CEUR-WS.org/Vol-3159/T1-13.pdf

Ensemble Based Machine Learning Models for Hate
Speech and Offensive Content Identification

Asha Hegde, Mudoor Devadas Anusha and Hosahalli Lakshmaiah Shashirekha

Department of Computer Science, Mangalore University, Mangalore, India

Abstract

The rapid growth of internet and mobile technology has accelerated the spread of Hate Speech and
Offensive Content (HASOC) to a larger extent. Identifying HASOC is a real challenge as the social media
content may contain code-mixed text in two or more languages. Hence, filtering HASOC on social media
to curb its further spread and the damage it is going to create is the need of the day. Automated tools are
required to filter HASOC as doing it manually is labour intensive and error prone. In this paper, we, team
MUM, describe the models submitted to the HASOC in English and Indo-Aryan Languages 2021 shared
task in Forum for Information Retrieval Evaluation (FIRE) 2021. The shared task consists of Subtasks 1A
and 1B for English, Hindi and Marathi languages and Subtask 2 for code-mixed text in English-Hindi
language pair. The proposed models are devised as ensemble of three Machine Learning (ML) classifiers,
namely: Random Forest (RF), Multi-Layer Perceptron (MLP) and Gradient Boosting (GB). These ensemble
models are trained using a combination of the Term Frequency — Inverse Document Frequency (TF-IDF)
of different features like word uni-gram, character n-grams, Hashtag vectors (HastagVec) followed by
using the pre-trained embeddings: word2Vec and Emo2Vec. The proposed approaches obtained 43™, 23,
18™, 10™, and 15" rank for English, Hindi and Marathi Subtask 1A and Subtask 1B respectively (Marathi
language does not have Subtask 1B) and 11" rank in Subtask 2 for code-mixed English-Hindi tweets.

Keywords
Emoji2vec, HashTag, Ensemble, Voting Classifier, Code-mixing

1. Introduction

Social media have become increasingly popular since a decade, engaging people in more online
activities such as online shopping, using dating apps, sharing messages on Facebook, WhatsApp,
Instagram, Twitter etc. These platforms also have given users’ the opportunity to hide their
real identity (if required) which is being used by the miscreants in a negative way to spread
malicious and aggressive hate speech content such as racist, xenophobic and many other forms
of verbal aggression. Various forms of hate speech have been analyzed and described by linguists
[1]. The act of hate speech generally refers to disparaging a person or group based on certain
characteristics, including but not limited to: race, ethnicity, sexual orientation, gender, religion,
and national origin [2]. Such content is often considered harmful for a rationale and constructive
debate [3]. Many countries have defined increasingly specific rules to deal with HASOC [4].

Forum for Information Retrieval Evaluation, December 13-17, 2021, India

& hegdekasha@gmail.com (A. Hegde); anugowda251@gmail.com (M. D. Anusha); hlsrekha@gmail.com
(H.L. Shashirekha)

&} https://mangaloreuniversity.ac.in/dr-h-l-shashirekha (H. L. Shashirekha)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

71 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:hegdekasha@gmail.com
mailto:anugowda251@gmail.com
mailto:hlsrekha@gmail.com
https://mangaloreuniversity.ac.in/dr-h-l-shashirekha
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Political scientists and legal scholars are also exploring ways of regulating the platforms to
handle the hate speech without restricting the freedom offered by the social media.

Code-mixing is a natural phenomenon of combining linguistic units such as phrases, words
or morphemes of two or more languages in a text or speech. In a multi-lingual country like
India, people usually will know to use more than one language. However, due to technological
limitations of keys in smart phones or keyboards in laptops/desktops, instead of writing com-
ments in their native script, people tend to write comments mixing English and native language
words in Roman script leading to code-mixed text. Identifying HASOC in code-mixed text is
quite challenging due to the increasing volume and complexity of the code-mixed texts [5].

Social media platforms have a growing number of users and uncontrollable number of
posts/comments are shared every second, making it impossible to trace and control the content
manually. Code-mixing content adds an additional complexity to this task. Hence, there is
need for automatic tools and techniques to detect HASOC quickly to avoid it’s spread further
and the damage it is going to create [6]. HASOC identification in English and Indo-Aryan
Languages 2021 shared task in FIRE 2021, invites researchers to develop models for HASOC
identification in English and Indo-Aryan languages [7], specifically for English [8], Hindi [8]
and Marathi [9] and also for code-mixed English-Hindi [10] tweets. In this paper, we, team
MUM, describe the models submitted to HASOC 2021 shared task. The proposed models are
devised as ensemble of three ML classifiers, namely: RF, MLP and GB. These ensemble models
are trained using a combination of the TF-IDF of different features like word uni-gram, character
n-grams, HashtagVec followed by using the pre-trained embeddings: word2Vec and Emo2Vec.

Rest of the paper is organized as follows: Section 2 throws light on the recent work related
to identifying HASOC and Section 3 describes the proposed methodology. Experiments and
results are described in Section 4 followed by conclusion and future work in section 5.

2. Related Work

The topic of hate speech detection is of immense importance and is attracting numerous
researchers. Several workshops and shared tasks are focusing on the detection of HASOC.
Prominent among them are the HASOC shared task organized by FIRE in 2019 and 2020 which
focuses on detecting HASOC in Dravidian and Indo-European languages. A brief description of
few of the recent works related to detecting HASOC are given below:

Fazlourrahman et al. [11] proposed Transfer Learning (TL) approach, ensemble of ML algo-
rithms, and ML-TL - a hybrid combination of the first two, to identify HASOC in HASOC 2020
shared task. In TL-based model, they used Universal Language Model Fine-Tuning (ULMFiT) - a
pre-trained Language Model (LM) that represents the general features of a language. They used
word/char n-grams features to train an ensemble of ML estimators: Support Vector Machine
(SVM), RF and Logistic Regression (LR) classifiers with majority voting. Further, in the ML-TL
hybrid model, they used ULMFiT model in the ensemble model instead of RF classifier keeping
other two classifiers and their parameters similar to the previous ensemble model. The hybrid
combination of ML-TL approach obtained macro F1-scores of 0.4979 and 0.5182 securing 21°

"https://hasocfire.github.io/hasoc/2021/index.html
*https://hasocfire.github.io/hasoc/2021/call-for-participation.html

and 8" place for Subtask A in English and Hindi respectively. Further, for Subtask B in English,
ULMFiT model achieved macro F1-scores of 0.2517 and obtained 5™ rank. For Subtask A in
German language, ensemble of ML classifiers obtained macro F1-scores of 0.5044 and secured
11" rank. Shashirekha et al. [12] concatenated CountVectorizer, Tfidf Vectorizer and additional
text-based features to build an ensemble of GB, RF and XGBoost (XGB) classifiers with soft
voting to detect HASOC in Indo-European languages in HASOC 2020 shared task. Their models
obtained 5, 15™, 7%, 3113t ‘and 6" ranks with F1-scores of 0.5046, 0.2595, 0.5033, 0.2595,
0.5033 and 0.2488 for English, German and Hindi Subtasks A and B respectively.
Fazlourrahman et al. [13] in their work submitted to Hate Speech Spreader Detection (HSSD)
shared task® in PAN 2021, combined traditional char n-grams and word n-grams with syntactic
n-grams to train a voting classifier of three ML estimators: SVM, LR, and RF with hard and soft
voting. They achieved 73% and 83% accuracies for English and Spanish languages respectively.
Multilingual LSTM based model proposed by Aluru et al. [14] used seven different NN-based
architectures, namely: a pooled Gated Recurrent Unit (GRU), LSTM, GRU with attention, 2D
Convolution with Pooling, GRU with Capsule architecture, LSTM based Capsule architecture
with attention, and a fine-tuned BERT model with LSTM. Among these seven models, LSTM
based fine-tuned BERT achieved the best macro F1-scores 0f 0.7143, 0.7662, and 0.7329 for English,
German, and Spanish respectively. TF-IDF of classical word and character n-grams based ML
models presented by Aditya et al. [15] classifies Tweets automatically into three categories:
Hateful, Offensive, and None. The authors conducted several experiments by changing the
range of n-grams for both word and character n-grams to train three ML algorithms: NB, LR and
SVM and obtained 95.6% accuracy as the best results for LR classifier with an optimal n-gram
range 1 to 3. Davidson et al. [16] proposed a set of multi-class classifiers: LR, NB, Decision Trees,
RF, and Linear SVM to characterize Tweets into one of three classes: Hate speech, Offensive but
not hate speech, and Neither offensive nor hate speech. They used Tweets containing lexicon
terms in 34,588 Twitter accounts and obtained a precision of 0.91, recall of 0.90, and an F1 score
0f 0.90. Ghanghor et al. [17] presented Transformer-based models to identify offensive contents
in Dravidian languages at DravidianLangTech 2021 workshop. They explored multilingual
Bidirectional Encoder Representations from Transformers (mBERT) uncased, mBERT cased,
Cross-lingual Learning Model (XLM) with Robustly Optimized BERT and IndicBERT. Their
mBERT cased model outperformed other models with weighted F1-score 0.75, 0.95, 0.71 and

3rd 3rd 4" ranks for Tamil, Malayalam and English respectively.

obtained and

3. Methodology

Several experiments were conducted on various learning models using various features and the
ensemble of RF, MLP, and GB classifiers is proposed for all the subtasks. Figure 1 depicts the
structure of the proposed ensemble model. The proposed model consists of the following steps:

*https://pan.webis.de/clef21/pan21-web/author-profiling html
*https://pan.webis.de/clef21/pan21-web/

——— « Punctuation removal —

‘ B - « Non relevant character _)
Training }—b T e—» removal «—» Pre- —
| dataset | [ncoss Tokenization processing Test

. ‘L « Stop-words removal ¢ - .t.lalfse.t. g
Feature Feature
Extraction Extraction

Concatenation: [... :
: Concatenation
of Features Random Forest of Features
; Classifier]
\—> MLP Classifier
‘Gradient Boosting -
Classifier]
Voting |L.
(soft) |~

¥
Predicted
‘ Tags

Figure 1: Structure of the proposed ensemble model

3.1. Pre-processing

Pre-processing is an essential approach to clean the textual content and transform it into a
format that the ML algorithms can understand [18]. Emojis are a standardised set of small
pictorial glyphs depicting everything from smiling faces to international flags. They are visual
representations of emotions, objects and symbols that can be used individually or in groups
and are powerful representations comparable to words. Hashtags are a combination of letters,
numbers, and/or emoji preceded by the ’#” symbol (e.g., #NoFilter) used to indicate the context or
the core idea, which helps users to navigate the deluge of information. Micro-blogging services
allow users to insert Hashtags into their posts to aid the gathering of relevant micro-blogs on a
specific topic or event, as well as the diffusion of information [19]. Both Emojis and Hashtags
have become popular on social media over the last decade. As most of the comments include
Emojis and Hashtags, they are extracted and converted to vectors as discussed in Section 3.2.

A pipeline of pre-processing steps are used to remove the urls, punctuation, digits, unrelated
characters and stopwords as these do not contribute to the task of any Text Classification (TC)
in general. English stopwords list available in Natural Language Tool Kit (NLTK) and Hindi’ and
Marathi® stopwords lists available in github repository are used. Further, lemmmatization’ is
applied only for the English dataset to reduce the words to their root words and the pre-processed
text is used to extract features.

*https://github.com/stopwords-iso/stopwords-hi
Shttps://github.com/stopwords-iso/stopwords-mr
"http://www.nltk.org/api/nltk.stem. html?highlight=lemmatizer

3.2. Feature Extraction

Feature extraction is the process of extracting features which are used to train the learning
models. A combination of TF-IDF of words, char n-grams, pre-trained word embeddings
followed by representing Emojis and Hashtags as vectors have exhibited good performance and
hence are used in this work. The feature extraction steps are given below:

» TF-IDF expresses the relative importance between a word in the document and the entire
corpus. For Subtask 1A and Subtask 1B: top 5,000 frequent character n-grams in the
range 2 to 3 and all the word uni-grams are extracted from English, Hindi, and Marathi.
Similarly, for Subtask 2 top 5000 frequent character n-grams in the range 2 to 3 and all
the word uni-grams are extracted from code-mixed English-Hindi tweets. These n-grams
are vectorized using the TFidf Vectorizer®.

« Word2Vec is a statistical method of learning word embeddings using the semantic rela-
tionship between the words such that similar words are placed together while dissimilar
words are placed far apart in the representation [20]. fastText’ pre-trained word vectors
available at gensim library' are used to construct word embeddings for the Train and
Test sets with a window size 5 in 300-dimensional space, for all the three languages for
both Subtask 1A and 1B. Further, each document in the dataset is represented by the sum
of the vector values of the words in that document.

« Emo2Vec are word-level representations that encode Emojis in Unicode standard into a
fixed-sized, real-valued vectors embeddings. Emo2Vec'! is an open-source representa-
tion for Emojis that maps Emojis into a 300-dimensional space similar to Google News
word2Vec embeddings [21]. Since there are many Emojis, instead of removing them
leading to loss of information they are extracted from the text and vectorized using
pre-trained Emo2Vec.

« Hashtag vector (HashtagVec) is a customized vector representation that assign weights
for Hashtags. Hashtags are extracted from the text and vectorized using Tf-IDFVectorizer.

The number of Emojis, Hashtags, and word uni-grams extracted from the Train and Test sets
are given in Table 1. All the extracted features are concatenated together and are used to train
the classifiers.

3.3. Classifier Construction

The performance of the model relies heavily on the features and the classifier used to carry out
the classification. RF, MLP, and GB classifiers are used to identify HASOC. RF classifiers are
well-suited to deal with high-dimensional noisy data [22]. This model is made up of a collection
of decision trees, each of which is trained using a random subset of features and the prediction
is obtained as a majority vote of all the trees in the forest. MLP classifiers are widely used in ML
models because of their simplicity. This model is defined as a feed-forward NN that consists

®https://scikit-learn.org/stable/modules/generated/sklearn feature_extraction.text Tfidf Vectorizer.html
*https://fasttext.cc/docs/en/crawl-vectors.html

https://pypi.org/project/gensim/

https://github.com/uclnlp/emoji2vec/tree/master/pre-trained

Table 1
Details of Emojis and Hashtags extracted from HASOC 2021 dataset

Subtasks Train Set #Emojis | #Hash Tags | #Word uni-grams
Subtask 1 English 8,967 5,890 10,395
Hindi 9,188 12,027 4,655
Marathi 1,874 495 1,762

Subtask 2 Code-mixed 4,158 2,330 10,797

English-Hindi tweets

Test Set
Subtask 1 English 195 2,042 10,395
Hindi 568 3,807 4,655
Marathi 40 0 1,762

Subtask 2 Code-mixed 1,161 847 10,797

English-Hindi tweets

of three types of layers: the input layer, the output layer, and one or more hidden layers [23].
The GB classifier is a powerful ML algorithm that has shown significant success in a variety of
applications. The major benefit of using the GB algorithm is that it produces a robust classifier
by converting a group of learners showing poor classification performance. This will benefit the
regularisation methods that penalize different parts of the algorithm and improve the overall
performance by reducing overfitting [24].

The performance of a classifier is also influenced by the dataset and no classifier produces
good results for all datasets. As a result, no classifier is considered as the best classifier in
general. Hence, an ensemble of classifiers, where the weakness of one classifier is overcome by
the strength of another classifier produces better results compared to a single classifier [12].
The proposed ensemble model uses RF, MLP and GB - the three best performing classifiers and
the prediction on the Test set is based on soft voting.

4. Experimental Setup and Results

HASOC 2021 shared task consists of two subtasks, Subtask 1 and Subtask 2. Subtask 1 is further
divided into Subtask 1A and Subtask 1B for English, Hindi, and for Marathi (Marathi is not
having Subtask 1B) where as Subtask 2 is for code-mixed English-Hindi tweets. It may be noted
that the comments/posts labeled Offensive’ only are used to train the models for Subtask 1B.
The statistics of the dataset for Subtask 1 and Subtask 2 are given in Table 2.

Several experiments were conducted by combining various features and classifiers. HASOC
word2Vec is constructed by merging the Train and Test datasets of HASOC 2019'%, 2020"°
and 2021 (only training data) collected from the official websites. These word vectors are
concatenated with Emo2Vec, word uni-grams and character n-grams for Subtask 1A in English

“https://hasocfire.github.io/hasoc/2019/dataset. html
Bhttps://hasocfire.github.io/hasoc/2020/dataset. html

Table 2
Details of HASOC 2021 dataset

Subtasks #Posts Training set

English | Hindi | Marathi
Subtask 1A |_HOF 2,501 3,161 669
NOT 1,342 1,433 1,205
PRFN 1,196 213 -
Subtask 1B HATE 683 566 -
OFFN 622 654 -

Code-mixed Hindi tweets

Subtask 2 HOF 2841
NOT 2,899
Table 3
Features used for the subtasks
Subtasks Languages Features used
English HASOC word2Vec + Emo2Vec + word uni-grams + char n-grams
Subtask 1A o
Hindi (pre-trained) word2Vec + Emo2Vec + HashtagVec + word uni-grams + char n-grams
Marathi (pre-trained) word2Vec + Emo2Vec + HashtagVec + word uni-grams + char n-grams
Subtask 1B English (pre-trained) word2Vec + Emo2Vec + HashtagVec + word uni-grams + char n-grams
Hindi (pre-trained) word2Vec + Emo2Vec + HashtagVec + word uni-grams + char n-grams
Code-mixed
Subtask 2 English-Hindi | Emo2Vec + HastagVec + word uni-grams + char n-grams
Tweets

language. Further, pre-trained word2Vec (instead of HASOC word2Vec) of the respective
language, Emo2Vec, HashtagVec, uni-grams and character n-grams are used for rest of the
languages in Subtask 1A and all three languages in Subtask 1B. For Subtask 2, Emo2Vec,
HashtagVec, uni-grams and character n-grams features are concatenated. These features were
used to train the ensemble models and the predictions of these models on the Test set were
submitted to the organizers of the shared task for final evaluation and ranking. Details of the
features used for the subtasks are summarized in Table 3. The predictions of the subtasks are
evaluated by the organizers using macro F1-score and the results are summarized in Table 4.

5. Conclusion and Future work

In this paper, we, team MUM, have presented the description of the proposed models submitted
to HASOC 2021 shared task in FIRE 2021 to identify HASOC in English, Hindi, Marathi and code-
mixed English-Hindi tweets. Several experiments were conducted with various combinations of
features and classifiers to identify HASOC in the dataset provided by the organizers. Our team

Table 4
Results of the proposed model

Subtasks English Hindi Marathi
F1-score | Rank | Fl-score | Rank | Fl-score | Rank
Subtask 1A 0.8251 43 0.6323 18 0.7830 15
Subtask 1B 0.5771 23 0.4952 10 - -
Code-mixed Hindi tweets
Subtasks F1-score Rank
Subtask 2 0.6721 11

achieved competitive results for both the subtasks using an ensemble of three classifiers: RF,
GB and MLP with soft voting. In future, we intend to investigate different sets of features and
feature selection models, as well as various learning approaches for identifying problematic
content.

6. Acknowledgements

We would like to thank the organisers of the HASOC 2021 shared task for organising this
interesting shared task and for responding promptly to all of our inquiries. We would also like
to thank the anonymous reviewers for their insightful comments.

References

[1] S.Jaki, T. De Smedt, M. GwézdZ, R. Panchal, A. Rossa, G. De Pauw, Online Hatred of
Women in the Incels. ME Forum: Linguistic Analysis and Automatic Detection, John
Benjamins, 2019, pp. 240-268.

[2] C.Blaya, Cyberhate: A review and content analysis of intervention strategies, Elsevier,
2019, pp. 163-172.

[3] J. S. Vedeler, T. Olsen, J. Eriksen, Hate speech harms: A Social Justice Discussion of
Disabled Norwegians’ Experiences, Taylor & Francis, 2019, pp. 368-383.

[4] N. Asogwa, C. Ezeibe, The State, Hate Speech Regulation and Sustainable Democracy in
Africa: A Study of Nigeria and Kenya, Taylor & Francis, 2020, pp. 1-16.

[5] A.Bohra, D. Vijay, V. Singh, S. S. Akhtar, M. Shrivastava, A Dataset of Hindi-English
Code-Mixed Social Media Text for Hate Speech Detection, in: Proceedings of the Second
Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in
Social Media, 2018, pp. 36-41.

[6] Z. Waseem, D. Hovy, Hateful Symbols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter, in: Proceedings of the NAACL Student Research Workshop,
2016, pp. 88-93.

[7] S. Modha, T. Mandl, G. K. Shahi, H. Madhu, S. Satapara, T. Ranasinghe, M. Zampieri,

Overview of the hasoc subtrack at fire 2021: Hate speech and offensive content identi-
fication in english and indo-aryan languages and conversational hate speech, in: FIRE
2021: Forum for Information Retrieval Evaluation, Virtual Event, 13th-17th December
2021, 2021.

[8] T. Mandl, S. Modha, G. K. Shahi, H. Madhu, S. Satapara, P. Majumder, J. Schéfer, T. Ranas-
inghe, M. Zampieri, D. Nandini, A. K. Jaiswal, Overview of the hasoc subtrack at fire 2021:
Hate speech and offensive content identification in english and indo-aryan languages,
Working Notes of FIRE (2021).

[9] S. Gaikwad, T. Ranasinghe, M. Zampieri, C. M. Homan, Cross-lingual Offensive Language
Identification for Low Resource Languages: The Case of Marathi, 2021.

[10] S.Satapara, S. Modha, T. Mandl, H. Madhu, P. Majumder, Overview of the HASOC Subtrack
at FIRE 2021: Conversational Hate Speech Detection in Code-mixed Language, in: FIRE
(Working Notes), 2021.

[11] F. Balouchzahi, H. L. Shashirekha, LAs for HASOC-Learning Approaches for Hate Speech
and Offensive Content Identification., in: FIRE (Working Notes), 2020, pp. 145-151.

[12] M. D. Anusha, H. L. Shashirekha, An Ensemble Model for Hate Speech and Offensive
Content Identification in Indo-European Languages., in: FIRE (Working Notes), 2020, pp.
253-259.

[13] F.Balouchzahi, H. L. Shashirekha, G. Sidorov, HSSD: Hate Speech Spreader Detection using
N-grams and Voting Classifier, in: CEUR Workshop Proceedings, 2021, pp. 1829-1836.
URL: http://ceur-ws.org/Vol-2936/paper-156.pdf.

[14] S.S. Aluru, B. Mathew, P. Saha, A. Mukherjee, Deep Learning Models for Multilingual
Hate Speech Detection, 2020.

[15] A. Gaydhani, V. Doma, S. Kendre, L. Bhagwat, Detecting Hate Speech and Offensive
Language on Twitter using Machine Learning: An n-gram and tfidf Based Approach, 2018.

[16] T. Davidson, D. Warmsley, M. W. Macy, I. Weber, Automated Hate Speech Detection
and the Problem of Offensive Language, in: Proceedings of the Eleventh International
Conference on Web and Social Media, ICWSM 2017, AAAI Press, 2017, pp. 512-515. URL:
https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15665.

[17] N. Ghanghor, P. Krishnamurthy, S. Thavareesan, R. Priyadharshini, B. R. Chakravarthi,
IITK@DravidianLangTech-EACL2021: Offensive language identification and meme classi-
fication in Tamil, Malayalam and Kannada, in: Proceedings of the First Workshop on Speech
and Language Technologies for Dravidian Languages, Association for Computational Lin-
guistics, Kyiv, 2021, pp. 222-229. URL: https://aclanthology.org/2021.dravidianlangtech-1.
30.

[18] D. Kumar, R. Cohen, L. Golab, Online Abuse Detection: The Value of Preprocessing and
Neural Attention Models, in: Proceedings of the Tenth Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis, 2019, pp. 16—24.

[19] A. Alsini, A. Datta, J. Li, D. Huynh, Empirical Analysis of Factors Influencing Twitter
Hashtag Recommendation on Detected Communities, in: International Conference on
Advanced Data Mining and Applications, Springer, 2017, pp. 119-131.

[20] T. Mikolov, W.-t. Yih, G. Zweig, Linguistic Regularities in Continuous Space Word Rep-
resentations, in: Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, 2013, pp.

http://ceur-ws.org/Vol-2936/paper-156.pdf
https://aaai.org/ocs/index.php/ICWSM/ICWSM17/paper/view/15665
https://aclanthology.org/2021.dravidianlangtech-1.30
https://aclanthology.org/2021.dravidianlangtech-1.30

746-751.

B. Eisner, T. Rocktdschel, I. Augenstein, M. Bosnjak, S. Riedel, emoji2vec: Learning emoji
representations from their description, 2016.

M. Z. Islam, J. Liu, J. Li, L. Liu, W. Kang, A Semantics Aware Random Forest for Text
Classification, in: Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 1061-1070.

M. Bounabi, K. El Moutaouakil, K. Satori, A Probabilistic Vector Representation and Neural
Network for Text Classification, in: International Conference on Big Data, Cloud and
Applications, Springer, 2018, pp. 343-355.

V. Athanasiou, M. Maragoudakis, A Novel, Gradient Boosting Framework for Sentiment
Analysis in Languages where NLP Resources are Not Plentiful: A Case Study for Modern
Greek, Multidisciplinary Digital Publishing Institute, 2017, p. 34.

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Pre-processing
	3.2 Feature Extraction
	3.3 Classifier Construction

	4 Experimental Setup and Results
	5 Conclusion and Future work
	6 Acknowledgements

