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Abstract
-5pt Endoscopic imaging is largely used as the diagnostic tool for Colon polyps-induced GI tract cancer. This diagnosis
via image identification requires expertise that may be lacking in inexperienced physicians. Hence, using a software-aided
approach to detect those anomalies may better identify the tissue abnormalities. In this paper, a novel deep learning network
’XP-Net’ with Effective Pyramidal Squeeze Attention (EPSA) module using hierarchical adversarial knowledge distillation by
a combination of two teacher networks is proposed. It adds ‘complementary knowledge’ to the student network– thus aiding
in the improvement of network performance. The lightweight EPSA block enhances the current network architecture by
capturing multi-scale spatial information of objects at a granular level with long-range channel dependency. The XP-Net
compiled into the NVIDIA TensorRT engine gave a better real-time performance in terms of throughput. The proposed
network has achieved a dice score of 0.839 and IoU of 0.805 in the validation data set, and it was able to attain an average
throughput of 60 fps in mobile GPU. This proposed deep learning-based segmentation approach is expected to aid clinicians
in addressing the complications involved in the identification and removal of precancerous anomalies more competently.
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1. Introduction
Colorectal polyps are one of the early indicators of lower
Gastro-Intestinal (GI) tract cancer. These polyps are extra
growth lumps of tissues, having no particular function
in the bodily processes [1]. Although these growth tis-
sues are often benign, they can become cancerous. The
early detection and removal of the polyps in the colon
region may prevent these tissues from becoming can-
cerous. Colonoscopy is a general diagnostic procedure
widely used to investigate the colon region for any type
of malformation and disease [2]. Generally, a trained
physician visually inspects the colon region for polyps
and removes them using a minimally invasive endoscopic
surgery. Research on the visual inspection of the colon
region shows that small size adenomas (benign tumor),
less than 5mm diameter, have a miss rate of 27% and for
adenomas greater than 10mm have a miss rate of 6%. It
has been reported that the quality of bowel preparation
and the experience of colonoscopists are major contribu-
tory factors to missed polyps during a colonoscopy [3].
A quick alternative, computer-vision based polyps de-

4th International Workshop and Challenge on Computer Vision in
Endoscopy (EndoCV2022) in conjunction with the 19th IEEE Inter-
national Symposium on Biomedical Imaging ISBI2022, March
28th, 2022, IC Royal Bengal, Kolkata, India
$ ragu.b@htic.iitm.ac.in (R. B); antony.raj@htic.iitm.ac.in (A. Raj)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: (A) shows a generic hierarchical knowledge distilla-
tion using a single teacher and (B) is our proposed methodol-
ogy using dual teacher to derive the student network

tection is a highly researched area that has been found
effective to mitigate the miss rates and assist in the faster
diagnosis for colonoscopists [4]. The addition of deep
learning techniques proves to be much more effective,
since a network like U-net has shown promising results
in biomedical imaging and widely accepted as the state-
of-the-art image to image translation network [5].

In this paper, the U-net was chosen as the baseline
model because of its ability to outperform other segmen-
tation networks with extensive data augmentation re-
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gardless of a limited dataset, as reported Ronneberger et
al. [5]. A plug-and-play EPSA module was implemented
as proposed by EPSANet [6] with U-Net for enhancing
the multiscale spatial information, which results in the
detection of objects over different scale factors [6]. Since
the baseline U-Net with the EPSA module was found
to be computationally heavy for real-time performance,
model compression techniques through knowledge dis-
tillation are implemented [7]. Among the other model
compression approaches, knowledge distillation shows
great superiority, which is to transfer knowledge of a
large teacher model to a small student model [8]. In
our proposed student network, we implemented sepa-
rable filters resulting in model reduction by 78% of the
teacher network. We implemented a hierarchical knowl-
edge distillation technique which was proposed in the
paper HAD-Net [8] where a single teacher network is
used to distill the knowledge. Whereas, in our proposed
methodology, the Dual teacher transfers the complemen-
tary knowledge to the student network. All the mod-
els where trained over EndoCV2022 Challenge dataset
[9][10][11].

In summary, the contributions in this paper are as
follows:

• A hierarchical dual teacher knowledge distillation
network to transfer the complementary knowl-
edge of both networks to a student.

• A student network with a lower computational
cost for real-time performance without signifi-
cantly reducing accuracy.

• Experiments: By evaluating our model’s gen-
erality in the external Kvasir-Seg dataset [12],
The dice and IoU scores of 0.782 and 0.769 are
achieved, respectively.

2. XP-Net
2.1. Methodology
In our methodology, a student network is derived from
two teacher networks through a hierarchical knowl-
edge distillation process. The two teacher networks that
are highly computational, transfer their complementary
knowledge to a lightweight student network. The base-
line U-Net architecture has the ability to capture features
at multiple scales. To enhance this visual perception of
the U-Net network, we implemented an Effective Pyrami-
dal Squeeze Attention (EPSA) block at the first encoder
of the U-Net.This attention mechanism boosts the alloca-
tion of the most informative feature expressions while
suppressing the less useful ones, allowing the model to
focus on clinically crucial areas [6]. The lightweight
EPSA block enhanced the current architecture’s ability
by capturing multi-scale spatial information of objects at

a granular level with long-range channel dependency at
the initial stage of the network.

Our first teacher network comprises of U-Net with
EPSA module. Similarly, we trained the second teacher
network, a baseline U-Net with EPSA block using pix2pix
GAN [13], which has a promising result for an image to
image translation that learns a loss adapted to the input
data and task. The proposed student network consists
of separable filters that hold the same U-Net architec-
ture with the EPSA module, which results in the reduced
number of learnable parameters from the defined teacher
network. The hierarchical knowledge distillation tech-
nique used in our method is proposed in [8], where a
single teacher is used for knowledge distillation. How-
ever the network that we have developed utilizes the
dual teachers via multi-step learning as suggested in [14]
to map the in-between features to train the respective
student network.

The input and target of the teacher and student net-
work is denoted by x and y. The output segmentation
of two teachers and student is denoted by T(1,2)ŷ and
Sŷ respectively. The multi-scale feature map of teacher
and student is denoted by T(1,2)y𝑙𝑎𝑡𝑒𝑛𝑡 and Sŷ𝑙𝑎𝑡𝑒𝑛𝑡. In
hierarchical knowledge distillation, the student loss is
denoted by Ls which consists of weighted combination
of two terms, (a) the sum of dice [15] and tversky loss
[16] with the student generated segmentation (Sŷ) and
ground truth (y), (b) mean square error adversarial loss.
The overall student loss is given in equation 2.

𝐷𝑉 = [Dice Loss + Tversky Loss] (1)

𝐿𝑆 =𝐷𝑉 [𝑆𝑦; 𝑦] + 𝜆

*𝑀𝑆𝐸[𝐻𝐷(𝑥, 𝑆𝑦, 𝑆𝑦𝑙𝑎𝑡𝑒𝑛𝑡), 1]
(2)

The hierarchical discriminator (HD) is trained using
LS-GAN loss denoted as L𝐻𝐷 . The L𝐻𝐷 is made up
of two mean square error term. one term is between
the HD output after being passed a "fake" datasample
from the teacher, and a tensor of all zeros [17]. The
other term is a mean square error loss between the HD
output after being passed a "real" data sample from either
teacher 1 or teacher 2 and a tensor off all ones. The
overall discriminator loss is denoted in equation 3.

𝐿𝐻𝐷 =𝑀𝑆𝐸[𝐻𝐷(𝑥, 𝑆𝑦, 𝑆𝑦𝑙𝑎𝑡𝑒𝑛𝑡, 0]

+𝑀𝑆𝐸[𝐻𝐷(𝑋,𝑇(1,2)𝑦, 𝑇(1,2)𝑦𝑙𝑎𝑡𝑒𝑛𝑡, 1]

(3)

2.2. Network Architecture
2.2.1. Teacher Network

CABR32-P-CBR64-P-CBR128-P-CBR256-P-
CBR512-UPCONV256-CBR256-UPCONV128-



(a) Teacher and Student Discriminator Network

(b) Teacher Network Blocks (c) Student Network Blocks

Figure 2: XP-Net Network Architecture

CBR128-UPCONV64-CBR64-UPCONV32-CBR32-
CE1

• CABRK

CABRK represents two stacks of Convolution,
Batch norm and Relu activation function
with K number of output filters with an
intermediate attention block

• CBRK

CBRK represents two stacks of Convolution,
Batch norm and Relu activation function
with K number of output filters.

• CEK

CEK denotes a (1,1) convolution with k out-
put feature map with a Sigmoid activation
function.

• UPCONVK

UPCONVK represents a layer of transpose con-
volution with a kernel size (2,2), stride (2,2)
with k output number of feature maps.

• Pool (P)

Pool represents a pooling layer with a kernel
size (2,2) and stride (2,2).

2.2.2. Student Network

CAPDBR32-P-CPDBR64-P-CPDBR128-P-
CPDBR256-P-CPDBR512-UPCONV256-
CPDBR256-UPCONV128-CPDBR128-UPCONV64-
CPRBR64-UPCONV32-CPDBR32-CE1

• CPDBRK

CPDBRK represents stack of (A) point wise con-
volution of kernel size (1,5) and depth wise
convolution of kernel size (1,1) followed
by Batch norm and Relu and (B) point wise
convolution of kernel size (5,1) and depth
wise convolution of kernel size (1,1) fol-
lowed by Batch norm and Relu. All the
convolution layers consists of K number
of feature outputs.

• CAPDBRK



Figure 3: The input image (a) and ground truth (b) is given and student networks mask (e) which has learned from teacher 1
(c) and teacher 2 (d) network’s.

CAPDBRK block is a modified version of
CPDBRk block where attention block is
placed in between the two sets of point
wise convolution, depth wise convolution,
batch norm and relu.

2.2.3. Discriminator Network

CAT-DC32-CAT-DC128-CAT-DC128-CAT-DC32-
CAT-DC32-ENCONV

• CAT

CAT is the concatenation of two different layers
either from teacher or student network.

• DCK

DCK represents a stack of convolution of ker-
nel size (3,3), padding and stride of (1,1)
with instance norm and Leaky Relu with
negative slope of 0.2.

The hierarchical discriminator consists of five discrim-
inator blocks (DC) and an End Convolution (ENCONV).
In our proposed model, the feature map from encoder
1, encoder 3, decoder 1, decoder 3 from the teacher or
student network are used for hierarchical knowledge dis-
tillation. The full network architecture is described in
Fig.2.

3. Dataset and Implementation
3.1. Dataset
Automatic polyp detection and classification requires
the availability of big datasets of polyp images or videos
along with high-quality, manual annotations provided
by experts. These annotations provide the ground truth
necessary to train the supervised deep learning models.

Table 1
Comparison between teacher and student network

Dataset Network No. of
params

Dice
score

IoU
score

Teach. 1 7,774,374 0.893 0.889
EndoCV Teach. 2 7,774,374 0.871 0.884
Dataset Student 1,839,333 0.839 0.805

U-Net 7,763,041 0.841 0.812
Teach. 1 7774374 0.812 0.809

Kvasir Teach. 2 7,774,374 0.803 0.798
Dataset Student 1,839,333 0.783 0.769

U-Net 7,763,041 0.798 0.784

EndoCV2022 challenge provided us with series of se-
quence dataset of 2631 images with their corresponding
ground truth masks [9][10][11]. In that, we utilized more
than 95% of the data for training and 5% of the data for
testing. External dataset such as Kvasir-Seg was utilized
for testing the model generality.

3.1.1. Dataset augmentation

All the models were trained with an input image size of
512x512. The data augmentation such as random rotate,
horizontal flip, vertical flip, perspective transform was
implemented. Usually the endoscopic images are sub-
jected to different light sources that might have different
intensities of brightness, contrast and hue, so images are
augmented in such a way to replicate those scenarios.

3.2. Implementation
Both the teacher network is trained using Adam opti-
mizer with initial learning rate of 3e−4 with step learn-
ing rate scheduler of gamma 0.1 and step size of 30. The
networks were trained for 450 epoch with batch size of
8. The student network was trained using Adam opti-



mizer with 𝛽1 0.5 and 𝛽2 0.999 with a initial learning
rate of 1e−4 with step learning rate scheduler of gamma
0.1 and step size of 30. After multiple experiments of
initializing weights with uniform, xavier-uniform and
kaiming-uniform given in pytorch weight initialization, it
showed that kaiming uniform weight initialization have
helped for better convergence of model. We also imple-
mented our model in Nvidia TensorRT inference library
for effective realtime model throughput. All the models
were trained using Nvidia RTX 3090 GPU.

4. Results and Discussion
The networks were evaluated and the computed metrics
are reported in Table.1. In the validation data of EndoCV
dataset, the Teacher 1 model was able to achieve 0.893 and
0.889 for Dice score and IoU score, respectively. Similarly,
the teacher 2 model was able to achieve 0.871 and 0.884
for the same metrics. The student network has achieved
a commendable dice and IoU score of 0.839 and 0.805
even with the reduced number of learnable parameters.
The trade-off here is the larger sized teacher network for
a minimal loss in the accuracy of the light weight student
network. Similarly, these metrics were calculated for
Kvasir-Seg dataset and is reported in the Table 1.

Results have shown that the teacher 2 perform bet-
ter for region with higher amount of specular reflection
than teacher 1 for those regions. The student network
thus obtains the complimentary knowledge from the two
teacher networks. With reference to the ground truth,
it is observed that the student network had proper seg-
mentation even though one of the teachers had missed
areas in its segmentation masks as shown in Fig 3. These
results show that multiple teacher knowledge helps to
generalize better segmentation.

As a part of benchmarking the network in terms of
inference time, the model was converted into TensorRT
engine for faster throughput. The model was able to
attain an average throughput of 60 fps on GeForce RTX
3070 mobile GPU and 120 fps in Nvidia RTX 3090 GPU.
From the results, we believe that constructing multiple
teacher models which focuses on various aspects of the
input data can distill a superior student network.

5. Conclusion
The proposed network is light weight and does faster
computation when compared with traditional networks
that are used for segmentation. Since this uses dual teach-
ers for knowledge distillation, by increasing the number
of teacher networks, there is room for further improve-
ment in performance. Moreover, the sample size of data
also plays a crucial role in the accuracy of the network.
Further studies can be done to design a much more in-
telligent network for polyps and other varieties of early

cancer tissues.
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