CEUR-WS.org/Vol-3177/paper23.pdf

Towards an Information Retrieval Evaluation Library

Discussion Paper

Elias Bassani®?

Consorzio per il Trasferimento Tecnologico - C2T, Milan, Ttaly
?University of Milano-Bicocca, Milan, Ttaly

Abstract

This manuscript discusses our ongoing work on ranx, a Python evaluation library for Information
Retrieval. First, we introduce our work, summarize the already available functionalities, show the
user-friendly nature of our tool through code snippets, and briefly discuss the technologies we relied on
for the implementation and their advantages. Then, we present the upcoming features, such as several
Metasearch algorithms, and introduce the long-term goals of our project.

Keywords

Information Retrieval, Evaluation, Comparison, Metasearch, Fusion

1. Introduction

Nowadays, the development of novel Information Retrieval models usually undergoes an offline
evaluation step where the results of different models are compared on the same set of queries to
determine whether improvements over the state-of-the-art have been reached [1, 2]. To evaluate
the retrieval effectiveness of the compared models, researchers rely on multiple metrics, such
as Reciprocal Rank, Average Precision, and Normalized Discounted Cumulative Gain [3].

Over the years, multiple software libraries have been proposed to perform this assessment
[4,5,6,7,8,9,10,11]. However, in our opinion, those libraries still lack a stress-free user-friendly
interface. Therefore, we recently proposed ranx![12], a Python library built following a user-
centered design [13] to provide an easy-to-use tool for Information Retrieval researchers. ranx
offers several ranking evaluation metrics and allows users to compare the results of different
systems in just a few lines of code, while providing top-notch efficiency thanks to Numba [14],
a just-in-time compiler [15] for Python and NumPy [16, 17, 18] code.

In the following sections, we first summarize the functionalities currently offered by ranx.
Then, we present the upcoming features. Finally, we introduce the long-term goal of our project.

IIR2022: 12th Italian Information Retrieval Workshop, June 29 - June 30th, 2022, Milan, Italy

& e.bassani3@campus.unimib.it (E. Bassani)

® 0000-0001-7922-2578 (E. Bassani)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
7= CEUR Workshop Proceedings (CEUR-WS.org)

Thttps://github.com/AmenRa/ranx

mailto:e.bassani3@campus.unimib.it
https://orcid.org/0000-0001-7922-2578
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/AmenRa/ranx

2. Overview

In this section, we present the main functionalities ranx provides, show its user-friendly nature
through some code snippets, and discuss its implementation and the advantages brought by the
employed technologies. More details and examples are available in the official repository.

2.1. Qrels and Run

First, ranx provides a convenient way of managing the data needed for evaluating and com-
paring different retrieval models: the query relevance judgments (qrels) and ranked lists of
documents retrieved for those queries by the systems (runs). ranx implements two custom
classes for these kinds of data: Qrels and Run. In particular, data can be loaded from Python
dictionaries and Pandas DataFrames [19] or read from TREC-style files and JSON files. Moreover,
ranx integrates seamlessly with ir-datasets [20], allowing the users to load qrels for several
Information Retrieval datasets, such as those from TREC’s challengesz, BEIR [21], and MS
MARCO [22]. Figure 1 shows the standard way of creating Qrels and Run instances. ranx
takes care of sorting the result lists so that the user does not have to think about it. To learn
more about Qrels and Run, we invite the reader to follow our online Jupyter Notebook®.

from ranx import Qrels, Run

grels_dict = "gq_1" "d_12" "d_25"
l|q_2l| l|d_lll| l|d_22ll

run_dict = { "q_1" "d_12": 0.9, "d_23": 0.8, "d_25"
nd_36") nd_32" . nd_3s"

"g_2" ng_12") nd_11" . ng_25"

"d_36" . nd_22" . ng_35"

grels = Qrels(qgrels_dict
run = Run(run_dict

grels = Qrels.from_ir_datasets("msmarco-document/dev"

Figure 1: Qrels and Run

2.2. Metrics, Evaluation, and Comparison

ranx provides the most commonly used ranking evaluation metrics* such as Reciprocal Rank,
Average Precision, and Normalized Discounted Cumulative Gain [3]. These metrics can be used
to evaluate a run in a single line of code, as depicted in Figure 2. As the figure shows, ranx
allows the user to provide one or multiple metrics and define cut-offs using a convenient syntax.
Additional information can be found online®.

ranx also offers functionalities to compare runs and perform statistical tests. As shown in
Figure 3, by providing the query relevance judgments and a list of runs and defining the desired

*https://trec.nist.gov
*https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/2_qrels_and_run.ipynb
*A complete list of the implemented metrics can be found here: https://github.com/AmenRa/ranx#metrics
*https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/3_evaluation.ipynb

https://trec.nist.gov
https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/2_qrels_and_run.ipynb
https://github.com/AmenRa/ranx#metrics
https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/3_evaluation.ipynb

metrics, the compare function performs a comparison of the runs. It returns a Report instance,
which stores the information produced by the compare function and can be printed as in Figure
3 or exported as a KIEX table, ready for a scientific publication. The code underlying Table 1
was generated by ranx. To learn more about comparing different runs, we invite the reader to
follow our online Jupyter Notebook®.

from ranx import evaluate

Compute score for a single metric
evaluate(qrels, run, "ndcg@e5"

0.7861

Compute scores for multiple metrics at once
evaluate(qrels, run "map@5", "mrr"
"map@5": 0.6416, "mrr": 0.75

Figure 2: Evaluation

from ranx import compare

Compare different runs and perform statistical tests
report = compare
qrels=qgrels
runs=[run_1, run_2, run_3, run_4, run_5
metrics=["map@100", "mrr@1l00", "ndcg@lO"
max_p=0.01 # P-value threshold

print(report

MAP@100 MRR@100

model_1 . .320°
model_2 o .234
model_3 . .309°
model_4 . ajblc . 36i7abic
model_5 o abecd .4063b¢cd

Figure 3: Comparison and Report

Table 1
Overall effectiveness of the models. Best results are highlighted in boldface. Superscripts denote
statistically significant differences in Fisher’s Randomization Test with p < 0.01.

| Model | MAP@100 | MRR@100 | NDCG@10
a | model_1 | 0.3202° 0.3207° 0.3684%¢

b | model_2 | 0.2332 0.2339 0.239

¢ | model_3 | 0.3082° 0.3089" 0.3295°

d | model_4 | 0.3664%¢ 0.3668%b¢ 0.40787b¢

e | model_5 | 0.4053%%<¢ | 0.4061%%¢¢ | 0.4512%b¢d

Shttps://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/4_comparison_and_report.ipynb

https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/4_comparison_and_report.ipynb

2.3. Backend

In addition to its user-friendly interface, ranx is also very efficient due to its Numba-based
implementation. Numba[14] is a just-in-time[15] compiler for Python and NumPy([16, 17, 18]
that translates and compiles for-loop-based code to high-speed vector operations and allows
for automatic parallelization, which is very handy on modern multi-core CPUs. Almost every
operation performed by ranx relies on Numba-compiled code. The internal data structures used
by Qrels and Run and all the evaluation metrics provided by ranx are built on top of Numba.
Our implementation allows for conducting evaluations and comparisons much faster than other
popular Python evaluation libraries for Information Retrieval. Table 2 reports the execution
time of different metrics in ranx and pytrec_eval, a Python wrapper for trec_eval, the
standard Information Retrieval evaluation library.

Table 2

Efficiency comparison between ranx (using different number of threads) and pytrec_eval (pytrec),
a Python interface to trec_eval. The comparison was conducted with synthetic data. Queries have
1-to-10 relevant documents. Retrieved lists contain 100 documents. NDCG, MAP, and MRR were
computed on the entire lists. Results are reported in milliseconds. Speed-ups were computed w.r.t.
pytrec_eval.

metric ‘ queries ‘ pytrec | ranx t=1 ‘ ranx t=2 ‘ ranx t=4 ‘ ranx t=8
1000 28 4 7.0x 3 9.3x 2 14.0x 2 14.0x
NDCG 10000 291 35 8.3x 24 12ax 18 16.2X 15 19.4x
100000 2991 | 347 8.6Xx | 230 13.0x | 178 16.8x | 152 19.7x
1000 27 2 135% 2 135X 1 27.0x 1 27.0x
MAP 10000 286 21 13.6x 13 22.0x 9 31.8x 7 40.9X%
100 000 2950 | 210 14.0x | 126 23.4X 84 35.1x 69 428X
1000 28 1 28.0x 1 28.0x 1 28.0x 1 28.0x
MRR 10000 283 7 40.4x 6 47.2X 4 70.8x 4 70.8x

100000 2935 74 39.7x 57 515X 44 66.7X 38 77.2x

3. Upcoming Features

We are currently implementing several Metasearch [23] algorithms, such as comb_min [24],
comb_max [24], comb_med [24], comb_anz [24], comb_mnz [24], comb_sum [24], comb_gmnz
[25], RRF [26], MAPFuse [27], ISR [28], Log_ISR [28], LogN_ISR [28], and many more. Qur
goal is to offer a Python implementation for all those methods with a standardized interface.
Moreover, we want to provide a working and easy-to-use implementation of those models
that could serve as baselines for researchers working on Metasearch algorithms. Moreover,
we argue young researchers in the Deep Learning-based Information Retrieval era have little
knowledge regarding Metasearch methods as they often rely on the weighted sum to fuse
lexical matching scores, such as those computed by BM25 [29], and semantic matching scores
computed by Transformer-based [30] rankers [31]. We hope that our work can stimulate
researchers to explore different fusion approaches. As many Metasearch algorithms require to
be tuned, we are also working on an auto-tune functionality that takes care of trying different
hyper-parameters configurations and finding the best performing one with no user effort.

4. Conclusion and Long-term Goals

To conclude our discussion, we introduce the long-term goals of our library. Besides adding more
metrics and other Metasearch methods, we plan to build a companion repository for storing
runs of state-of-the-art models accompanied by rich metadata for searching and indexing.
By integrating this online repository with ranx, we aim to allow researchers to download
pre-computed runs and compare the results of their models with those of state-of-the-art
approaches in just a few seconds. We think such functionality could help accelerate research in
Information Retrieval, allowing researchers to rapidly find appropriate baselines and avoiding
time-consuming and error-prone tasks entirely, such as re-implementing or re-training complex
retrieval models from scratch. Moreover, sharing runs of state-of-the-art models could promote
virtuous behaviors and transparency and reduce electricity consumption and pollution.

References

[1] D.Harman, Information Retrieval Evaluation, Synthesis Lectures on Information Concepts,
Retrieval, and Services, Morgan & Claypool Publishers, 2011.

[2] M. Sanderson, Test collection based evaluation of information retrieval systems, Found.
Trends Inf. Retr. 4 (2010) 247-375.

[3] K. Jarvelin, J. Kekélainen, Cumulated gain-based evaluation of IR techniques, ACM Trans.
Inf. Syst. 20 (2002) 422-446.

[4] E. Voorhees, D. Harman, Experiment and evaluation in information retrieval, 2005.

[5] C. Macdonald, N. Tonellotto, Declarative experimentation in information retrieval using
pyterrier, in: ICTIR, ACM, 2020, pp. 161-168.

[6] C. Macdonald, N. Tonellotto, S. MacAvaney, I. Ounis, Pyterrier: Declarative experimenta-
tion in python from BM25 to dense retrieval, in: CIKM, ACM, 2021, pp. 4526-4533.

[7] C.V.Gysel, M. de Rijke, Pytrec_eval: An extremely fast python interface to trec_eval, in:
SIGIR, ACM, 2018, pp. 873-876.

(8] J. R. M. Palotti, H. Scells, G. Zuccon, Trectools: an open-source python library for infor-
mation retrieval practitioners involved in trec-like campaigns, in: SIGIR, ACM, 2019, pp.
1325-1328.

[9] T.Breuer, N. Ferro, M. Maistro, P. Schaer, repro_eval: A python interface to reproducibility
measures of system-oriented IR experiments, in: ECIR (2), volume 12657 of Lecture Notes
in Computer Science, Springer, 2021, pp. 481-486.

[10] C.Lucchese, C.I. Muntean, F. M. Nardini, R. Perego, S. Trani, Rankeval: Evaluation and
investigation of ranking models, SoftwareX 12 (2020) 100614.

[11] C.Lucchese, C.I. Muntean, F. M. Nardini, R. Perego, S. Trani, Rankeval: An evaluation and
analysis framework for learning-to-rank solutions, in: SIGIR, ACM, 2017, pp. 1281-1284.

[12] E.Bassani, ranx: A blazing-fast python library for ranking evaluation and comparison,
in: M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nervag, V. Setty (Eds.),
Advances in Information Retrieval - 44th European Conference on IR Research, ECIR
2022, Stavanger, Norway, April 10-14, 2022, Proceedings, Part II, volume 13186 of Lec-

ture Notes in Computer Science, Springer, 2022, pp. 259-264. URL: https://doi.org/10.1007/
978-3-030-99739-7_30. d0i:10.1007/978-3-030-99739-7_30.

[13] C. Abras, D. Maloney-Krichmar, J. Preece, et al., User-centered design, Bainbridge, W.
Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications 37
(2004) 445-456.

[14] S.K.Lam, A. Pitrou, S. Seibert, Numba: a llvm-based python JIT compiler, in: LLVM@SC,
ACM, 2015, pp. 7:1-7:6.

[15] J. Aycock, A brief history of just-in-time, ACM Comput. Surv. 35 (2003) 97-113.

[16] T.E. Oliphant, A guide to NumPy, volume 1, Trelgol Publishing USA, 2006.

[17] S.van der Walt, S. C. Colbert, G. Varoquaux, The numpy array: A structure for efficient
numerical computation, Comput. Sci. Eng. 13 (2011) 22-30.

[18] C.R. Harris, K. J. Millman, S. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming with
numpy, Nat. 585 (2020) 357-362.

[19] W. McKinney, et al., pandas: a foundational python library for data analysis and statistics,
Python for high performance and scientific computing 14 (2011) 1-9.

[20] S. MacAvaney, A. Yates, S. Feldman, D. Downey, A. Cohan, N. Goharian, Simplified data
wrangling with ir_datasets, in: SIGIR, ACM, 2021, pp. 2429-2436.

[21] N. Thakur, N. Reimers, A. Riicklé, A. Srivastava, I. Gurevych, BEIR: A heterogeneous
benchmark for zero-shot evaluation of information retrieval models, in: J. Vanschoren,
S. Yeung (Eds.), Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual, 2021. URL: https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
65b9eeabelcc6bb9f0cd2a47751a186f- Abstract-round2.html.

[22] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, L. Deng, MS MARCO:
A human generated machine reading comprehension dataset, in: T. R. Besold, A. Bor-
des, A. S. d’Avila Garcez, G. Wayne (Eds.), Proceedings of the Workshop on Cognitive
Computation: Integrating neural and symbolic approaches 2016 co-located with the 30th
Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona,
Spain, December 9, 2016, volume 1773 of CEUR Workshop Proceedings, CEUR-WS.org, 2016.
URL: http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf.

[23] J. A. Aslam, M. H. Montague, Models for metasearch, in: W. B. Croft, D. J. Harper, D. H.
Kraft, J. Zobel (Eds.), SIGIR 2001: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, September 9-13,
2001, New Orleans, Louisiana, USA, ACM, 2001, pp. 275-284. URL: https://doi.org/10.1145/
383952.384007. doi:10.1145/383952.384007.

[24] E. A. Fox, J. A. Shaw, Combination of multiple searches, in: TREC, volume 500-215 of
NIST Special Publication, National Institute of Standards and Technology (NIST), 1993, pp.
243-252.

[25] J. H. Lee, Analyses of multiple evidence combination, in: SIGIR, ACM, 1997, pp. 267-276.

[26] G. V. Cormack, C. L. A. Clarke, S. Biittcher, Reciprocal rank fusion outperforms condorcet
and individual rank learning methods, in: SIGIR, ACM, 2009, pp. 758-759.

https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1007/978-3-030-99739-7_30
http://dx.doi.org/10.1007/978-3-030-99739-7_30
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.1145/383952.384007
https://doi.org/10.1145/383952.384007
http://dx.doi.org/10.1145/383952.384007

[27]

[29]

[30]

D. Lillis, L. Zhang, F. Toolan, R. W. Collier, D. Leonard, J. Dunnion, Estimating probabilities
for effective data fusion, in: F. Crestani, S. Marchand-Maillet, H. Chen, E. N. Efthimiadis,
J. Savoy (Eds.), Proceeding of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2010, Geneva, Switzerland, July 19-
23, 2010, ACM, 2010, pp. 347-354. URL: https://doi.org/10.1145/1835449.1835508. doi: 10 .
1145/1835449.1835508.

A. Mouriéo, F. Martins, J. Magalhdes, Multimodal medical information retrieval with
unsupervised rank fusion, Comput. Medical Imaging Graph. 39 (2015) 35-45. URL: https:
//doi.org/10.1016/j.compmedimag.2014.05.006. doi:10.1016/j . compmedimag.2014.05.
006.

S. E. Robertson, S. Walker, Some simple effective approximations to the 2-poisson model
for probabilistic weighted retrieval, in: Proceedings of the 17th Annual International
ACM-SIGIR Conference on Research and Development in Information Retrieval. Dublin,
Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum), ACM/Springer, 1994. doi:10.
1007/978-1-4471-2099-5_24.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, 1. Polo-
sukhin, Attention is all you need, in: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, 2017.

[31] J. Lin, R. Nogueira, A. Yates, Pretrained Transformers for Text Ranking: BERT and Be-

yond, Synthesis Lectures on Human Language Technologies, Morgan & Claypool Pub-
lishers, 2021. URL: https://doi.org/10.2200/S01123ED1V01Y202108HLT053. doi:10.2200/
S01123ED1V01Y202108HLTO53.

https://doi.org/10.1145/1835449.1835508
http://dx.doi.org/10.1145/1835449.1835508
http://dx.doi.org/10.1145/1835449.1835508
https://doi.org/10.1016/j.compmedimag.2014.05.006
https://doi.org/10.1016/j.compmedimag.2014.05.006
http://dx.doi.org/10.1016/j.compmedimag.2014.05.006
http://dx.doi.org/10.1016/j.compmedimag.2014.05.006
http://dx.doi.org/10.1007/978-1-4471-2099-5_24
http://dx.doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
http://dx.doi.org/10.2200/S01123ED1V01Y202108HLT053
http://dx.doi.org/10.2200/S01123ED1V01Y202108HLT053

	1 Introduction
	2 Overview
	2.1 Qrels and Run
	2.2 Metrics, Evaluation, and Comparison
	2.3 Backend

	3 Upcoming Features
	4 Conclusion and Long-term Goals

