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Abstract

This manuscript discusses our ongoing work on ranx, a Python evaluation library for Information
Retrieval. First, we introduce our work, summarize the already available functionalities, show the
user-friendly nature of our tool through code snippets, and briefly discuss the technologies we relied on
for the implementation and their advantages. Then, we present the upcoming features, such as several
Metasearch algorithms, and introduce the long-term goals of our project.
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1. Introduction

Nowadays, the development of novel Information Retrieval models usually undergoes an offline
evaluation step where the results of different models are compared on the same set of queries to
determine whether improvements over the state-of-the-art have been reached [1, 2]. To evaluate
the retrieval effectiveness of the compared models, researchers rely on multiple metrics, such
as Reciprocal Rank, Average Precision, and Normalized Discounted Cumulative Gain [3].

Over the years, multiple software libraries have been proposed to perform this assessment
[4,5,6,7,8,9,10,11]. However, in our opinion, those libraries still lack a stress-free user-friendly
interface. Therefore, we recently proposed ranx![12], a Python library built following a user-
centered design [13] to provide an easy-to-use tool for Information Retrieval researchers. ranx
offers several ranking evaluation metrics and allows users to compare the results of different
systems in just a few lines of code, while providing top-notch efficiency thanks to Numba [14],
a just-in-time compiler [15] for Python and NumPy [16, 17, 18] code.

In the following sections, we first summarize the functionalities currently offered by ranx.
Then, we present the upcoming features. Finally, we introduce the long-term goal of our project.
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2. Overview

In this section, we present the main functionalities ranx provides, show its user-friendly nature
through some code snippets, and discuss its implementation and the advantages brought by the
employed technologies. More details and examples are available in the official repository.

2.1. Qrels and Run

First, ranx provides a convenient way of managing the data needed for evaluating and com-
paring different retrieval models: the query relevance judgments (qrels) and ranked lists of
documents retrieved for those queries by the systems (runs). ranx implements two custom
classes for these kinds of data: Qrels and Run. In particular, data can be loaded from Python
dictionaries and Pandas DataFrames [19] or read from TREC-style files and JSON files. Moreover,
ranx integrates seamlessly with ir-datasets [20], allowing the users to load qrels for several
Information Retrieval datasets, such as those from TREC’s challengesz, BEIR [21], and MS
MARCO [22]. Figure 1 shows the standard way of creating Qrels and Run instances. ranx
takes care of sorting the result lists so that the user does not have to think about it. To learn
more about Qrels and Run, we invite the reader to follow our online Jupyter Notebook®.

from ranx import Qrels, Run

grels_dict = "gq_1" "d_12" "d_25"
l|q_2l| l|d_lll| l|d_22ll

run_dict = { "q_1" "d_12": 0.9, "d_23": 0.8, "d_25"
nd_36" ) nd_32" . nd_3s"

"g_2" ng_12" ) nd_11" . ng_25"

"d_36" . nd_22" . ng_35"

grels = Qrels(qgrels_dict
run = Run(run_dict

grels = Qrels.from_ir_datasets("msmarco-document/dev"

Figure 1: Qrels and Run

2.2. Metrics, Evaluation, and Comparison

ranx provides the most commonly used ranking evaluation metrics* such as Reciprocal Rank,
Average Precision, and Normalized Discounted Cumulative Gain [3]. These metrics can be used
to evaluate a run in a single line of code, as depicted in Figure 2. As the figure shows, ranx
allows the user to provide one or multiple metrics and define cut-offs using a convenient syntax.
Additional information can be found online®.

ranx also offers functionalities to compare runs and perform statistical tests. As shown in
Figure 3, by providing the query relevance judgments and a list of runs and defining the desired

*https://trec.nist.gov
*https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/2_qrels_and_run.ipynb
*A complete list of the implemented metrics can be found here: https://github.com/AmenRa/ranx#metrics
*https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/3_evaluation.ipynb
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metrics, the compare function performs a comparison of the runs. It returns a Report instance,
which stores the information produced by the compare function and can be printed as in Figure
3 or exported as a KIEX table, ready for a scientific publication. The code underlying Table 1
was generated by ranx. To learn more about comparing different runs, we invite the reader to
follow our online Jupyter Notebook®.

from ranx import evaluate

# Compute score for a single metric
evaluate(qrels, run, "ndcg@e5"

0.7861

# Compute scores for multiple metrics at once
evaluate(qrels, run "map@5", "mrr"
"map@5": 0.6416, "mrr": 0.75

Figure 2: Evaluation

from ranx import compare

# Compare different runs and perform statistical tests
report = compare
qrels=qgrels
runs=[run_1, run_2, run_3, run_4, run_5
metrics=["map@100", "mrr@1l00", "ndcg@lO"
max_p=0.01 # P-value threshold

print(report

MAP@100 MRR@100

model_1 . .320°
model_2 o .234
model_3 . .309°
model_4 . ajblc . 36i7abic
model_5 o abecd .4063b¢cd

Figure 3: Comparison and Report

Table 1
Overall effectiveness of the models. Best results are highlighted in boldface. Superscripts denote
statistically significant differences in Fisher’s Randomization Test with p < 0.01.

# | Model | MAP@100 | MRR@100 | NDCG@10
a | model_1 | 0.3202° 0.3207° 0.3684%¢

b | model_2 | 0.2332 0.2339 0.239

¢ | model_3 | 0.3082° 0.3089" 0.3295°

d | model_4 | 0.3664%¢ 0.3668%b¢ 0.40787b¢

e | model_5 | 0.4053%%<¢ | 0.4061%%¢¢ | 0.4512%b¢d

Shttps://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/4_comparison_and_report.ipynb
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2.3. Backend

In addition to its user-friendly interface, ranx is also very efficient due to its Numba-based
implementation. Numba[14] is a just-in-time[15] compiler for Python and NumPy([16, 17, 18]
that translates and compiles for-loop-based code to high-speed vector operations and allows
for automatic parallelization, which is very handy on modern multi-core CPUs. Almost every
operation performed by ranx relies on Numba-compiled code. The internal data structures used
by Qrels and Run and all the evaluation metrics provided by ranx are built on top of Numba.
Our implementation allows for conducting evaluations and comparisons much faster than other
popular Python evaluation libraries for Information Retrieval. Table 2 reports the execution
time of different metrics in ranx and pytrec_eval, a Python wrapper for trec_eval, the
standard Information Retrieval evaluation library.

Table 2

Efficiency comparison between ranx (using different number of threads) and pytrec_eval (pytrec),
a Python interface to trec_eval. The comparison was conducted with synthetic data. Queries have
1-to-10 relevant documents. Retrieved lists contain 100 documents. NDCG, MAP, and MRR were
computed on the entire lists. Results are reported in milliseconds. Speed-ups were computed w.r.t.
pytrec_eval.

metric ‘ queries ‘ pytrec | ranx t=1 ‘ ranx t=2 ‘ ranx t=4 ‘ ranx t=8
1000 28 4 7.0x 3 9.3x 2 14.0x 2 14.0x
NDCG 10000 291 35 8.3x 24 12ax 18  16.2X 15 19.4x
100000 2991 | 347 8.6Xx | 230 13.0x | 178 16.8x | 152 19.7x
1000 27 2 135% 2 135X 1 27.0x 1 27.0x
MAP 10000 286 21 13.6x 13 22.0x 9 31.8x 7 40.9X%
100 000 2950 | 210 14.0x | 126 23.4X 84 35.1x 69 428X
1000 28 1 28.0x 1 28.0x 1 28.0x 1 28.0x
MRR 10000 283 7 40.4x 6 47.2X 4 70.8x 4 70.8x

100000 2935 74 39.7x 57 515X 44 66.7X 38 77.2x

3. Upcoming Features

We are currently implementing several Metasearch [23] algorithms, such as comb_min [24],
comb_max [24], comb_med [24], comb_anz [24], comb_mnz [24], comb_sum [24], comb_gmnz
[25], RRF [26], MAPFuse [27], ISR [28], Log_ISR [28], LogN_ISR [28], and many more. Qur
goal is to offer a Python implementation for all those methods with a standardized interface.
Moreover, we want to provide a working and easy-to-use implementation of those models
that could serve as baselines for researchers working on Metasearch algorithms. Moreover,
we argue young researchers in the Deep Learning-based Information Retrieval era have little
knowledge regarding Metasearch methods as they often rely on the weighted sum to fuse
lexical matching scores, such as those computed by BM25 [29], and semantic matching scores
computed by Transformer-based [30] rankers [31]. We hope that our work can stimulate
researchers to explore different fusion approaches. As many Metasearch algorithms require to
be tuned, we are also working on an auto-tune functionality that takes care of trying different
hyper-parameters configurations and finding the best performing one with no user effort.



4. Conclusion and Long-term Goals

To conclude our discussion, we introduce the long-term goals of our library. Besides adding more
metrics and other Metasearch methods, we plan to build a companion repository for storing
runs of state-of-the-art models accompanied by rich metadata for searching and indexing.
By integrating this online repository with ranx, we aim to allow researchers to download
pre-computed runs and compare the results of their models with those of state-of-the-art
approaches in just a few seconds. We think such functionality could help accelerate research in
Information Retrieval, allowing researchers to rapidly find appropriate baselines and avoiding
time-consuming and error-prone tasks entirely, such as re-implementing or re-training complex
retrieval models from scratch. Moreover, sharing runs of state-of-the-art models could promote
virtuous behaviors and transparency and reduce electricity consumption and pollution.
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