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Abstract

We present the BETH cybersecurity dataset for anomaly detection and out-of-distribution
analysis. With real “anomalies” collected using a novel low-level tracking system, our dataset
contains over eight million data points tracking 23 hosts. Each host has captured benign
activity and, at most, a single attack, enabling cleaner behavioural analysis. In addition to
being one of the most modern and extensive cybersecurity datasets available, BETH enables
the development of anomaly detection algorithms on heterogeneously-structured real-world
data, with clear downstream applications. We give details on the data collection, suggestions
on pre-processing, and analysis with initial anomaly detection benchmarks on a subset of
the data.

1 Introduction

When deploying machine learning (ML) models in the real world, anomalous data points and
shifts in the data distribution are inevitable. From a cyber security perspective, these anomalies
and dataset shifts are driven by both defensive and adversarial advancement. To withstand
the cost of critical system failure, the development of robust models is therefore key to the
performance, protection, and longevity of deployed defensive systems.

Current research into the robustness of ML models tends to be based on modifying common
datasets, and extrapolating performance to disparate anomaly detection applications. For out-of-
distribution (OoD) estimation, researchers combine pairs of existing datasets, such as MNIST-
FashionMNIST, CIFAR10-CelebA, or CIFAR10-ImageNet32 [2I], to mimic data distribution
shift. Other data for evaluating robustness is constructed by modifying samples within datasets;
for example, corrupting, perturbing, or shifting samples [6, 22] to generate anomalies. These
primarily use image datasets [13, B, 31} 10, 27, [I7], and sometimes text datasets [14], 12} [7]. Such
experiments are said to be motivated by domains such as security, but it is unknown exactly
how well new methods—in particular, those centred around deep learning (DL)—may generalise
beyond these input modalities in other real world applications. The difficulty with real datasets
is that complexity and domain expertise remain a barrier to entry for ML researchers.

In this paper, we present the BPF-extended tracking honeypot (BETH) datasetﬂ as the first
cybersecurity dataset for robustness benchmarking in unsupervised anomaly detection. Collected
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using a novel honeypot tracking system, our dataset has the following properties that make it
attractive for the development of robust ML methods: 1) at over eight million data points, this
is one of the largest cyber security datasets available; 2) it contains modern host activity and
attacks; 3) it is fully labelled (for verification); 4) it contains highly structured but heterogeneous
features; and 5) each host contains benign activity and at most a single malicious user, which
is ideal for behavioural analysis and other research tasks. In addition to the described dataset,
further data is currently being collected and analysed to add alternative attack vectors to the
dataset.

There are several existing cybersecurity datasets commonly used in ML research: the KDD
Cup 1999 Data [§], the 1998 DARPA Intrusion Detection Evaluation Dataset [I1] [15], the ISCX
IDS 2012 dataset [29], and the NSL-KDD dataset [30]. The KDD’99 data is an abstracted view
of network activity from the DAPRA’98 data; the NSL-KDD dataset is the same as the KDD’99
Data after, primarily, removing duplicates. Each includes millions of records of realistic activity
for enterprise applications, with labels for attacks or benign activity. The KDD1999, NSL-KDD,
and ISCX datasets contain network traffic, while the DARPA1998 dataset also includes limited
process calls. However, these datasets are at best almost a decade old, and are collected on
in-premise servers. In contrast, BETH contains modern host activity and activity collected from
cloud services, making it relevant for current real-world deployments. In addition, some datasets
include artificial user activity [29] while BETH contains only real activity. BETH is also one of
the few datasets to include both kernel-process and network logs, providing a holistic view of
malicious behaviour. Refer to Table [I] for further comparison between BETH and these other
cybersecurity datasets.

This paper begins with a description of the data collection process and the relevance of
the available features. We then perform an analysis of the first set of kernel-level process logs
collected, including anomaly detection benchmarksﬂ Our benchmarks include both traditional
baselines [26] 28] [16], as well as a state-of-the-art deep-learning-based method [21]. In summary,
the isolation forest (iForest) [I6] archives the highest area under the receiver operating charac-
teristic (AUROC) on the initial, labelled subset of our data. We believe the scale and range
of attacks available in our full dataset will pose a challenge for all current anomaly detection
methods.

2 The BETH Dataset

The BETH dataset currently represents 8,004,918 events collected over 23 stand-alone honeypots,
running for about five non-contiguous hours on a major cloud provider. For benchmarking and
discussion, we selected the initial subset of the process logs. This subset was further divided
into training, validation, and testing sets with a rough 60/20/20 split based on host, quantity
of logs generated, and the activity logged. Only the test set includes malicious activity, as
expected when training unsupervised anomaly detection models. Table [2| provides a summary
of the dataset, while Table [3| and Table [] provide a description of the kernel-process and DNS
log features, respectively.

In this section, we first detail the log collection methodology, followed by a description of
the overall dataset. The final subsection discusses potential research questions that could be
investigated using our dataset.

2.1 Collection Methodology

The challenge of crafting a honeypot is two-fold: make it tempting enough to infiltrate, and
track activity without being detected. The former is typically done by providing “free” resources
to an attacker, i.e., easily accessible computer power. Our implementation currently runs hosts

Zhttps://github.com/jinxmirror13/BETH_Dataset_Analysis
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Table 3: The description and type of each feature within the kernel-level process logs, tracking
every create, clone, and kill process call. Starred features were included in the model baselines
and converted as described in Appendix [A]

FEATURE DESCRIPTION

TIMESTAMP SECONDS SINCE SYSTEM BOOT

PROCESSID* INTEGER LABEL FOR THE PROCESS SPAWNING THIS LOG

THREADID INTEGER LABEL FOR THE THREAD SPAWNING THIS LOG
PARENTPROCESSID* PARENT’S INTEGER LABEL FOR THE PROCESS SPAWNING THIS LOG
USERID* LOGIN INTEGER ID OF USER SPAWNING THIS LOG
MOUNTNAMESPACE* SET MOUNTING RESTRICTIONS THIS PROCESS LOG WORKS WITHIN
PROCESSNAME STRING COMMAND EXECUTED

HOSTNAME NAME OF HOST SERVER

EVENTID* ID FOR THE EVENT GENERATING THIS LOG

EVENTNAME NAME OF THE EVENT GENERATING THIS LOG

ARGSNUM* LENGTH OF ARGS

RETURNVALUE* VALUE RETURNED FROM THIS EVENT LOG (USUALLY 0)
STACKADDRESSES MEMORY VALUES RELEVANT TO THE PROCESS

ARGS LIST OF ARGUMENTS PASSED TO THIS PROCESS

SUS BINARY LABEL AS A SUSPICIOUS EVENT (1 IS SUSPICIOUS, 0 IS NOT)
EVIL BINARY LABEL AS A KNOWN MALICIOUS EVENT (0 IS BENIGN, 1 IS NOT)

with a single ssh vulnerability: any password will be accepted to login. This is enough to entrap
automated, naive SSH scanning and brute force methods. In the future we plan to deploy hosts
with other vulnerabilities, with which we hope to observe other attack vectors.

To log activity in real time, each host runs Ubuntu 18.04 with a Docker container [20]. This
encapsulates our two-sensor monitoring system utilising the extended Berkeley Packet Filter
(eBPF) [5] which runs isolated programs in a Linux kernel sandbox to directly monitor the
packets that it processes. Due to various checks and restrictions placed on the design of these
programs, they can be placed in a live kernel without needing to restart it. The eBPF enables
tracking of any user-level activity at pre-specified points.

The first sensor is set to listen and exfiltrate relevant data packets resulting from internal
activity. In particular, this sensor tracks all Linux system calls to create, clone, and kill processes.
The second sensor logs network traffic, specifically DNS queries and responses from all processes
on the host machine, including those processes running within the hosted Docker containers.
When the desired packet appears, it is parsed out to pre-defined fields and then transmitted to
a collection server.

These process and network data packets are gathered on a separate node hosting a message
queue server. Sensor clients connect to this server and transmit their individual data packets
as events occur, without batching. This allows the collection and re-transmission of data at an
atomic level. The data is then stored locally in two correlated files with respective logs, allowing
analysts to understand both local and network effects that occur jointly.

2.2 Dataset Characteristics

The dataset is composed of two sensor logs: kernel-level process calls and network traffic. As the
initial benchmark subset only includes process logs, this section only covers these; a description
of the network logs can be found in Table [4]

Each process call consists of 14 raw features and 2 labels, described in Table [8] These
largely contain categorical features with some containing large integers, necessitating further
processing. Thus, for our benchmarking, we converted several fields to binary variables based
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Table 4: The description and type of each feature within the DNS logs.

K. Highnam et. al.

FEATURE DESCRIPTION

TIMESTAMP DATE AND TIME IN THE FORMAT “YYYY-MM-
DDTHH:MM:SSZ” FOR WHEN THE PACKET WAS SENT
OR RECEIVED

SOURCEIP SOURCE IP ADDRESS OF THE PACKET

DESTINATIONIP DESTINATION IP ADDRESS OF THE PACKET

DNSQUERY SENT DNS QUERY (E.G. THE URL SUBMITTED -
"GOOGLE.COM")

DNSANSWER DNS RESPONSE; CAN BE NULL

DNSANSWERTTL LIST OF INTEGERS SENT AS STRINGS, CAN BE NULL; THE
TIME TO LIVE OF THE DNS ANSWER

DNSQUERYNAMES NAME OF THE REQUESTED RESOURCE

DNSQUERYCLASS CLASS CODE FOR THE RESOURCE QUERY

DNSQUERYTYPE TYPE OF RESOURCE RECORD (A, AAAA, MX, TXT, ETC.)

NUMBEROFANSWERS NUMBER OF ANSWER HEADERS IN THE PACKET

DNsOprPCODE HEADER INFORMATION REGARDING WHICH OPERATION THIS
PACKET WAS SENT (E.G. STANDARD QUERY IS 0)

SENSORID SAME AS THE HOSTNAME IN THE PROCESS RECORDS; NAME
OF HOST SERVER

SUs BINARY LABEL AS A SUSPICIOUS EVENT (1 IS SuspICIOUS, 0
IS NOT)

EVIL BINARY LABEL AS A KNOWN MALICIOUS EVENT (0 IS BENIGN,
1 18 NOT)

on field expertise, as described in Appendix [A] We note that this conversion process creates
more duplicates due to the removal of critical fields, such as processName and args, which have
no widely-accepted encoding scheme for any machine learning model to utilise. There are some
inherent duplicates which we keep within the dataset prior to conversion for the accuracy of real
logs and to not limit users of the data.

Each record in the process logs and DNS logs was manually labelled suspicious (sus) or evil
to assist post-training analysiﬁﬂ Logs marked suspicious indicate unusual activity or outliers in
the data distribution, such as an external userId with a systemd procesﬂ infrequent daemon
process calls (e.g. acpid or accounts-daemon), or calls to close processes that we did not observe
as being started. Evi]ﬂ indicates a malicious external presence not inherent to the system, such
as a bash execution call to list the computer’s memory information, remove other users’ ssh
access, or un-tar an added file. Events marked evil are considered “out of distribution,” as they
are generated from a data distribution not seen during training.

A subset of the kernel process logs were divided into a typical 60/20/20 split for training,
validation, and testing, based on the amount of activity recorded, and evil labels from each
host. As is typical in unsupervised anomaly detection, our training and validation sets are each
composed of logs generated from multiple hosts which only recorded activity from the OS and
cloud infrastructure management. Because there are no signs of infiltration in these process logs,
activity resulting from these hosts is considered benign and the events generated by the OS and
cloud infrastructure management to be “in-distribution”.

Our initial testing dataset contains all activity on a single exploited host, including its

3These labels are provided from a single reviewer and should not be solely relied upon for industry systems.

“In the scope of our honeypot any external user traffic is suspicious, but some of these events were initiated
by the cloud provider.

5We note that presence in this dataset does not constitute a “conviction”, as no real damage was done.
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Dataset Label
Training . Not Evil
B Testing . - Evil
.

(a) Fitted on Training and transformed Testing (b) Same as (a), coloured with evil labels

Figure 1: UMAP visualisations of the training and testing dataset using the pre-processed
features (see Appendix. Figure (a) shows the overlap between the training and testing dataset;
Figure (b) highlights the trails of evil events.

OS and cloud infrastructure management. The first attack we logged is an attempt to setup
a botnet; more details are available in Appendix Bl The full dataset contains other malicious
activity performed within our honeypots, including cryptomining and lateral movement (between
servers). These various attacks may also be compared to answer alternative research questions
with our data, as discussed in Subsection [2.3] As each exploited host only contains a single
staged attack, with no artificial noise in the benign activity, BETH is one of the cleanest cyber
security datasets available to distinguish between malicious and benign activity.

As an initial investigation of the data, we visualised the (pre-processed) training and testing
datasets with uniform manifold approximation and projection (UMAP) [19]. UMAP was first
fitted to the training set before being used to project the testing set into the same space. As
can be seen in Figure [T} the data from both sets forms several large clusters in the centre,
surrounded by many smaller clusters, with both benign and malicious activity spread across the
entire space. The first image shows significant overlap between the training and testing sets. The
second image shows that evil events appear in distinct areas. This indicates that unsupervised
methods could potentially detect a large portion of the “anomalous” events.

2.3 Research Questions

The BETH dataset could answer other cyber security questions than just OoD analysis. Unlike
logs within real deployed systems that contain no labels for malicious events, our BETH dataset
contains (recently recorded) real data with labels. One use for this dataset would be to profile the
attacker or malware’s behaviour [2]. For instance, the known evil events could form a unique
fingerprint, a method of uniquely identifying the tactic used by the attacker, to link an attack
to its family or appropriate resolution strategy [I]. One could also use graph analysis of process
relationships to find malicious cliques [4], or use time series analysis of execution sequences to
profile process names (processName) on a modern OS. This latter topic is particularly interesting
as some attackers rename malicious processes to benign process names to trick systems into
running malicious code. The logs would present a benign process name, even if the arguments
or events were inconsistent with normal activity.

Proceedings of the Conference on Applied Machine Learning for Information Security, 2021



BETH Dataset for Unsupervised Anomaly Detection K. Highnam et. al.

3 Anomaly Detection Baselines

In this section, we provide anomaly detection benchmarks on our initial subset of logs. We chose
both standard anomaly detection baselines [23] [32], which includes robust covariance [26], one-
class support vector machine (SVM) [28] and iForest [16], as well as density of states estimation
(DoSE) [21], which is based on deep generative models. As per [21], we report AUROC, using
an ensemble of 5 models for each method.

Robust covariance [26] fits an “ellipsoid with the smallest volume or with the smallest co-
variance determinant” [24] around the central data points; the tightness is controlled assuming
a given level of contamination with anomalies (which we set to 0.05). The anomalies are then
scored using the Mahalanobis distance. Similarly, the one-class SVM fits a hyperplane to discrim-
inate between the support of the in-distribution data and OoD data [28]. As kernelised SVMs
scale with O(N?) and our data subsets are substantial in size, we instead utilised scikit-learn’s
linear SVM with stochastic gradient descent, after whitening the data. In contrast to the other
methods, the iForest [10] tries to characterise anomalous points in the data distribution using
an ensemble of “isolation trees”.

Given the scale of the dataset, we also considered DL-based OoD detection methods. In
particular, DoSE uses summary statistics (such as the log-likelihood or posterior entropy), cal-
culated over the training set by a trained generative model, in order to characterise the “typical
set”. In our work we train a variational autoencoder (VAE) [9], consisting of two 2-layer neural
networks with 64 hidden units and ReLLU activation functions for the encoder and decoder. The
first layer of the encoder concatenates learned embeddings of all input features. The final layer
of the decoder outputs a set of logits for categorical distributions for all features. We use a
2D latent representation. Each VAE is trained using the AdamW optimiser [I8] with learning
rate 0.003 and a weight decay of 0.1; early stopping was used with the validation loss. We
picked the hidden size € {64,128,256}, learning rate € {0.003,0.0003,0.00003}, and weight
decay € {0,0.01,0.1}, using a grid search on the validation loss. Other than modelling the ob-
servations as a product of categorical distributions, our setup is largely the same as the original
paper [2I]. However, due to the size of the training set, we were only able to use DoSE with a
linear one-class SVM trained using SGD (as opposed to a kernel SVM).

Table 5: OoD AUROC results.

METHOD RoBUST COVARIANCE ONE-CrLASS SVM  1ForesT VAE-+DoOSE-SVM
AUROC 0.519 0.605 0.850 0.698

As seen in Table [5] the iForest performs best at differentiating sus events from the benign
in our testing dataset. We attribute this to the small set of discrete features available and the
conspicuous nature of the attack. DL-based models are less competitive on these sets of features,
but have the potential to deal with more raw categorical and even text-based features, which
we hope to explore in future work. Finally, we note that imbalanced labelling, summarised in
Table [6] necessitates further investigation of what each model predicts is benign or not.

4 Conclusions

In this paper, we present our BETH cybersecurity dataset for anomaly detection and OoD
analysis. The data was sourced from our novel honeypot tracking system recording both kernel-
level process events and DNS network traffic. It contains real-world attacks in the presence of
benign modern OS and cloud provider traffic, without the added complexity of noisy artificial
user activity. This cleanliness is ideal for OoD analysis, such that each host in the dataset
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only contains one or two data-generating distributions. We also include baselines for anomaly
detection trained on a subset of the BETH dataset: robust covariance, one-class SVM, iForest,
and DoSE-SVM (with a VAE).

For future work, we plan to collect and publish more attacks for alternative testing datasets.
This will also allow investigations in comparing attacks or perhaps testing in a continual learning
setting.
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A Pre-Processing

In this section, we provide more details on the raw features in the dataset, as well as pre-
processing suggestions, which we used in our baselines:

timestamp: We left this field out to consider the dataset as a sample from a distribution
rather than time series. We recommend using the values as they are or also leave them out,
depending on the method chosen.

processId: Process IDs 0, 1, and 2 are meaningful since these are always values used by the
OS, but otherwise a random number is assigned to the process upon creation. We recommend
replacing processId with a binary variable indicating whether or not processID is 0, 1, or 2.

threadId: While this value did not appear useful in our analysis, it might suggest how to
link process calls if obfuscated in the system. No conversion is recommended at this time.

parentProcessId: Same as processId, the same mapping to a binary variable should suffice.

userId: The default in Linux systems is to assign OS activity to some number below 1000
(typically 0). As users login, they are assigned IDs starting at 1000, incrementally. This can be
altered by a user, but none of the current logs gave evidence an attacker did this. We used a
binary variable to indicate userId < 1000 or userId > 1000. Alternatively, one could use an
ordinal mapping that buckets all userId < 1000 at zero and then increment upwards for each
new user. Also, no more than four logins were viewed per host in our current datasets.

mountNamespace: This field is somewhat consistent across our hosts and determines the
access a certain process has to various mount points. The most common value for this feature is
4026531840 or 0xF0000000, which is for the mnt/ directory where all manually mounted points
are linked. It is noted that all logs with userId > 1000 had a mountNamespace of 4026531840,
while some OS userId traffic used different mountNamespace values. We converted this feature
into a binary mapping for whether or not mountNamespace = 4026531840.

processName: This is a string field of variable length (ranging from one to fifteen characters).
When manually analysing the data, this was a critical field in conjunction with the eventName.
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For our baselines, we refrained from utilising this, although the model should be given an
encoding of this using a hash or ability to learn a useful encoding on its own. It is noted
that attackers can easily change the processName to override a benign one so their traffic looks
regular. This was not observed within the current dataset.

hostName: This field is useful for grouping the dataset into related subsets of data generated
from the same honeypot. The name of the host name does not transfer between the model
development subsets described in this paper.

eventId: Linux systems assign an integer corresponding to the eventName. We include this
field as-is for our benchmarks.

eventName: Event names uniquely map to eventId, so we drop it from training.

argsNum: This raw feature is included as-is, since, at this time, adequately parsing args
requires either more sophisticated pre-processing or a more complex ML model.

returnValue: This is also called the exit status and can be used to determine whether a
call completed successfully or not. Mappings for this can vary, as this value is decided between
the parent and child process. We mapped returnValue into three values based on the common
usage of the field: -1 when negative (error), 0 when zero (success), and 1 when positive (success
and signalling something to the parent process).

stackAddresses: It is difficult to clearly relate this feature during manual analysis and the
large values within a variable size list make processing automatically difficult without encoding
or learning an extra embedding. Thus this field was dropped from training our baselines.

args: There are many options in this variable list of dictionaries. For simplicity, we refrain
from utilising any of these values. However, more features can and should be created for future
work.

Finally, BETH contains two binary, manually-labelled flags: sus and evil. Examples and
the explanation of how these labels were created are detailed in Section 2.2l A breakdown of
these labels within the subsets for model development is given in Table [6]

Table 6: Breakdown of sus and evil labels by training, validation, and testing subsets.

DATASET  sus=0, sus=1, sus=1,
EVIL=0 EVIL=0 EVIL=1
TRAINING 761875 1269 0

(99.8%) (0.02%)  (0.00%)

VALIDATION 188181 786 0
(99.6%) (0.04%) (0.00%)

TESTING 17508 13027 158432
(9.27%) (6.89%) (83.84%)

B Testing Dataset Details

This testing dataset was extracted from a single honeypot. The overall attack appears to be
instantiating a botnet node. The timeline of the events recorded is provided in Figure [2} this is
the typical attack pattern. The server is initially accessed, it may run a few setup operations
in the environment to send some details to its Command and Control (C2) for a customised
attack, it sleeps for a while, intermittently checks in with the C2 or a clock, and then launches
its attack until complete.

In this case, the honeypot is first accessed at around 411 seconds from booting. Several
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Figure 2: The timeline of the attack captured in the testing dataset is displayed as a histogram
based on the number of events and seconds from the “boot” or starting up of the machine.

thousand lines are then recorded in the process logs denoting the setup of the new user profile.
This happens within milliseconds; these are detailed logs of everything the OS does during the
short pause before the terminal opens for user entry when ssh-ing into a server. This user then
sleeps, pausing all user activity for some number of seconds. This appears to happen at random
intervals—a more sophisticated technique than using consistent intervals—of which the latter
would give a clear signature of automated activity.

After a few minutes, it sets up an SFTP server to download a file called dota3.tar.gz
(known botnet malware) and scopes out the system using common commands such as whoami,
1s, and cat /proc/cpuinfo. After about 7.5 minutes, it unpacks the dota3.tar.gz and runs
over a hundred threads, all attempting to connect with different servers.
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