved with post-processing techniques in the mul-
ticlass setting, so long as the joint distribution P (Y, Ŷ , A) is
either fully known or can be reasonably approximated by a
large-enough sample of training data.

Synthetic Data Experiments
Synthetic Data To explore the effect of different data
regimes and optimization goals on post-adjustment discrimi-
nation, we conducted thorough (though by no means exhaus-
tive) synthetic experiments for a 3-class outcome. We con-
structed synthetic datasets with N = 1, 000 observations for
each unique combination of the following data-generating
hyperparameters:

• The number of unique values for the protected attribute,
|A |. We explored setting |A | = 2 or |A | = 3 (see re-
sults with |A | = 2 in our github repository)

• The amount of class imbalance for the labels Y . For sim-
plicity, we did not allow this to vary across protected
groups.

• Group balance, or the number and relative size of minor-
ity groups compared to majority groups. This varied ac-
cording to the number of groups but was generally either
none, weak, or strong.

• Predictive bias as the difference in mean true detection
rate, TDR, between the groups. We vary this from mild
predictive bias (10 percent difference) to severe bias with
the minority group TDR being near chance. The predic-
tive bias is set to always favor the majority group.



Experiments with |A | = 3

Hyperparameter Level Change in Acc (CI) Change in TDR (CI)

Intercept – -0.13 (-0.17, -0.09) -0.18 (-0.21, -0.15)

Loss Unweighted – –
Weighted -0.11 (-0.13, -0.09) 0.12 (0.10, 0.13)

Goal Equalized Odds – –
Demographic Parity 0.24 (0.22, 0.27) 0.21 (0.18, 0.23)
Equal Opportunity 0.08 (0.05, 0.11) 0.03 (0.01, 0.05)

Term-by-Term 0.08 (0.05, 0.11) 0.02 (-0.01, 0.04)

Group Balance No Minority – –
One Slight Minority -0.03 (-0.06, 0.00) -0.02 (-0.04, 0.01)
One Strong Minority -0.04 (-0.07, -0.00) -0.01 (-0.03, 0.02)
Two Slight Minorities -0.05 (-0.08, -0.02) -0.02 (-0.04, 0.01)
Two Strong Minorities -0.07 (-0.11, -0.04) -0.01 (-0.04, 0.01)

Class Balance Balanced – –
One Rare 0.02 (-0.00, 0.04) -0.04 (-0.06, -0.02)
Two Rare 0.07 (0.04, 0.09) -0.18 (-0.20, -0.17)

Pred Bias Low One – –
Low Two 0.00 (-0.03, 0.04) -0.00 (-0.03, 0.02)

Medium One -0.06 (-0.09, -0.02) -0.06 (-0.08, -0.03)
Medium Two -0.04 (-0.07, -0.00) -0.06 (-0.08, -0.03)

High One -0.18 (-0.22, -0.15) -0.16 (-0.19, -0.14)
High Two -0.15 (-0.19, -0.12) -0.13 (-0.16, -0.11)

Table 1: Predicted change and 95% confidence intervals for accuracy and mean TDR as a function of the experimental hyper-
parameters in our synthetic datasets with three protected attributes. All datasets had a 3-class outcome.

This process yielded 117 datasets. For each one, we ran
the linear program to adjust the (synthetic) biased blackbox
predictions 8 times, once for each unique combination of
the objective function and type of fairness, yielding a total
of 936 adjustments. After each adjustment, we recorded two
broad measures of the fair predictor’s performance:
• Triviality, or whether any of the columns in Wa =
Pr(Y adj|Y,A = a) contained all zeroes (i.e., whether
any levels of the outcome were no longer predicted).

• Discrimination, or the percent change in loss for the ad-
justed predictor relative to that of the original predic-
tor. For this measure, we examined two specific metrics:
global accuracy and the mean of the group-wise TDRs.
These are equivalent to 1 minus the post-adjustment loss
under the two versions of the objective functions we
present above.

To quantify the average effect of each hyperparameter
on discrimination, we fit two multivariable linear regression
models to the resulting dataset, one for each discrimination
metric. Before fitting the models, we converted the categor-
ical hyperparameters (so all but loss) to one-hot variables,
and then we set a reference level for each, removing the cor-
responding column from the design matrix. We then fit the
models separately using ordinary least squares (OLS) and
calculated confidence intervals (CIs) for the resulting coeffi-
cients.

Results Table 1 shows coefficients and 95% confidence in-
tervals for the regression models with |A | = 3. The results
highlight several important points:

• Predictive bias and class imbalance are the two main
drivers of decreases in post-adjustment discrimination,
for both accuracy, and TDR.

• High group imbalance for the protected attributes lowers
post-adjustment discrimination, but only from the per-
spective of global accuracy–even with 2 strong minori-
ties (3-group scenario), mean TDR only drops by 1.1%.

• Relative to the weighted objective, the unweighted objec-
tive leads to higher scores for global accuracy but lower
scores for mean TDR. This is perhaps unsurprising, but
it is worth noting nonetheless.

• Despite finding better accuracy solutions, we also found
that the unweighted objective leads to trivial solutions
far more frequently (30% of the time it was used) than
the weighted version of the loss (0.2% of the time it was
used). This trend will likely worsen with increasing di-
mension of either the number of classes or the number of
protected groups.

• Fairness is generally harder to achieve with 3 protected
groups than with 2, since the intercepts are lower for both
accuracy and mean TDR. We believe this to be a general
consequence of forcing fairness across more groups and
expect this trend to continue as the number of groups in-
creases.

Experiments with Real-World Data
Dataset Descriptions To further examine the performance
characteristics of our algorithm, we ran it on several real-
world datasets described below.



Figure 1: Fairness-discrimination plots for our postprocessing algorithm on our 4 real-world datasets, created by systematically
relaxing the fairness equality constraints of the linear program. The plots show Brier score as a function of the maximum
average difference between groups of the corresponding fairness criterion. Performance of the original, unadjusted predictor is
marked by an X.

1. Drug Usage (Fehrman et al. 2017). This dataset has in-
herently multiclass outcomes, with the target being a 7-
level categorical variable indicating recentness of use for
a variety of drugs. We focus on predicting cannabis us-
age, where we collapsed the 7-level usage indicator into
3 broader categories: never used, used but not in the past
year, and used in the past year. Predictors included demo-
graphic variables like age, gender, and level of education,
as well as a variety of measures of personality traits hy-
pothesized to affect usage habits.

2. Obesity (Palechor and de la Hoz Manotas 2019). This
dataset has inherently multiclass outcomes, with the tar-
get being a 7-level categorical variable indicating weight
category; the protected attribute is gender (Male/Fe-
male). Because some of the observations are synthetic
in order to protect privacy, not all of the gender/weight
categories had sufficient numbers for modeling, and so
we omitted observations from the 2 most extreme weight
categories, Obesity Type-II and Obesity Type-III, leaving
a 5-level target for prediction. Predictors included age,
gender, family medical history, and several measures of
physical activity and behavioral health.

3. LSAC Bar Passage (Wightman 1998). This dataset has
inherently multiclass outcomes, with the target being a 3-
level variable indicating bar exam passage status (passed
first time, passed second time, or did not pass). The pro-
tected attribute is race, which we collapsed from its orig-
inal 8 levels to 2 (white and non-white). Predictors in-
cluded mostly measures of educational achievement, like
undergraduate GPA, law school GPA, and LSAT score.

4. Parkinson’s Telemonitoring (Tsanas et al. 2009). This
dataset does not have inherently multiclass outcomes,
with the target for prediction being the continuous Uni-
fied Parkinson’s Disease Rating Scale (UPDRS), a con-
tinuous score that increases with the severity of impair-
ment. We again used Otsu’s method to bin the contin-
uous score into 3 categories–low impairment, moder-
ate impairment, and high impairment–which we took as
the new class labels. The protected attribute is a 2-level
variable for gender (Male/Female). Predictors included
mostly biomedical measurements from the voice record-
ings of patients with Parkinson’s Disease.

For each of these datasets, we obtained a potentially-
biased predictor Ŷ by training a random forest on all avail-
able informative features (including the protected attribute)
to predict the multiclass outcome, and then taking the cat-
egories corresponding to the row-wise maxima of the out-
of-bag decision scores as the set of predicted labels. We
then adjusted the predictions with the weighted objective
and term-by-term equality of odds fairness constraint and
recorded the relative changes in global accuracy and mean
TDR as the outcome measures of interest, as with our syn-
thetic experiments.

Exploring the Effect of Finite Sampling Hardt, Price,
and Srebro (2016) note that their method will not be ef-
fected by finite sample variability as long as the joint distri-
bution Pr(Y, Ŷ , A) is known, or at least well-approximated
by a large sample. In practical applications, however, the
sample at hand may not be large enough to approximate
the joint distribution with precision. This problem is exac-



In-Sample Results
Dataset (N) # Terms Old Acc � New Acc Old TDR � New TDR Pre � Post-Adj Disparity

in Pa (% change) (% change) (% change)

Bar (N=22406) 18 88 % � 88% (-1%) 36% � 34% (-7%) 0.11 �0.00 (-100%)
Cannabis (N=1885) 18 74% � 71% (-4%) 67% � 63% (-6%) 0.07 �0.00 (-100%)
Obesity (N=1490) 50 78% � 73% (-7%) 78% � 73% (-7%) 0.05 � 0.00 (-100%)

Parkinsons (N=5875) 18 93% � 91% (-2%) 92% � 89% (-3%) 0.04 �0.00(-100%)

Out of Sample Results
Dataset (N) # Terms Old Acc � New Acc Old TDR � New TDR Pre � Post-Adj Disparity

in Pa (% change) (% change) (% change)

Bar (N=22406) 18 88 % � 83% (-6%) 36% � 33% (-8%) 0.11 �0.01 (-95%)
Cannabis (N=1885) 18 74% � 61% (-18%) 67% � 52% (-22%) 0.07 �0.16 (124%)
Obesity (N=1490) 50 78% � 41% (-47%) 78% � 42% (-46%) 0.05 � 0.07 (45%)

Parkinsons (N=5875) 18 93% � 82% (-12%) 92% � 78% (-15%) 0.04 �0.05(33%)

Table 2: Results of applying the linear program to adjust the blackbox predictions and produce yder for four real-world datasets.
The top table is without any splitting. Results shown in the bottom table are cross-validated across five 80/20 splits of each
dataset. Accuracy and TDR are shown before and adjustment, with TDR being the mean across all classes. Percent changes,
shown in parentheses are the relative percent drops in accuracy and mean TDR. Post-adjustment disparity is the element-wise
mean difference across all groups of Wa.

erbated when the number of observations N is small rela-
tive to the number of probabilities learned by the algorithm
of which there are |C| × |C| × |A | total. This difficulty is
therefore more severe for our extension in this work where
|C| > 2.

In these cases, the adjusted predictor Y adj may have worse
classification performance and higher disparity when ap-
plied to unseen, out-of-sample data. As a preliminary ex-
ploration of this effect, we used 5-fold cross-validation to
generate out-of-sample predictions for each of the observa-
tions in our real-world datasets. Keeping Y , Ŷ , and A fixed,
we solved the linear program on 80% of the data and then
used the adjusted probabilities Pa to obtain class predic-
tions for the observations in the remaining 20%. As with the
predictions obtained from solving the linear program on the
full dataset, we measured the changes in accuracy and mean
TDR for the cross-validated predictions. Because fairness
is not guaranteed when the joint distribution assumption is
violated, we also measured post-adjustment fairness.

Exploring the Fairness-Discrimination Tradeoff When
there are large gaps in a predictor’s performance across
groups, i.e., when predictive bias is high, strict fairness may
not always be possible or desirable to achieve because of
the large amount of randomization required to balance the
blackbox classifier’s predictions. To explore the tradeoff be-
tween fairness and discrimination, we ran the linear pro-
gram on each of the real-world datasets once for each of the
four kinds of fairness. For each combination of dataset and
fairness type, we varied the equality constraints of the lin-
ear program–the maximum percent difference allowed be-
tween any pairwise comparison of fairness measures be-
tween groups–from 0.0 to 1.0 in increments of 0.01, and then
plotted the value of the weighted objective at each point as a
function of the global measure of fairness corresponding to
the fairness type under consideration. To obtain these global

measures, we took the maximum of the mean differences
across pairs of groups of the following metrics:

• W, or the matrix of probabilities P (Y adj|Y ), for term-
by-term equality of odds

• Youden’s J index, or TDR+(1−FDR)−1, for classwise
equality of odds

• TDR for equal opportunity
• P (Y adj) for demographic parity

We note here that taking the maximum of the maxima of
the pairwise differences would also be a valid and sensible
global measure. So that the plots show performance under
optimal conditions, we do not use cross-validation to obtain
Y adj, i.e., we obtain it by solving the linear program on the
entire dataset.

Results Table 2 shows changes in global accuracy and
mean TDR after adjustment with the weighted objective
and term-by-term conditional fairness constraint for our four
datasets, using cross-validation as described above to cap-
ture some of the variability that comes with finite sampling.
Overall, adjustment lowered both accuracy and mean TDR.
Although, for the bar passage, drug usage, and Parkinson’s
datasets, the drops were moderate, with average relative
changes in both metrics coming in at around 12% and 15%,
respectively (without cross-validation, the drops were much
smaller at 3% and 4%). For the obesity dataset, the drops
are much larger at 47% and 46%, respectively, which are
indeed substantial and would likely make the predictor un-
usable in practical settings. On in-sample data, these drops
were both only around 7%, and so we suspect that charac-
teristics of the data, like large class imbalance or small over-
all sample size, are responsible for the poor performance.
Perhaps most importantly, the post-adjustment disparity for
all datasets is non-zero, and for three of the datasets actu-



ally increases. The bar passage dataset was the only exam-
ple where the out-of-sample post-adjustment disparity de-
creased to near zero likely due to it being the largest dataset.
This starkly points out the sensitivity of the method to esti-
mating the joint probabilities Pr(Y, Ŷ , A), and shows that
the approach is unlikely to work in smaller dataset regimes
which have a larger combination of classes and protected
attributes. Note that for in-sample results, post-adjustment
disparity drops completely to 0.0 for all datasets since it is
strictly enforced by the linear program in Table 2.

Figure 1 shows fairness-discrimination plots for our 4
datasets with the weighted objective and each of the 4 fair-
ness constraints. Under strict fairness, with inequality set
to 0, equalized odds is the hardest to satisfy, showing the
largest increase in Brier score. For the drug usage, obesity,
and Parkinson’s datasets, discrimination improves approx-
imately linearly as fairness worsens; for the bar passage
dataset, discrimination improves to a point, but then worsens
as fairness approaches the value for the original, unadjusted
predictor Ŷ . For all datasets, the total loss of discrimination
under strict fairness is relatively small (the biggest drop is
around 7.5 percentage points on Brier score), but the random
forests’ predictions were only mildly biased to begin with,
so we expect this gap to increase for less-fair predictors.

Discussion
Generally, our post-processing approach to achieving fair-
ness in multiclass settings seems both feasible and efficient
given a large enough dataset size. We have shown above that
the linear programming technique proposed by Hardt, Price,
and Srebro (2016) can be extended to accommodate a the-
oretically arbitrarily large number of discrete outcomes and
levels of a protected attribute. Nonetheless, our synthetic ex-
periments and analyses of real-world datasets show that are a
few important considerations for using the approach in prac-
tice.

In many cases, the effect of finite sampling may be non-
negligible, especially when the number of observations N is
small relative to number of outcomes |C| or the number of
protected groups |A |. For example, the obesity dataset with
|C| = 5 and N = 1, 490 saw a large relative drop of 46% in
mean TDR after adjustment under cross-validation. We also
saw this effect extend to fairness, which was not reduced
completely to zero on out-of-sample data for any of the real-
world datasets. In fact, for the drug usage dataset we found
post-adjustment disparity doubled on out-of-sample data.

This last observation raises a concerning point: for some
classification problems, the post-adjustment predictions on
out-of-sample data may increase disparity rather than low-
ering it. For the largest of the datasets, the bar passage
dataset with N = 22, 406, neither of these issues was a
concern. Even under cross-validation, the relative change
in TDR was only -8%, and the disparity dropped to near
0 (-95% decrease). Given this, we expect that with a large
enough dataset size, our approach will be far more reliable
on out-of-sample data. Future work more precisely quanti-
fying the number of training examples needed for reliable
out-of-sample fair performance with our approach is needed.

More generally, even when finite sampling variability is
not an issue, not all datasets will lend themselves well to
this kind of post-processing approach. In our synthetic ex-
periments, we showed that severe class imbalance and se-
vere predictive bias (predicting at nearly the level of chance
for minority protected groups) lead to large drops in post-
adjustment performance on average. In many of the sin-
gle experimental runs for synthetic datasets with these set-
tings, the resulting derived predictor was effectively use-
less, either producing trivial results or lowering predictive
performance to near chance (for all groups) for one or
more class outcomes. In these circumstances, it may be
more sensible to enforce fairness through a combination of
pre-processing, in-processing, and post-processing methods,
rather than through a post-processing method alone. Indeed,
Woodworth et al. (2017) make this point generally, albeit
for the binary setting, by showing that unless the biased pre-
dictor Ŷ is very close to being Bayes optimal, the derived
predictor Y adj proposed by Hardt, Price, and Srebro (2016)
can underperform relative to other methods, sometimes sub-
stantially. Under less extreme circumstances, however, we
found our approach produces good results, especially given
the time-efficiency of solving the linear program relative to
other methods.
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Appendix A
Derivation of Linearity of Fairness Constraints: In or-
der to obtain linearity in the protected attribute conditional
probability matrices Pa we must find an expression of the
form Wa = PaMa:

W a
ij =Pr(Y adj = i|Y = j, A = a)

=
∑
k

Pr(Y adj = j, Ŷ = k|Y = j, A = a)

=
∑
k

Pr(Y adj = i|Y = j, A = a, Ŷ = k)

× Pr(Ŷ = k|Y = j, A = a)

=
∑
k

Pr(Y adj = i|Ŷ = k,A = a)

× Pr(Ŷ = k|Y = j, A = a)

=
∑
k

P a
ikZ

a
kj

where Za
kj = Pr(Ŷ = k|Y = j, A = a), and can be

estimated empirically using the original predictions of the
blackbox classifier. Thus we have Wa = PaZa. Moving
from the third to fourth line requires the conditional indepen-
dence assumption Y adj ⊥ Y |A, Ŷ . This assumption is vio-
lated in cases where the blackbox predictions are weak, for
example completely random, and can intuitively be thought
of as requiring that the initial blackbox classifier has reason-
able discriminative performance. In other words, relevant in-
formation for predicting Y is contained in Ŷ .

Multiclass equality of opportunity only requires enforcing
equality on the diagonals of Wa, and therefore is linear in
Pa as well.

Enforcing the classwise version of multiclass equality of
odds requires enforcing equality of opportunity, which is al-
ready shown to be linear above, and also enforcing the over-
all false detection rates to be equal across protected groups.
So in order for classwise multiclass equality of odds to be
linear, the false detection rates must be linear in Pa, shown
below:

FDRa
c =Pr(Y adj = c|Y 6= c, A = a)

=
Pr(Y adj = c, Y 6= c, A = a)

Pr(Y 6= c, A = a)

=
∑
j

∑
c′ 6=c

Pr(Y adj = c, Y = c′, Ŷ = j, A = a)

Pr(Y 6= c, A = a)

=
∑
j

∑
c′ 6=c

P a
cjZ

a
jc′Pr(Y = c′, A = a)

Pr(Y 6= c, A = a)

=
∑
j

P a
cj

∑
c′ 6=c

Za
jc′Pr(Y = c′, A = a)

Pr(Y 6= c, A = a)

=
∑
j

P a
cjV

a
jc

where V a
jc =

∑
c′ 6=c

Za
jc′Pr(Y=c′,A=a)

Pr(Y 6=c,A=a) . This allows us to
write the protected attribute conditional false detection rates
as FDRa = diag(PaVa). As before, Va can be computed
from the empirical estimates of Za, and Pr(Y = i, A = j).

For multiclass demographic parity we can write:

Da =Pr(Y adj|A = a)

=
1

Pr(A = a)

∑
k

Pr(Y adj, A = a, Ŷ = k)

=
∑
k

Pr(Y adj|Ŷ = k,A = a)
Pr(Ŷ = k,A = a)

Pr(A = a)

=
∑
k

Pr(Y adj|Ŷ = k,A = a)Pr(Ŷ = k|A = a)

=PaPr(Ŷ |A = a)

which is again linear in Pa, and the conditional probability
vector Pr(Ŷ |A = a) can be computed emprically.

Synthetic Experiment Results with |A | = 2



Experiments with |A | = 2

Hyperparameter Level Change in Acc (CI) Change in TDR (CI)

Intercept – -0.08 (-0.13, -0.03) -0.14 (-0.18, -0.10)

Loss Unweighted – –
Weighted -0.09 (-0.12, -0.06) 0.10 (0.08, 0.13)

Goal Equalized Odds – –
Demographic Parity 0.20 (0.15, 0.24) 0.17 (0.14, 0.21)
Equal Opportunity 0.02 (-0.02, 0.07) 0.02 (-0.02, 0.05)

Strict 0.021 (-0.02, 0.07) 0.01 (-0.03, 0.04)

Group Balance No Minority – –
Slight Minority -0.05 (-0.09, -0.01) 0.01 (-0.02, 0.04)
Strong Minority -0.07 (-0.11, -0.03) 0.00 (-0.03, 0.04)

Class Balance Balanced – –
One Rare -0.005 (-0.04, 0.03) -0.05 (-0.08, -0.01)
Two Rare 0.08 (0.04, 0.11) -0.14 (-0.17, -0.11)

Predictive Bias Low – –
Medium -0.06 (-0.10, -0.03) -0.09 (-0.12, -0.05)

High -0.20 (-0.24, -0.16) -0.18 (-0.22, -0.15)

Table 3: Regression coefficients and 95% confidence intervals for accuracy and mean TDR as a function of the experimental
hyperparameters for the synthetic datasets with two protected attributes and three possible outcomes.


