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Abstract  
A novel iterative splitting algorithm for solving operator inclusions problem is considered in a 
real Banach space setting. The operator is a sum of the multivalued maximal monotone 
operator and the monotone Lipschitz continuous operator. The proposed algorithm is an 
adaptive modification of the “forward-reflected-backward algorithm” [14]. Step size update 
rule not require Lipschitz constant knowledge of the operator. Advantage of the proposed 
algorithm is a single calculation of the maximal monotone operator resolvent and value of the 
monotone Lipschitz continuous operator on each iterative step. Weak convergence of the 
method is proved for operator inclusions in 2-uniformly convex and uniformly smooth real 
Banach space.   
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1. Introduction 

Consider real Banach space E . Denote it’s dual space as E  . We study monotone operator 
inclusion: 

find x E :    0 A B x  ,                                                            (1) 

where : 2EA E


  is multivalued maximal monotone operator, *:B E E  is monotone, single-valued, 
and Lipschitz continuous operator.  

Many actual problems can be written in the form of (1). Among them are variational inequalities 
and optimization problems from various fields of optimal control, inverse problem theory, machine 
learning, image processing, operations research, and mathematical physics [1–6]. Prominent example 
is the saddle problem that plays an important role in mathematical economics: 

 min max ,
p P q Q

F p q
 

, 

where :F P Q R   is a smooth convex-concave function, nP R , mQ R – closed convex sets, 

which can be formulated as 
find x  such that  0 A B x  , 

where  , n mx p q R    and 

P

Q

N p
Ax

N q

 
  
 

,  
 
 

1

2

,

,

F p q
Bx

F p q

 
    

, 

PN  ( QN ) is a normal cone operator for closed convex set P  ( Q ) [1]. 
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Research and development of algorithms for operator inclusions (1) and related problems is a rapidly 
growing field of applied modern nonlinear analysis [1–4, 7–25]. 

The most well-known and popular iterative method for solving monotone operator inclusions (1) in 
Hilbert space is the “forward-backward algorithm” (FBA) [1, 11, 12] 

 1
A

n n nx J x Bx    , 

where   1AJ I A     is the operator resolvent, : 2HA H  , 0  .  

Note that the FBA scheme includes well-known gradient method and proximal method as special 
cases [1]. For inverse strongly monotone (cocoercive) operators :B Н Н  FBA method is weakly 
converging [1]. However, FBA  may diverge for Lipschitz continuous monotone operators B . 

The condition of the inverse strong monotonicity of the operator B  is a rather strong assumption. 
To weaken it, Tseng [13] proposed the following modification of the FBA: 

 
 1

,

,

A
n n n

n n n n

y J x Bx

x y By Bx

 



  


  
 

where :B H H – monotone and Lipschitz continuous operator with constant 0L   and  10, .L   

A main limitation of Tseng method is their two calls of B  per iteration. Evolution of this idea resulted 
in the so-called “forward-reflected-backward algorithm” [14]: 

  1 1
A

n n n n nx J x Bx Bx Bx       , 
1

0,
2L

   
 

, 

and related method [15]: 

   1 1
A

n n n n nx J x Bx Bx Bx       , 
1

0,
3L

   
 

. 

A special case of this algorithm is the algorithm “optimistic gradient descent ascent”, which is 
popular among specialists in the field of Machine Learning [14, 15]. 

These schemes are naturally called operator extrapolation schemes. Note that in the three above 
algorithms there is a requirement to know operator’s Lipschitz constant – which is often unknown or 
difficult to estimate. To overcome these difficulties, adaptive rules for updating parameter 0   on 
each step have been proposed [16]. 

Some progress has been achieved recently in the study of splitting algorithms for operator inclusions 
in Banach spaces [2, 17–25]. This progress is mostly related to careful use of  theoretical results and 
concepts from Banach spaces geometry [2, 26-29]. Book [2] contains an extensive material on this 
topic.  

In the article [17] for the solution of inclusions (1) in the 2-uniformly convex and uniformly smooth 
Banach space the next algorithm is proposed: 

 1
1

A
n n nx J J Jx Bx 
   ,                                                           (2) 

where   1AJ J A J     is the resolvent of operator : 2EA E


 , 0  , J  is the normalized duality 

mapping from E  to E  . For inverse strongly monotone (cocoercive) operators *:B E E  method (2) 
weakly converges [17]. Recently, Shehu [18] extended Tseng's result to 2-uniformly convex and 
uniformly smooth Banach spaces. He proposed the following weakly converging process for 
approximating the solution of inclusion (1): 

 
  

1

1
1

,

,

A
n n n n

n n n n n

y J J x Bx

x J Jy By Bx

 








  


  


                                                       (3) 

where 0n   can be set using knowledge of Lipschitz constant of the operator B  or calculated with 
linear search. Note that two values of operator B  need to be calculated at the iteration step. 

In this article we study a new splitting algorithm for solving operator inclusion (1) in Banach space. 
The algorithm is an adaptive modification of the well-known Malitsky–Tam “forward-reflected-
backward algorithm” [14], where the step size update rule not require Lipschitz continuous constant 



knowledge for operator B . It’s advantage is a single computation of maximal monotone operator A  
resolvent and B  operator value on each iterative step. The method weak convergence theorem is proved 
for operator inclusions in 2-uniformly convex and uniformly smooth Banach space. 

The article structure is the following. Section 2 provides the necessary information from the areas 
of geometry of Banach spaces and theory of monotonous operators. The proposed adaptive operator 
extrapolation algorithm is described in section 3. Proof of weak convergence is presented in section 4. 
Theoretical applications to nonlinear operator equations, convex minimization problems and variational 
inequalities are given in sections 5 and 6. Some results of numerical experiments are also presented in 
section 7. 

2. Preliminaries 

To formulate and prove our results about convergence of algorithms we need some concepts and 
important facts about the geometry of real Banach space [26–33]. 

Consider real Banach space E  with norm  . Space E  is the dual space for E . Let ,x x  is a 

value of linear bounded mapping x E   on x E  (i.e.  ,x x x x  ). Let’s 

  be dual norm in dual 

space E . 

Let  : 1ES x E x   . Space E  is strictly convex, if   , Ex y S , x y  we have 1
2

x y
  

[26]. The modulus of convexity of Banach space E  is defined as [27] 

  inf 1 : , ,
2E E

x y
x y S x y   

     
 

    0,2  . 

Space E  is uniformly convex, if   0E      0,2   [27]. Space E  is 2-uniformly convex, if 

there exists such 0c    that   2
E c      0,2   [27]. It is known that 2-uniform convexity implies 

uniform convexity. Also the uniform convexity of real Banach space implies its reflexivity [26].  
A space E  is smooth if the limit 

0
lim
t

x ty x

t

 
                                                                    (4) 

exists for all , Ex y S  [26]. A space E  is uniformly smooth if the limit (4) exists uniformly over 

, Ex y S  [26].  

Convexity type and smoothness type of spaces E  and E  are in duality relationship [26, 27]: dual 
space E  is strictly convex  space E  is smooth [26]; dual space E  is smooth  space E  is strictly 
convex [26]; space E  is uniformly convex  dual space E is uniformly smooth [26]; space E  is 
uniformly smooth  dual space E is uniformly convex [27]. We can reverse the first two implications 
if the space E  is reflexive [26]. 

Widely used functional spaces pL  (1 2p  ) and real Hilbert spaces are uniformly smooth (spaces 

pL  are uniformly smooth for  1,p  ) and 2-uniformly convex [26–29]. 

Also recall [1, 28, 31, 32] that a multivalued operator : 2EA E


  is called monotone if ,x y E    

, 0u v x y       ,u Ax v Ay   . 

A monotone operator : 2EA E


  is called maximal monotone if for any monotone operator 

: 2EB E


  we have that    A B    implies    A B   , where 

    , :A x u E E u Ax      

is a graph of A  [1, 28, 31]. 

Lemma 1 ([1, 28]). Let : 2EA E


  be a maximal monotone operator, x E , u E  . Then 



, 0u v x y        ,y v A              ,x u A . 

It is known that if : 2EA E


 is maximal monotone operator, *:B E E is Lipschitz continuous 
monotone operator, then A B  is maximal monotone operator [28, 31]. 

Let us also recall [1] that operator *:A E E  is called inverse strongly monotone (cocoercive) if 
there exists such a number 0   (the constant of inverse strong monotonicity) that 

2
,Ax Ay x y Ax Ay    . 

Inverse strongly monotone operator is Lipschitz continuous, but not every Lipschitz continuous 
operator is inverse strongly monotone. 

Multivalued mapping : 2EJ E


 , which acts as 

 22
: ,Jx x E x x x x   


    , 

is called normalized duality mapping [30]. We also use the next facts [28, 30, 32, 33]: if Banach space 
E  is smooth then operator J  is single-valued [30]; if real Banach space E  is strongly convex then 
operator J  is one-to-one and strongly monotone [28]; if Banach space E  is reflexive then operator J  
is onto [28]; if Banach space E  is uniformly smooth then on all bounded subsets of E  operator J  is 
uniformly continuous [30]. 

Remark 1. For a Hilbert space J I . Explicit form of operator J  for Banach spaces p , pL , and 
m
pW  (  1,p  ) is provided in [28, 32]. 

Consider reflexive, strictly convex and smooth space E  [26]. The maximal monotonicity of operator 

: 2EA E


  is equivalent to equality  

 R J A E    

for all 0   [31]. For maximal monotone operator : 2EA E


  and 0   resolvent :AJ E E   is 
defined as follows [31] 

  1AJ x J A Jx    ,  x E , 

where J  is normalized duality mapping from E  to E . It is known that 

   10 :A AA F J x E J x x 
         0  . 

It is also known that the set 1 0A  is closed and convex [1, 31]. 
Consider smooth Banach space E  [26]. Yakov Alber introduced the convenient real-valued 

functional [32] 

  2 2
, 2 ,D x y x Jy x y       ,x y E  . 

Definition of D  implies a useful 3-point identity: 

     , , , 2 ,D x y D x z D z y Jz Jy x z          , ,x y z E  . 

For strictly convex Banach space E  and ,x y E  [32]:  

 , 0D x y   x y . 

Lemma 2 ([31]). Let E  be a uniformly convex and uniformly smooth Banach space  nx ,  ny  – 

bounded sequences of elements from Banach space E . Then 
 0 0 , 0n n n n n nx y Jx Jy D x y


       . 

     Lemma 3 ([24, 25]). Let E  be a smooth Banach space and 2-uniformly convex. Then for some 1   
we have: 

  21
,D x y x y


      ,x y E  . 



Remark 2. For Banach spaces p , pL  and m
pW  (1 2p  ) we have 

1

1p
 


 [29]. And for a Hilbert 

space inequality for Lemma 3 becomes identity. 
 

3. Algorithm 

Let real Banach space E  be a uniformly smooth and 2-uniformly convex [27]. Let A  be a 

multivalued operator acting from E  into 2E

, and B  an operator acting from E  into *E .  
Consider the next operator inclusion problem: 

find x E :    0 A B x  ,                                                    (5) 

Let us denote   1
0A B

  set of solutions of this operator inclusion. 

Suppose that the next assumptions hold [20]: 

 : 2EA E


  is a maximal monotone operator; 
 *:B E E  is a monotone and Lipschitz continuous operator with Lipschitz constant 0L  ; 

 Set   1
0A B

  is nonempty. 

Operator inclusion (5) can be formulated as the problem of finding a fixed point: 
find x E :   1Ax J J Jx Bx   ,                                        (6) 

where 0  . Formulation (6) is useful, as it leads to well-known simple algorithmic idea. Calculation 
scheme  

 1
1

A
n n nx J J Jx Bx 
    

was studied in [17] for inverse strongly monotone operators *:B E E . However, the scheme 
generally does not converge for Lipschitz continuous monotone operators. Let's use the idea of work 
[14] and consider modified scheme 

  1
1 1

A
n n n n nx J J Jx Bx Bx Bx  
        

with extrapolation term  

 1n nBx Bx   . 

And let’s use update rule for 0   similar to one from [16] to exclude explicit use of Lipschitz 
constant of operator B . 

We will assume that we know constant 1   from Lemma 3. 

 
Algorithm 1. 

Choose some 0x E , 1x E ,  1
20,    and 0 1, 0   . Set 1n . 

1. Compute 

  1
1 1 1n

A
n n n n n n nx J J Jx Bx Bx Bx  
      . 

2. If 1 1n n nx x x   , then   1
0nx A B

  , else return to 3. 

3. Compute 

1
1

1 1 *

min , ,    if ,

,                         otherwise.

n n
n n n

n n n

n

x x
Bx Bx

Bx Bx
 








 

          



 

Set 1n n   and return to 1. 
 

Step size sequence  n  which is created by rule on step 3 is non-increasing and bounded from 

below by 



 11min , L   . 

So, we have lim 0n
n




 . 

Let us prove convergence result for proposed Algorithm 1. 

4. Proof of convergence 

The following lemma contains inequality which is crucial to proof weak convergence of adaptive 
operator extrapolation method (Algorithm 1). 

Lemma 4. The next inequality holds for the sequence  nx , generated by adaptive operator 

extrapolation method (Algorithm 1): 

   1 1 1 1
1

, 2 , ,n
n n n n n n n

n

D z x Bx Bx x z D x x
 
   



          

   1
1 1 1, 2 , ,n

n n n n n n n
n

D z x Bx Bx x z D x x
 



         

 1
1

1

1 ,n n
n n

n n

D x x
 

 
 





 
   
 

, 

where   1
0z A B

  . 

Proof. Let   1
0z A B

  . Then 

Bz Az  . 

Equality   1
1 1 1n

A
n n n n n n nx J J Jx Bx Bx Bx  
       can be formulated as 

 1 1 1 1n n n n n n n n nJx Bx Bx Bx Jx Ax          . 

From monotonicity of A  

   1 1 1 1, 0n n n n n n n nJx Bx Bz Bx Bx Jx z x           .                                  (7) 

Let’s write 3-point identity 

     1 1 1 1, , , 2 ,n n n n n n nD z x D z x D x x Jx Jx z x        .                                         (8) 

Using (8) withing (7) we get 

     1 1, , ,n n n nD z x D z x D x x       1 1 12 ,n n n n n nBx Bz Bx Bx z x        .           (9) 

Using monotonicity of operator B . We have 

   1 1 1,n n n n n nBx Bz Bx Bx z x         1 1,n n n nBx Bx z x       

1 1 1,n n n nBx Bx z x       1 1

0

,n n nBx Bz z x  



  


 

1 1 1 1, ,n n n n n n n nBx Bx z x Bx Bx z x            

1 1 1,n n n n nBx Bx x x      .    (10) 

Using (10) withing (9) we get 

     1 1 1 1, , , 2 ,n n n n n n n nD z x D z x D x x Bx Bx z x              

1 1 1 1 12 , 2 ,n n n n n n n n nBx Bx z x Bx Bx x x           .           (11) 

Using the rule for n  recalculation, we can estimate term 1 1 12 ,n n n n nBx Bx x x      in (11) from 

above. We get 



1 1 1 1 1 1*
2 , 2n n n n n n n n n nBx Bx x x Bx Bx x x            1

1 12 n
n n n n

n

x x x x




     

2 21 1
1 1

n n
n n n n

n n

x x x x
  
 
 

         1 1
1 1, ,n n

n n n n
n n

D x x D x x
  
 
 

  . 

So, we came to inequality 

           1 1 1 1
1

, 2 , ,n
n n n n n n n

n

D z x Bx Bx x z D x x
 
   



      

   1
1 1 1, 2 , ,n

n n n n n n n
n

D z x Bx Bx x z D x x
 



         1
1

1

1 ,n n
n n

n n

D x x
 

 
 





 
  

 
, 

which was required to prove. 
The next theorem states our main result. 

Theorem 1. Let Banach space E  be a uniformly smooth and 2-uniformly convex, : 2EA E


  be a 

multivalued maximal monotone operator, *:B E E  be a monotone and Lipschitz continuous 
operator. Suppose that J  (normalized duality map) is sequentially weakly continuous and 

  1
0A B

  . Then we have weak convergence of sequence  nx  generated by adaptive operator 

extrapolation method (Algorithm 1) to a point   1
0z A B

  . 

Proof. Let   1
0z A B

  . Denote 

   1
1 1 1, 2 , ,n

n n n n n n n n
n

a D z x Bx Bx x z D x x
 



        , 

 1
1

1

1 ,n n
n n n

n n

b D x x
 

 
 





 
   
 

 

Inequality from Lemma 4 becomes  

1n n na a b   . 

As lim 0n
n




  exists, we have 

 1

1

1 1 2 0,1n n

n n

   
 




      when n . 

Let’s show, that 0na   for all big enough n N . We have 

   1
1 1 1, 2 , ,n

n n n n n n n n
n

a D z x Bx Bx x z D x x
 



          

2 21
1 1 1*

1
2 n

n n n n n n n
n

x z Bx Bx x z x x
 

 


            

2 21 1
1 1

1
2 n n

n n n n n n
n n

x z x x x z x x
  

  
 

         
211 n

n
n

x z



 

 
  

 
. 

We can find such 0n N  that  

11
0n

n


 

   for all 0n n , 

so 0na   for all 0n n . 
Now we can conclude that the next limit exists 

   1
1 1 1lim , 2 , ,n

n n n n n n n
n

n

D z x Bx Bx x z D x x
 



  

 
     

 
, 

and 



 1
1

1 1

1 ,n n
n n

n n n

D x x
 

 
 





 

 
    

 
 . 

So the generated sequence  nx is bounded. Also we have 

 1 1lim , lim 0n n n n
n n

x x x x   
   . 

From the fact 

 1
1 1 1lim 2 , , 0n

n n n n n n
n

n

Bx Bx x z D x x


 



  

 
    

 
, 

we get convergence of sequences   , nz x   for all   1
0z A B

  . 

Let us show that all weak partial limits of  nx  sequence belong to set   1
0A B

 . Consider a 

subsequence  
knx  that weakly converges to some point z E . Let’s show that  

  1
0z A B

  . 

If we take any point    ,y v A B   then v By Ay  . We have  

 1 1 1 1k k k k k k k k kn n n n n n n n nJx Bx Bx Bx Jx Ax          . 

Using monotonicity of A  operator, we get 

   1 1 1 1, 0
k k k k k k k k kn n n n n n n n nv Jx Bx By Bx Bx Jx y x             . 

And then, using monotonicity of B  operator, we can obtain the following estimation 

1, ,
k k kn n nv y x v x x      

1,
knv y x      1 1 1 1

1
,

k k k k k k k k

k

n n n n n n n n
n

By Jx Jx Bx Bx Bx y x 
            

1 1

1
,

k k k

k

n n n
n

Jx Jx y x
      1

1 1,k

k k k

k

n
n n n

n

Bx Bx y x




     

1 1 1 1, ,
k k k k kn n n n nBy Bx y x Bx Bx y x           

1 1

1
,

k k k

k

n n n
n

Jx Jx y x
      1

1 1,k

k k k

k

n
n n n

n

Bx Bx y x




    1 1,

k k kn n nBx Bx y x   . 

From  

1lim 0n n
n

x x 
  , 

and the Lipschitz continuity of B  we have  

1 *
lim 0n n
n

Bx Bx 
  . 

Due to the uniform continuity on bounded sets of the J  [30], we obtain 

1 *
lim 0n n
n

Jx Jx 
  . 

Thus  

, lim , 0
kn

k
v y z v y x


    . 

The maximal monotonicity of operator A B  and arbitrariness of    ,y v A B   imply 

  1
0z A B

   (Lemma 1). 

We need to prove that the sequence  nx  weakly converges to point z . Let’s argue by contradiction. 

Let there exist a subsequence  
kmx  that weakly converges to z , z z . Obviously that 

  1
0z A B

  . We have the equality  



    2 2
2 , , ,n n nJx z z D z x D z x z z       . 

So the next limit exists  
lim ,n
n

Jx z z


 . 

Due to the sequential weak continuity of the normalized duality mapping J , we obtain 

, lim , lim , ,
k kn m

k k
Jz z z Jx z z Jx z z Jz z z

 
           , 

so  
, 0Jz Jz z z    . 

As a result we get the contradiction – z z .  

5. Algorithm variants 

For completeness, let us formulate a modification of the proposed algorithm with a fixed step size 
parameter 0  . 
 

Algorithm 2. 

Select some points 0x E , 1x E , and 11
0,0.5 L


 

 
 

. Set 1n  . 

1. Compute 

 1
1 12 .A

n n n nx J J Jx Bx Bx  
     

2. If 1 1n n nx x x   , then   1
0nx A B

  . Else set 1n n   and return to 1. 

 
Consider the problem of finding the zero of a nonlinear monotone Lipschitz continuous operator 

*:B E E : 
find x E :   0Bx  . 

For such case Algorithm 1 becomes 
 

Algorithm 3. 

Choose some 0x E , 1x E ,   1
0, 2    and 0 1, 0   . Set 1n  . 

1. Compute 

  1
1 1 1 .n n n n n n nx J Jx Bx Bx Bx 
       

2. If 1 1n n nx x x   , then 10nx B . Else go to 3. 
3. Compute 

1
1

1 1 *

min , ,    if ,

,                       otherwise.

n n
n n n

n n n

n

x x
Bx Bx

Bx Bx
 








 

          



 

Set 1n n   and return to 1. 
 
Weak convergence of Algorithm 3 follows from Theorem 1. 
Theorem 2. Let Banach space E  be uniformly smooth and 2-uniformly convex, *:B E E  – 

monotone and Lipschitz continuous operator, 10B  . If  J  (normalized duality mapping) is 

sequentially weakly continuous, then the sequence  nx  converges weakly to some point 10z B . 

Remark 3. In [17], the following algorithm was proposed to find the zero of a reverse strongly 
monotone operator *:B E E : 

 1
1n n n nx J Jx Bx
   , 1x E , 



where  , 0,n a b



 
   

 
, 0   – the constant of inverse strong monotonicity of operator B . This 

algorithm generally does not converge for Lipschitz continuous monotone operators, but it converges 
weakly ergodic. 

Using Theorem 2, let us consider the problem of minimizing a convex continuously Frechet 
differentiable functional 

  min
x E

f x


 .                                                                  (12) 

We can formulate variant of Algorithm 3 for (12), which is a smooth convex minimization problem. 
 

Algorithm 4. 

Choose some 0x E , 1x E ,  1
20,    and 0 1, 0   . Set 1n  . 

1. Compute 

       1
1 1 1 .n n n n n n nx J Jx f x f x f x 
         

2. If 1 1n n nx x x   , then argminnx f . Else return to 3. 
3. Compute 

   
   1

1
1 1 *

min , ,    if ,

,                       otherwise.

n n
n n n

n n n

n

x x
f x f x

f x f x
 








 

            


 

Set 1n n   and return to 1. 
 
For this variant of the algorithm, from Theorem 2 we get  
Theorem 3. Let Banach space E  be uniformly smooth and 2-uniformly convex, :f E R  – convex 

continuously Frechet differentiable functional with Lipschitz continuous derivative, and argmin f  is 

non-empty. Assume that J  is sequentially weakly continuous. Then sequence  nx  generated by 

Algorithm 4 converges weakly to a point argminz f . 

6. Application to variational inequalities 

Consider real Hilbert space H . Let C  is a non-empty, convex and closed subset of space H , 
:B H H  is a monotone and Lipschitz continuous operator. Consider the next variational inequality 

problem: 
find x C  such that   , 0Bx y x    y C  ,                                   (13) 

Let  ,VI B C  be a solution set of problem (13). Variational inequality (13) is equivalent to the 

operator inclusion [1] 
find x H  such that    0 A B x  , 

where CA N  is a normal cone for convex and closed set C , i.e.  

  : , 0 , ,

,                                   otherwise.
C

w H w y x y C x C
N x

       


 

It is known that  

   1 1A
C CJ I A I N P        , 

where CP  is projection operator onto the set C  [1]. 
For variational inequality problem (13), adaptive operator extrapolation method (Algorithm 1) takes 

the following form: 
 



Algorithm 5. 
Choose some 1x H , 2x H ,  0,0.5   and 1 2, 0   . Set 2n  . 

1. Compute 

  1 1 1n C n n n n n nx P x Bx Bx Bx       . 

2. If 1 1n n nx x x   , then STOP and  ,nx VI B C . Else go to 3. 

3. Compute 

1
1

1 1

min , ,      if ,

,                       otherwise.

n n
n n n

n n n

n

x x
Bx Bx

Bx Bx
 








 

          



 

Set 1n n   and return to 1. 
 
For variational inequality case, from Theorem 1 we get 
Theorem 4. Let H  be a real Hilbert space, C  is a non-empty, convex and closed subset of H , 

:B H H is a monotone Lipschitz continuous operator,  ,VI B C  . Then the sequence  nx  

generated by Algorithm 5 converges weakly to a point  ,z VI B C . 

7. Numerical experiments 

The numerical experiments are performed in Python 3.8.5 with NumPy 1.19 on a 64-bit PC with an 
Intel Core i7-1065G7 1.3 – 3.9GHz and 16GB RAM. As the test example we consider a toy variational 
inequality with pseudo-monotone operator. 

Example. Let  

  3 3
1 2 35,5 : 0С x x x x R       , 

and operator 3 3:B R R  be defined as  

 2

2 0 2

0,2 0 3 0

2 0 4

xBx e x

 
    
  

 

The variational inequality problem of finding  : , 0x C Bx y x y C      has unique solution 

 * 0,0,0x  . Also, Lipschitz constant for the operator B  is known – 10.136L  . We compare adaptive 

and non-adaptive (marked as “lip” on figures) variants of “Extrapolation from the Past” algorithm [9] 
and Algorithm 5. For stopping criteria and error estimation we use Euclidian distance to known solution 

*
n nD xx  . For this example, we use 0 ( 4,3,5)x    as starting point, 0.9( 2 1) / L    for non-

adaptive version of “Extrapolation from the Past” and 0.9/ 2L   for non-adaptive version of 
Algorithm 5. Also, we use 0.3   and 0.45   (nearly maximal feasible values) for adaptive versions 
of  “Extrapolation from the Past” and Algorithm 5 accordingly.  

Time measurements below are got by averaging 100 runs for each algorithm. 
 

Table 1 

Time to reach desired error rate  nD , seconds 

error\algorithm  Extra Past (lip)  Extra Past  Alg. 5 (lip)  Alg. 5 
101 10     0.0308  0.0174  0.0181  0.0087 
131 10     0.0419  0.0251  0.0245  0.0129 
161 10     0.0555  0.0352  0.0331  0.0182 

 
As we see from Table 1, for this problem Algorithm 5 outperforms other variants. 



On the figure below we can see convergence behavior.  
 

 
Figure 1: Convergence in terms of iterations 

 
As it can be seen, both adaptive algorithms behave very closely. But it should be noted that 

Algorithm 5 has only one projection on each iteration instead of two for “Extrapolation from the Past” 
algorithm [9] 

 
 

1

1

,

.

n C n n n

n C n n n

y P x By

x P x By








  


 
 

8. Conclusions 

In this paper new iterative splitting algorithm for solving an operator inclusion with the sum of a 
maximal monotone operator and a monotone Lipschitz continuous operator in a real Banach space is 
investigated.  

Algorithm 1 is an improvement of the well-known “forward-reflected-backward algorithm” of 
Malitsky–Tam [14] with adaptive step size, where the step update rule does not require a priori 
knowledge of the Lipschitz constant of operator B  [16].  

The algorithm advantage is a single computation of the resolvent of the maximal monotone operator 
A  and the value of the monotone Lipschitz continuous operator B  at the iteration step.  

Method weak convergence theorem is proved for operator inclusions in Banach space with 2-
uniform convexity and uniform smoothness [27]. Theoretical applications to operator equations, convex 
minimization problems, and variational inequalities are presented.  

An interesting challenge for the future is the development of a strongly convergent modification for 
Algorithm 1.  



In connection with the study we will point out two topical issues. First, all results are obtained for 
the class 2-uniformly convex and uniformly smooth real Banach spaces [27], which does not contain 
important for applications spaces pL  and m

pW  ( 2 p   ). It is highly desirable to get rid of this 

limitation. Second, fast and robust algorithms for computing the resolvent for a wide range of maximal 
monotone operators are needed to effectively apply algorithms for nonlinear problems in Banach 
spaces.  

An interesting question is the study of the behavior of Algorithm 1 in the situation A I . Namely, 

the question of asymptotic behavior of 
*nBx . Note that an estimate  1

*n n
Bx O is theoretically 

possible. 
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