
A Use Case-based Investigation of Low-Code
Development Platforms

Robin Lichtenthäler, Sebastian Böhm,
Johannes Manner, and Stefan Winzinger

Distributed Systems Group, University of Bamberg, Germany
{robin.lichtenthaeler,sebastian.boehm,

johannes.manner,stefan.winzinger}@uni-bamberg.de

Abstract. Rapid application development without profound develop-
ment skills are the stated advantages of the recent trend in Low-Code
Application Development. In a time-constrained experiment we investi-
gate these promises for three Low-Code platforms by implementing a
practical use case. While this was in fact feasible in a short time for major
parts of our use case, the platforms differ significantly and a technical
understanding is still required for non-trivial applications.

Keywords: Low-Code, Process Automation, Use Case, Mob Programming

1 Introduction

Low-Code application development is a recent trend in the software industry.
It is expected to become the technological basis for an increasing amount of
newly developed applications, as predicted in the 2021 Gartner Magic Quadrant
for Enterprise Low-Code Application Platforms [9]. The promised advantages
of Low-Code platforms are that on the one hand less skills are required for
development and on the other hand applications can be developed much faster [6],
because Low-Code platforms enable application development at a higher level
of abstraction, often based on visual programming [6]. By integrating cloud
computing, Low-Code platforms can furthermore support application deployment
in an automated fashion on reliable and scalable cloud infrastructures [8]. A
variety of platforms have emerged from both vendors specialized on Low-Code
(e.g., OutSystems1, Mendix2, or Appian3) and established cloud providers (e.g.,
Microsoft4). Nowadays, the interest in Low-Code platforms also increases in
academic research. Several studies focusing on single platforms in-depth have
been published [2, 5, 7] and we are aware of one study [8] aiming to compare several
Low-Code platforms to provide a broader overview of the existing platforms and
1 https://www.outsystems.com
2 https://www.mendix.com
3 https://appian.com/
4 https://powerapps.microsoft.com

J. Manner, D. Lübke, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (Eds.): 14th ZEUS
Workshop, ZEUS 2022, Bamberg, held virtually due to Covid-19 pandemic, Germany, 24–25

February 2022, published at http://ceur-ws.org
Copyright © 2022 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

https://www.outsystems.com
https://www.mendix.com
https://appian.com/
https://powerapps.microsoft.com
http://ceur-ws.org

their scope of features. Also evaluations of how well certain features facilitate
application development have been performed. Henriques et al. [2] evaluated
the process modeling language of OutSystems in a structured way and Sahay
et al. [8] discussed their experiences as a side aspect. An investigation focusing
specifically on the aspect of rapidness of development while considering several
platforms in comparison, has however not been done yet. Therefore, we performed
a qualitative investigation of several platforms by implementing a realistic use
case in a constrained experimental setup. We aim to investigate the promises
of easy, rapid application development and deployment by evaluating to which
extent this is possible with a selected set of platforms. This is summarized by
our research question:

RQ: To what extent do Low-Code Development platforms enable rapid
application development despite low prior experience?

In the following, we describe foundations of Low-Code platforms and our
use case in Sect. 2. Our approach is explained in Sect. 3. In Sect. 4 we state
the outcomes of our investigation and discuss them with regard to our research
question in Sect. 5, before concluding our work in Sect. 6.

2 Foundations

Low-Code Development Platforms are cloud environments in which applications
can be created and hosted based on the technology stack provided by the platform
vendor. The core characteristic is that vendors try to abstract as much as possible
from the technical details (the coding aspect) of application development [3, 8]
while still enabling developers, called citizen developers in this context [3, 8],
to implement their specific use case. While a higher level of abstraction and a
more constrained development environment simplify application development, the
degree to which applications can be customized for a specific use case is limited.
However, a more complex development environment is more difficult to use but
would allow for a specific customization. Therefore, platform vendors apply a range
of techniques to balance this trade-off, namely visual programming [4, 8], domain-
specific languages [3], model-driven engineering [1, 3], or pre-built components and
templates [3]. Internally, platform vendors make use of cloud computing to allocate
resources for applications on-demand and in an automated and scalable way as
described in more detail by Sahay et al. [8]. They also provide a comparison of
current Low-Code Development Platforms [8]. Differences between the platforms
originate from the diverse backgrounds of platform vendors. Regarding suitable
use cases and applications, Luo et al. [6] found out that most developers, who
discuss such platforms online, build mobile and web applications. A focus is on
process automation [6] and business-centric applications [6], such as Customer
Relationship Management (CRM) or Content Management Systems (CMS).

From our point of view, our use case therefore fits well into the context of Low-
Code applications, as we want to automate the process of a student registering for
a thesis at a university’s chair. Similar to CRM, the student can be seen as a kind
of customer managed by the chair and similar to CMS different documents are

A Use Case-based Investigation of Low-Code Development Platforms 77

involved to describe the thesis topic and for the registration of a thesis. We have
modeled the use case in its current manual form using Business Process Model
and Notation (BPMN) to identify potentials for automation5. Our envisioned
process includes a web-based application which manages and automates parts
of the process. The beginning of this process is shown in Fig. 1. For a better
understanding, the process can be divided into three Sub Processes (SP): Request
Submission (SP1), Chair Notification (SP2) and Acceptance Decision (SP3).

S
tu

de
nt

Fill in Thesis
Request Form

Accept Rejection

Interest in writing
a thesis

Request Form

Lo
w

C
od

e
A

pp

Send Email
Notification

Save new
request

Handle
Rejection

Notify chair
Add Student
Request to

Queue

C
ha

ir Chair View

Chair View

Decline Request

Accept Request
and provide

topics

Discuss Master
Student
Request

Accept received

List threshold
exceeded

Two weeks have
passed

SP1

No

Yes

SP3

Conditions met

SP2

Fig. 1. Thesis Registration Process at the University of Bamberg (excerpt).

Although this excerpt is only the beginning of the whole thesis registration
process, it is representative for the functional requirements of the whole process,
covering all layers of a typical web application: User interfaces (UI), data storage
(DS) and business logic (BL). Starting in SP1, at the UI level, students should be
able to fill in a Form with their personal information, such as name, email, and
course of studying. In addition, they should be able to upload a file that contains
further information or ideas for potential thesis topics. The app should validate
the submitted form and Save the Data in a storage layer, enriched with the date
of submission and with a status “New”. In SP2 at the BL layer, there are two
possible events which represent Triggers for a notification. If either two weeks
have passed since the submission of the oldest request or the list of new requests
has exceeded a certain threshold, the app should detect this and thereupon send
an Email to notify the members of the chair that a meeting should be held to
discuss the new requests. Finally, in SP3, after a chair meeting, it should be
possible for a chair member to View a list of all requests and to either decline
or accept each request through the click of a button. The Logic layer behind it

5 https://github.com/uniba-dsg/low-code-use-case

78 Robin Lichtenthäler et al.

https://github.com/uniba-dsg/low-code-use-case

should validate that only new requests can be accepted or declined and change
the status accordingly by performing an Update on the Data in the DS layer.

3 Methodology

Our methodology mainly follows an experimental approach as we perform a
qualitative study by implementing the previously introduced process model.
However, for a general understanding and market overview of Low-Code platforms,
we searched for empirical comparisons by using ACM, IEEE, and Scopus.

Our literature search yielded a comprehensive comparison of Low-Code plat-
forms by Sahay et al. [8]. From their list of platforms, we selected those that are
still available, offer Process Automation as a feature, and can be tested within a
free tier offering. Hence, we selected OutSystems, Microsoft Power Apps, and
Appian because only these fulfill our criteria. For the implementation, we strictly
followed the process model. We documented the implementation process for all
platforms, w.r.t. the perceived achievements and obstacles, structured by the
defined subprocesses. We applied Remote Mob Programming6 as a development
technique. The authors of the study were also its participants. This technique
offers distributed collaboration for a small team of developers (at least three).
Hereby, the members of the team are working together at the same time remotely,
e.g., via video conferencing. One by one shares the screen with the current devel-
opment environment and works actively as a so-called Typist who is executing
instructions given by the rest of the Mob. In regular intervals (we set 15 minutes
instead of the recommended 10 minutes), the advance in the development is
handed over to the next member who becomes the Typist. We followed this
procedure for three days by spending 6h/day (in line with the recommendation)
for each of the platforms. Remote Mob Programming as a development technique
was selected because we believe that compared to an approach of working with a
new platform alone, the Mob can prevent situations of a single developer getting
stuck. In such situations others can contribute their ideas and discuss the next
steps or potential solutions to overcome this. This can accelerate the development
process and discharge the involved developers. For the assessment, we used a
3-step scaling system to rate the degree of fulfillment for our requirements. All
Mob members had no prior experience with Low-Code platforms in general.
Only preparations like account creation and software installation were performed
beforehand.

4 Implementation Results

In this section, we summarize the results of the experiment which can be seen in
Table 1. This includes the aspects of our use case implemented and the problems
that occurred during implementation.
6 https://www.remotemobprogramming.org/

A Use Case-based Investigation of Low-Code Development Platforms 79

https://www.remotemobprogramming.org/

Table 1. Subprocesses from Figure 1 implemented: Fully implemented (), partially
implemented (), and not implemented ().

SP1 (Request) SP2 (Notification) SP3 (Decision)
Form Save Data Triggers Email View Logic Update Data

Appian
OutSystems
PowerApps

4.1 Appian

A unique characteristic of Appian is its custom scripting language. All building
blocks (views, data, logic) are objects in the appian designer. The integration
between these objects was hard to grasp at the beginning of our experiment. Some
features were only realizable when implementing custom boolean expressions or
configuring elements in a way where the graphical editor had no predefined option
and we had to use the scripting language. This complicated the development
process in our one-day-workshop. Reading the documentation and understanding
the scripting language was often necessary to proceed. Appian integrates with
public cloud providers and their systems as well as to other external sources
like ERM/CRM systems. A deployment was implicitly done when storing the
different elements.

The UI implementation was well supported via the graphical editor. Some
aspects were not implementable with the editor, e.g., when more mature features
like grouping input fields (SP1.Form) or a display of all students with their
status buttons (SP3.View) were needed. The logic is defined in a process-like
interface similar to the options in BPMN where tasks can be configured via
the scripting language. Triggers can start these processes. For mail integration,
we used the predefined Appian service. The timer trigger did not work in our
experiment whereas the element size check of the already stored entities succeeded
(SP2.Trigger). We stored primitives through our forms, but faced difficulties
storing files (SP1.Save Data). With our gained knowledge, SP3 was implemented
without issues.

4.2 OutSystems

In contrast to Appian and PowerApps, OutSystems requires locally installed
client software which include self-explanatory hints, tooltips and autocompletion
features. All study participants used the same account with the same log-in
credentials. Only the desktop application was used since the synchronization
worked properly via the cloud. Particularly noteworthy was the deployment which
could be done by a single click without any further knowledge.

After some time, we found out, that forms can be created based on the data
model. OutSystems’ storage solution uses one of several predefined SQL servers
where files can be stored as blob entries in a table. Therefore, we defined the data
model first and created our views by attaching the data table to it. Additional

80 Robin Lichtenthäler et al.

fields of other tables were created via dragging and dropping the corresponding
input fields from the tool bar. The input fields were automatically integrated in a
submit form which already included the logic to persist the data. OutSystems was
the only platform, where we managed the mentioned file upload and download
(SP1.Save Data). The time based trigger did not work in our use case, whereas
the list threshold exceeded trigger did (SP2.Trigger). The mail integration in SP2
was possible with an existing SMTP server. A consistent look and feel of the
platform helped to implement SP3 without facing any challenges.

4.3 PowerApps

PowerApps is fully integrated with other Microsoft products and the Azure cloud.
To make use of these integrations, code writing skills are required for different
layers of the Low-Code platform (e.g., for validation or UI workflows). The
documentation, however, is structured on an individual product level, making it
difficult to find details and best practices on the integration with PowerApps.
Another difficulty were unclear error messages, e.g., “Schemas do not match” or
“HTTP request failed” in the context of integrating a Flow with a UI button.

For SP1, the form and data storage was realizable after some starting problems.
Data storage (Dataverse) and the business logic execution (Flows engine) are
separate, modular products which complicate building a full stack app in our
experimental setting. As for the other platforms, business logic can be executed
based on triggers which were difficult to integrate with the Dataverse tables.
Triggering the mail worked partially, see Table 1, as we were able to send a mail
based on a timer but not on the exact conditions of the list threshold. Mail
integration was possible with an existing SMTP server. Due to the problems we
faced, especially with the integration of the different products, there was not
enough time left to implement SP3, apart from creating the accept and decline
button in the view.

5 Discussion

As an initial answer to our research question we can state that we were able to
rapidly realize large parts of our use case with all three platforms, despite no
previous specific experience with them. Nevertheless, our general knowledge about
software engineering helped us in finding the needed options in the platforms
more quickly. Being familiar with the classic three-layer application design, for
example, helped us to already have a general structure for the application in mind.
From our point of view, someone without general software engineering knowledge
had to follow more closely the guidelines, tutorials, and documentation provided
by the platform to become productive but could, after some training, also profit
from the features of a platform to build applications rapidly. However, as we
could see from the more detailed aspects of our use case (e.g., data validation
or checking custom conditions), a higher use case complexity usually requires
more technical knowledge which is also in line with the overall assessment of

A Use Case-based Investigation of Low-Code Development Platforms 81

Luo et al. [6]. Such technical knowledge might stem from a general background
in computer science or from practical experience with a platform over a longer
time. Detailed knowledge for one platform, however, might be difficult to apply
elsewhere. That’s why, from our point of view, a general background in computer
science still provides a better foundation for application development. In addition
to these general findings, the three platforms we investigated can be further
differentiated. Overall, we found OutSystems to be a solution more focused
on citizen developers. Its clean design via drag and drop elements, automatic
integration with the storage layer and in particular its one-click-deployment
contribute to the best Low-Code experience we faced in this experiment. The
other two solutions could be described as Less-Code platforms. PowerApps is
integrated with a lot of services of the Microsoft Azure’s cloud environment. For
enterprise users, this integration might be beneficial since already used services
can be integrated into PowerApps, but programming is more technically compared
to the application stack in OutSystems. Contrary to the other platforms, Appian
offers a custom scripting language together with a custom component model. For
feature-rich, rapid bootstrapped applications this platform design might support
customers to build web applications. Without deeper technical knowledge in
Appian and an understanding of the DSL, Appian is an expert system as the
market for professional Appian developers shows.

Regarding features and techniques that supported rapidness in application
development, we faced the best experience whenever the low code platforms
provided intuitive interactions, suggestions, and direct feedback. One example
are software wizards for generating UIs based on the defined data scheme which
guide through the creation process in a focused interface. Additionally, these
interfaces rely on visual programming by offering drag and drop features to
alter the UI for displaying some fields respectively leaving out others, all while
arranging these fields in a visually appealing layout as a default. In these cases,
no extensive software engineering skills are needed to understand the layering of a
system and progress can be made quickly, because the platform provides suitable
defaults and templates. In other cases where custom DSL expressions need to be
written the implementation flexibility increases, but comes with the difficulty to
be familiar with the specific syntax. To take low coding literally, we refined the
classification scheme for our selected platforms. We only rate OutSystems as a
low code platform whereas Appian and PowerApps are less code ones.

Considering the feasibility of implementing our use case with the three
platforms, we can state that from a functionality point of view, all platforms
fulfill the functional requirements. In comparison to other implementation options,
additional aspects like vendor lock-in or overall operation costs would need to be
considered, but are out of the scope of this work. Finally, our experiment also
has some threats to validity: (1) All study participants aka paper authors have a
background in computer science. Therefore, the comparison to citizen developers
is flawed and could be investigated in an additional experiment in future work.
(2) The time limitation of six hours for each platform is one strength for a fair
comparison but can introduce false conclusions due to the shallow investigation

82 Robin Lichtenthäler et al.

of the documentation and an absence of deeper knowledge about the platforms
and their designs. (3) Some features like encryption of the data, security and role
management with providers like LDAP were not tested due to time limitations.

6 Conclusion

In this paper, we made an experimental investigation of Low-Code platforms.
We find that the investigated Low-Code platforms do enable rapid application
development through easing the implementation effort. Nevertheless, coding is
still required at some points, which is shown by the two Less-Code platforms in
our investigation. Low-Code platforms are within this area of tension between
ease of usage, enabling citizen developers to create apps, and the integration
with other systems and a cloud provider’s ecosystem. Due to this trade-off, some
platforms are focused on a single application for development whereas others
provide a feature-rich ecosystem.

References

1. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Proc. of FOSE (2007), https://doi.org/10.1109/FOSE.2007.14

2. Henriques, H., Lourenço, H., Amaral, V., Goulão, M.: Improving the developer
experience with a low-code process modelling language. In: Proc. of MODELS (2018),
https://doi.org/10.1145/3239372.3239387

3. Khorram, F., Mottu, J.M., Sunyé, G.: Challenges & opportunities in low-code testing.
In: Proc. of MODELS Companion (2020), https://doi.org/10.1145/3417990.3420204

4. Kuhail, M.A., Farooq, S., Hammad, R., Bahja, M.: Characterizing visual programming
approaches for end-user developers: A systematic review. IEEE Access 9, 14181–14202
(2021), https://doi.org/10.1109/ACCESS.2021.3051043

5. Lebens, M., Finnegan, R.: Using a low code development environment to teach the agile
methodology. In: Agile Processes in Software Engineering and Extreme Programming,
pp. 191–199. Springer International Publishing (2021), https://doi.org/10.1007/
978-3-030-78098-2_12

6. Luo, Y., Liang, P., Wang, C., Shahin, M., Zhan, J.: Characteristics and challenges
of low-code development. In: Proc. of ESEM (2021), https://doi.org/10.1145/
3475716.3475782

7. Martins, R., Caldeira, F., Sa, F., Abbasi, M., Martins, P.: An overview on how to
develop a low-code application using OutSystems. In: Proc. of ICSTCEE. IEEE (2020),
https://doi.org/10.1109/ICSTCEE49637.2020.9277404

8. Sahay, A., Indamutsa, A., Ruscio, D.D., Pierantonio, A.: Supporting the understanding
and comparison of low-code development platforms. In: Proc. of SEAA (2020),
https://doi.org/10.1109/SEAA51224.2020.00036

9. Wong, J., Iijima, K., Leow, A., Jain, A., Vincent, P.: Magic quadrant for enterprise
low-code application platforms. online (2021), https://www.gartner.com/doc/
reprints?id=1-27IIPKYV&ct=210923&st=sb, published 20 September 2021

All links were last followed on January 18, 2022.

A Use Case-based Investigation of Low-Code Development Platforms 83

https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1145/3239372.3239387
https://doi.org/10.1145/3417990.3420204
https://doi.org/10.1109/ACCESS.2021.3051043
https://doi.org/10.1007/978-3-030-78098-2_12
https://doi.org/10.1007/978-3-030-78098-2_12
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1109/ICSTCEE49637.2020.9277404
https://doi.org/10.1109/SEAA51224.2020.00036
https://www.gartner.com/doc/reprints?id=1-27IIPKYV&ct=210923&st=sb
https://www.gartner.com/doc/reprints?id=1-27IIPKYV&ct=210923&st=sb

