
A facilitator to discover and compose services

Oussama Kassem Zein
ENST Bretagne, Dept. LUSSI

Technopôle Brest Iroise, BP 832, 29285 Brest Cedex, France
Email : Oussama.Zein@enst-bretagne.fr

Tel : + 33 2 29 00 12 85 Fax : + 33 2 29 00 10 30

Yvon Kermarrec
ENST Bretagne, Dept. LUSSI

Technopôle Brest Iroise, BP 832, 29285 Brest Cedex, France
Email : Yvon.Kermarrec@enst-bretagne.fr

Tel : + 33 2 29 00 12 85 Fax : + 33 2 29 00 10 30

Abstract

In this paper, we present our approach of facilitator that
allows automatic service composition in distributed sys-
tems. We propose a facilitator based on ontologies and
knowledge representation that allows clients to discover a
service and to get the result of the service execution with-
out direct interactions with their providers. We extend the
functionality of the facilitator to be a composition engine
and we show how it composes services to satisfy the client’s
requests.

KEYWORDS: composition of services, facilitator, ontol-
ogy, service description.

1 Introduction and Context

Facilitator is an approach of service registry used in
multi-agents systems [8]. It is a medium that ensures the
communication between agents. Agents may register their
services to the facilitator with all the information required
so that a call can be made automatically by a machine,
or query it to find out what services are offered by other
agents. Agent is responsible to provide information related
to service description like service type and so on. An agent
can also deregister or update the service descriptions.

Our proposal is to bring the approach of facilitator
into the context of service discovery and composition
in distributed systems. Many different approaches for
service discovery have been developed, like the UDDI
[1] of web services, the naming service and the trading
service of CORBA [10]. UDDI and the trading service are
advanced directories which allow services to be discovered
at run-time via an attribute based (or yellow page) style of
search. They play a major role in distributed systems and

service oriented architecture (SOA) since they enable to
link clients to servers.

We showed in [13], [14] that the service description
plays a central role and that it was necessary to take into
account various levels of description in order to retrieve
the service and to access it. Once a service is properly
described, it can then be indexed and users (either human or
software) can look for it, and then access it. We developed
a trader based on ontologies and integrated it as an OMG
CORBA component in the ORBACUS platform and then
as a web service in J2EE [12].

Based on our approach of service description and
trader [13], we have developed an approach of service
composition [15]. In this approach, we are based on SDL
[7] and Interface Automata [3] to describe the behavior
of the service with an automaton by inputs/outputs and
the composition of several services is made by combining
their inputs/outputs. This appraoch is simple and powerful
because the services are easily questionable. With the
trader, the client must invoke the composed service, i.e.,
all the components services. But the client may not be
familiar with the service composition (like elderly people,
disabled people, novice, etc.) and may want only the final
results without dealing with the intermediate steps. So, the
idea is to alleviate clients from numerous interactions (with
the trader and the service providers). In this context, we
have chosen to use the facilitators. They allow the indirect
interactions between clients and servers. So, the client
queries a service from the facilitator. The latter searches,
invokes the service and returns the result to the client. In
this context, the facilitator can take into account the client
profile to find and propose a sequence of call of services
to satisfy the client requirements. So, the idea is to extend
the functionalities of the facilitator to compose servicesby

allowing the execution of the composed services without
intervention of the clients.

In the second section of this paper, we present our ap-
proach of facilitator based on ontologies allowing the ser-
vice discovery and automatic call. In the third section, we
extend the functionalities of the facilitator to be a composi-
tion engine that allows the service composition when a ser-
vice search is unsuccessful without intervention of clients.
In the fourth section, we present our approach of user profile
which can be used to adapt services to the needs of differ-
ent users and allows to personalize the service search. In
the fifth section, we present the related work. Finally, the
conclusion raises issues and presents our future work.

2 Our approach of facilitator based on on-
tologies

Our approach for implementing the facilitator relies on
ontologies. We have selected ontologies because they make
it possible to provide a shared consensus that can help
share/reuse. We have selected Ontobroker [6] as our sup-
port engine for ontologies (see figure 1). It allows us to
query, store, delete and modify information in the ontology.
We create an ontology describing the service properties de-
fined in the metadata model that we have proposed [12].

2.1 Tools Implementation

We present the facilitator interfaces that we have devel-
oped to manage service ontologies we have proposed. They
allow clients/servers to query/add services through the on-
tology.

- Importing function : It is used by clients. It takes a
query written in a logic language (e.g., F-Logic) [9]
as the input, makes a request to Ontobroker for the ser-
vice required, invokes the service and returns the result
to the client. It allows client to get the result in an im-
plicit way without direct interaction with the server.

- Exporting function : It is used by service providers. It
allows a fact to be added to the ontology. A service
offer is an instance of a service. It is described by a
fact. The fact includes the service properties and the
service address (like WSDL file address with web ser-
vices, IOR address with CORBA) which is necessary
to access and communicate with the service.

- A function is defined to delete a fact from an ontology.

Finally, we declare an object which implements all these
functions and we start it on a server. This object represents
the facilitator. The clients and the servers use this objectto
contact Ontobroker and to add/retrieve services through the
ontology.

24 5

Ontobroker

 Ontology

Facilitator

37 1 6

ServerClient

Figure 1. Interactions between the facilitator,
Ontobroker, client and service provider

3 Extension of facilitator functionalities to
compose services

The composition of services is critical since it provides
novel services and novel functionalities to the client. By
combining services, the client can obtain a desired output
from a given input not provided by any service but by sev-
eral combined services. In our approach, we consider that
two services can be composed if an ouput of one is equal to
an input of the other one. We extend the functionality of the
facilitator to be a composition engine. When a client queries
a service from the facilitator and if the service doesn’t ex-
ist, the facilitator tries to combine two or several services
based on their inputs/outputs to satisfy the client’s request.
Figure 2 describes an example indicating how the facilitator
searches, composes and invokes services.

The client queries a service from the facilitator by indi-
cating the desired input/output. For example, he/she queries
a service that allows to transform a “tex” file into “pdf” file.
The facilitator searches the required service in its repository
(ontologies). If the service doesn’t exist, it tries to compose
services by comparing their inputs/outputs. The facilitator
searches if a service has an input “tex”. For example, it ob-
tains a service (S1) having “latex” as type which takes as
input “tex” and provides as output “dvi”. It searches the
services taking as input “dvi”. For example, it obtains a ser-
vice (S2) having “dvips” as type. It verifies if this service
provides “pdf” as output. But this service provides “ps” as
output. So, the facilitator continues and tries to find ser-
vices taking “ps” as input. It obtains a service (S3) having
“ps2pdf” as type which provides “pdf” as output. So, the
facilitator can compose S1, S2 and S3 to satisfy the client
request. It invokes S1 by giving the “tex” file of the client
as input. Then, it invokes S2 by giving the “dvi” obtained

Client

Facilitator

tex ps pdfdvi dvi ps

latex dvips ps2pdf

server2 server3server1

 S1 S2 S3

input="tex"
output="pdf"

result of S1+S12+S3 (pdf)

Figure 2. A facilitator as a composition en-
gine

from S1 as input. Finally, it invokes S3 by giving the “ps”
file obtained by S2 as input and it returns the “pdf” file to
the client.

The client doesn’t interact directly with the servers to
invoke the services and doesn’t interact with the facilitator
to find the services to be composed, but he obtains the final
result. This does not require clients to be familiar with the
service composition like the elderly and disabled people.
In this context, we can define a profile for each client
that includes his desired and required service properties
to personalize the service research by the client (see next
section). These profiles can be taken into account to find,
compose and invoke the services that satisfy the client
requirements. So, due to the use of the facilitator, the
composition becomes implicit to the clients.

In a previous paper [15], we have proposed three mod-
els of service composition : static that allows to combine
service offers defined at compile-time, semi-dynamic that
allows to combine service types (a service offer is an in-
stance of a service type) defined at compile-time and dy-
namic which allows to combine services defined at run-
time. So, we can use these models in our approach of fa-
cilitator to compose services.

4 Personalization : user profile

For adapting and personalizing services to the needs of
different users, so-called “user profile” are frequently de-
fined and used. User profiles are collections of information
and assumptions about behaviors and preferences of indi-
vidual users: they are used in the services adaptation and

personalization process. A user profile helps to adapt ser-
vices to the user needs. It holds the user preferences: it can
contain critical information about the user like its location,
its language, its experiences in the domain, etc.

When a client calls the facilitator to query services and
if there are numerous offers, the facilitator uses the client
profile as an additional criterion to extend the request. This
allows the client to filter the results and to get the services
that satisfy its profile and its preferences.

We consider that the user profile contains properties
with their default values. When we extend the service
query to include the properties contained in the user profile
and if some properties have values in the user request
different from those in the user profile, we use the values
which are required in the user request as priority to search
the services. This is possible by using “or” between the
properties existed in the user profile in the extended request:

initial_request and [p1->>v1 or p2->>v2 or p3->>v3
or ...].

Where p1, p2, p3 ... the properties contained in the user
profile with their values v1, v2, v3 ... respectively.

In addition, we have used a scoring approach to order the
results before returning them to the client. Each property in
the user profile has a value and an importance degree. The
sum of these importance degrees is equal to 1. For each
property in the user profile, we calculate its partial score by
the following expression:

Vi =
Ai

maxi Ai

Pi

WhereVi is the partial score of the property “i”,Ai its
number of occurrences in the results (returned offers) and
Pi its importance degree. We count the number of occur-
rences of a property “i” in the returned offers if only its
value coincides with that in the user profile.

Each service offered has a score which is the sum of the
partial scores of its properties included in the user profile
such as their values coincide with those which are in the
user profile. The facilitator returns the services to the client
ordered by the score.

5 Related Work

Many different approaches for describing and discover-
ing services have been developed. For example, DAML-S
[2] provides a set of characteristics that allows describing a
service. This description addresses only the static properties
of a service. It does not describe the behavior of a service
and its interface. In our approach of service indexing, we
have used this description as a reference to characterize a
service by static properties. Our approach is more power-
ful than DAML-S since it provides complementary proper-
ties describing the service by its behavior and its interface.
These properties can be used by clients to query and find a
service in distributed systems.

To discover a service, we can select for example UDDI
[1] which, is a registry that allows a Web service to be
discovered via a yellow page style of search. It allows a
service to be discovered by querying only its static proper-
ties. It provides a static schema for service description and
the service provider cannot modify this schema or create
databases to advertise its services offers. Then, in our
approach, each service provider can define its databases
and can advertise its service offers by using their static
properties, their behaviors and their interfaces. The clients
use the same interface to query these three levels of service
description. So, the service indexing and discovery become
more sophisticated.

Many different approaches for service composition have
been developed like [11], [5], [4] but the client must invoke
all the service components of the composed service. In this
context, the client must be familiar with the service compo-
sition. These approaches don’t resolve the problem of the
service composition complexity. Our approach for service
composition using facilitator is innovative since it allows
services to be composed automatically in an implicit way
to the clients. It can be used by clients that are not famil-
iar with the service composition and aren’t interested by the
intermediate steps of the service composition process. Our
approach of semi-dynamic composition model is the first
one that exceeds the performance and complexity problem
of the dynamic composition model [15].

6 Perspectives and conclusions

In this paper, we have presented a facilitator we designed
and developed : it is based on ontologies and knowledge
representation. It allows a service provider to advertise a
service offer and a client to discover a service by querying
its static and dynamic (behavior) properties in distributed
systems. Flexibility is introduced since the ontology and its
content can be changed and adapted to usage. When a client
discovers a service offer by querying its static properties, it
can obtain information about the service behavior enabling
it to use the service discovered and to understand how the
invocation of the service operations needs to be processed.

Based on SDL and Interface Automata, we can describe
the service behavior which enables the client to use the
service discovered and to understand how the invocation
of the service operations needs to be performed. Based
on the service behavior description and facilitators, we
have presented in this paper an approach that allows
the composition of services in distributed systems. This
approach is a powerful one since it allows the client to
benefit from the functionalities of more than one service
to get novel functionalities and novel services. It is an
innovative one since it allows the service composition in an
implicit manner and the system is automatic and clients can
be general public and they don’t need to be professional in
the domain of web service composition.

As perspectives, we will propose an approach of facili-
tator federation to compose services. In this context, when
a client queries a service from a facilitator and this service
doesn’t exist, the facilitator can interact with other facilita-
tors to search and compose services to satisfy the client’s
request. So, this approach will allow the composition of
services located on different facilitators and can be used in
the peer-to-peer networks.

References

[1] www.uddi.org.
[2] http://www.daml.org/services/.
[3] L. D. Alfaro and T. A. Henzinger. Interface Automata. In

Proceedings of the Ninth Annual Symposium on Foundations
of Software Engineering. ACM Press, 2001.

[4] D. B. et al. Automatic service composition based on behav-
ioral description. InIJCIS, 2005.

[5] M. P. et al. Planning and monitoring web service composi-
tion. In AIMS, 2004.

[6] D. Fensel, S. Decker, M. Erdmann, and R. Stude. Ontobro-
ker : The very high idea.In Proceedings of the 11th In-
ternational Flairs Conference (FLAIRS-98), Sanibal Island,
Florida, USA, May 1998.

[7] ITU-T. ITU-T Recommendation Z.100. Specification and
Description Language (SDL). 1989.

[8] T. Khedro and M. R. Genesereth. Facilitators: a networked
computing infrastructure for distributed software interopera-
tion. InWorhshop on AI in distributed information networks
(IJCAI), Montreal, Canada, 1995.

[9] M. Kifer, G. Lausan, and J. Wu. Logical foundations of
object-oriented and frame-based language.Journal of the
ACM, 42(4) : 741 - 843, 1995.

[10] OMG. CORBAservices : Common Object Services Specifi-
cation. OMG Document, 1997.

[11] J. Yang, M. P. Papazoglou, and W. den Heuvel. Tackling
the Challenges of Service Composition in E-Marketplaces.
In The 12th International Workshop on Research Issues in
Data Engineering : Engineering e-Commerce/e-Business
Systems. RIDE 2002.

[12] O. K. Zein. Indexing/Discovering and composition of dis-
tributed services.PhD thesis, January 2005.

[13] O. K. Zein and Y. Kermarrec. An approach for describing,
discovering services and for adapting them to the needs of
users in distributed systems. In K. Sycarra and T. Payne,
editors, In the proceedings of AAAI Spring Symposium on
Semantic Web Services, Stanford, California, Mar. 2004.

[14] O. K. Zein and Y. Kermarrec. An Approach for Describing
and Querying Service Behavior in Distributed Systems. In
The IEEE international Symposium on Applications and the
Internet, pages 136–139, Trento, Italy, Jan. 2005.

[15] O. K. Zein and Y. Kermarrec. Static, semi-dynamic and dy-
namic composition of services in distributed systems. In
IEEE International Conference on Internet and Web Ap-
plications and Services (ICIW’06), Guadeloupe (French
Caribbean), 17-25 February 2006.

