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Abstract
Onomastic wordplay has been widely used as a rhetorical device by novelists, poets, and
playwrights, from character names in Shakespeare and other classic literature to named
entities in Pokémon, Harry Potter, Asterix, and video games. The translation of such wordplay
is problematic both for humans and algorithms due to its ambiguity and unorthodox morpho-
logy. In this paper, we present an overview of Pilot Task 2 of the JOKER@CLEF 2022 track,
where participants had to translate wordplay in named entities from English into French.
For this, we constructed a parallel corpus wordplay in named entities from movies, video
games, advertising slogans, literature, etc. Five teams participated in the task. The methods
employed by participants were based on the state-of-the-art transformer models, which have
the advantage of subword tokenisation. The participants’ models were pre-trained on large
corpora and fine-tuned on the JOKER training set. We observed that in many cases the
models provided the exact official translations, suggesting that they were pre-trained on
the corpus containing the source texts used in the JOKER corpus. Those translations that
differed from the official ones only rarely contained wordplay.
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1. Introduction

Wordplay is often used for its attention-getting or mnemonic qualities in headlines,
toponyms, company names, and advertising. Onomastic (i.e., name-related) wordplay
has been widely used as a rhetorical device by novelists, poets and playwrights. It is
widespread in classic literature [1], such as in Shakespeare’s characters’ names [2],
but also in names found in modern-day works such as Pokémon, Harry Potter, Asterix,
and video games. Proper nouns with an extra semantic load are used as a meaningful
element in literary texts and can be considered as wordplay [3]. The translation of
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such literary names is problematic, raising the questions of whether the transposition
of such names into a given target language is technically possible and, if so, what
method might be appropriate for producing them [3].

Generally speaking, these playful designations in fictional universes can be viewed
as named entities. Named entities are objects, abstract or physical (such as a person,
location, organisation, product, etc.), that can be denoted with a proper name.
Traditional approaches to translating named entities include transliteration [4, 5]
or keeping them unchanged in the target text. However, these approaches do not
typically preserve wordplay (or at least, not in a way which may be meaningful for
the target audience), even though such wordplay can be crucial for understanding
the pragmatics of the text.

Meaningful proper names in fictional universes are often neologisms. Neologisms –
that is, newly coined words – are among the most common forms of linguistic cre-
ativity, and are a particular focus of the JOKER project. Subcultures and rapidly
advancing technical fields are common sources of neologisms, some of which may
eventually come into regular or even widespread use (in processes known as lex-
icalisation, institutionalisation, and entrenchment). But neologisms can also be
ephemeral, being invented for use in a specific discourse and not intended for gen-
eral adoption. Such neologisms, known as nonce words or occasionalisms, are
a recurrent feature of literature, advertisements, and journalism, where they are
often used for playful or humorous purposes [6, 7, 8]. Due to their highly idiosyn-
cratic nature, neologisms – particularly humorous ones – are challenging for both
humans and machines to translate [7]. Machine translation systems in particular
generally fail to recognise the deliberate ambiguity or unorthodox morphology of
neologisms, leaving such terms untranslated or else translating them in ways that
lose the humorous aspect [9].

The goal of the JOKER@CLEF 2022 workshop was to bring together translators,
linguists, and computer scientists in order to bring us a step closer to the automation
of multilingual wordplay analysis and translation. In this paper, we present the
workshop’s Pilot Task 2, where participants had to translate wordplay in named
entities from English into French. Details on other related shared tasks on wordplay
translation are covered in our workshop overview paper [10].

2. Related work

Fortunately, many of the basic processes through which neologisms are formed
and employed are well understood in linguistics [11, 8]. These include semantic
shifting (imbuing an existing word with a new meaning), morphological derivation
(adding a prefix or suffix to an existing word), compounding (combining whole stems),
blending (combining fragments of words), clipping (truncating an existing word),
analogy (formation based on a prototype word or schema), and creation ex nihilo
(extramorphological invention of entirely new roots).

Recent linguistic scholarship has sought to deepen this understanding: there have



been studies, for example, on the discourse cues used to signal nonce words [12];
on the linguistic, extra-linguistic, and contextual knowledge required for interpret-
ing neologisms [13]; on the sublexical features preferentially modified in nonce
formations [14]; and on the specific morphological and analogical word formation
processes strongly associated with humour [14, 8]. Word formation processes are
also known in the field of translation studies, which has documented strategies for
analysing and translating neologisms [7] and made case studies of translated neolo-
gisms as a source of humour [15]. Despite this, working translators evince a marked
reluctance to neologise, overwhelmingly opting to replace source-language coinages
with lexically conventional options, or else eliminating them altogether [16]. The
reasons for this remain unexplored; on the one hand, this could be an unconscious
tendency of translators to normalise language, but it could also be down to a lack of
awareness of finer-grained neological processes, or to a lack of the time and effort
required to creatively apply them.

A common approach to lightening the translator’s workload is to employ language
technology, often in the form of machine translation. However, nearly all MT systems
rely on lexical resources such as dictionaries and parallel text corpora which cannot
be expected to contain completely novel words; this essentially makes translating
recent neologisms out of scope for conventional machine translation. Surprisingly,
this problem has been directly addressed only rarely in the MT literature, and even
then only for highly restricted classes of morphologically derived neologisms [17, 18].

However, there does exist some research involving natural language pro-
cessing (NLP) and neologisms, though not necessarily carried out with MT in mind,
which we hypothesise could nonetheless be adapted for or inform the design of a
future machine or machine-assisted translation system. This work includes meth-
ods for automatically identifying the source words of blends [19], for generating
orthographically plausible cognates in a target language [20], and for predicting the
location of neologisms in a word embedding space [21]. There is even a small meas-
ure of tangentially relevant work in computational humour: [22] attempt to detect
“marketing blunders”, where a serious neologism in one language inadvertently re-
sembles a humorous or otherwise inappropriate term in another language; [23] show
that ex nihilo neologisms can induce consistent semantic intuitions, including hu-
mour; [24] present a technique for generating humorous neologisms conditioned on
user-specified properties; and our own past work [9] focuses on computer-mediated
translation of puns, which sometimes employs blending and other mechanisms also
used in neologism.

Some prior work does tackle the named entity recognition question in fiction [25,
26] or optimising it for machine translation [27]. The Named Entity Transliteration
Shared Task was held at the 7th Named Entities Workshop in 2018 [4, 5]. In [28],
a method is proposed that fuses bilingual entity class named entity translation
based on a chunk symmetry strategy and a machine learning–based English–Chinese
transliteration model. A combination of standard entity masking techniques and a
semantic equivalent placeholder was proposed in [29]. Conventional neural machine
translation models struggle to translate words with multiple meanings because of



the high ambiguity as well as compound words due to their morphology [30]. To
deal with these problems, named entity tags with a chunk-level LSTM layer over a
word-level LSTM layer were proposed [30]. However, this approach is not suitable for
humourous neologism as it does not aim to reproduce wordplay in a target language.

Transfer learning became a widely applied technique in many NLP tasks. The term
describes models that are first pre-trained on a large corpus and then fine-tuned on
a downstream task. The state-of-the-art large pre-trained models, such as T5 [31] or
GPT-3 [32], convert all text-based language problems into a text-to-text format. The
initial idea of transformers was intended to eliminate recurrence and convolutions in
favour of attention mechanisms only [33].

The state-of-the-art transformer models make use subword tokenisers, such as
Byte-Pair Encoding (BPE) [34] and WordPiece [35]. BPE relies on a pre-tokeniser that
splits the training data into words and is used in the GPT-2 [36] Roberta [37] models.
WordPiece is the subword tokenisation algorithm, similar to BPE, used in BERT [33],
DistilBERT [38], and Electra [39]. Although these methods are comparatively shallow,
they have shown promise for the related use case of languages with large vocabular-
ies and many rare words [40, 34]. However, they too are not specifically equipped
for wordplay, ignoring ambiguity and humorous intention.

3. Data

We constructed a parallel corpus of wordplay in named entities in English and French.
We collected distinct 1 398 named entities in English containing wordplay from video
games, advertising slogans, literature, and other sources [41, 10] along with 1 450
translations into French. The vast majority of the translations were the official,
published ones. Some alternative translations were provided by Master’s students
in translation, all native speakers of French. The statistics on wordplay in named
entities is given in Table 1. The vast majority of wordplay are portmanteau words –
i.e., words formed by merging the sounds and meanings of two different words. The
table employs a traditional classification of wordplay as, even though its usage is
problematic,1 it is better known and thus may give a clearer idea of the data we have.

1For example, the category neologism tends to overlap with other categories.

Table 1
Statistics of wordplay in named entities

Category English French

portmanteau 909 984
pun/homophone 298 291
no manipulation 104 108
neologism 53 42
assonance/alliteration 24 17
anagram 8 6



3.1. Training data

The training dataset contains 1 161 instances of wordplay in the form of translated
pairs. The data was provided to participants as a JSON file (or a CSV file for manual
runs) with fields denoting the instance’s unique ID (id), the source text in English
(en), and a target text in French (fr). For example:

[
{
"id": "noun_1",
"en": "Ambipom",
"fr": "Capidextre"

}
]

3.2. Test data

We used a further 284 wordplay instances for the test data. The data format was
identical to that of the training data, except that the field for the target text was
omitted. Example:

[
{
"id": "noun_1185",
"en": "Fungun",

}
]

The expected output format was identical to that of the training data, but with the
addition of fields RUN_ID and MANUAL. The RUN_ID field value uniquely identifies a
given run and is formed of the team ID (as registered on the CLEF website) followed
by the task ID (in this pilot task, always task_2), followed by the run number. The
MANUAL field value can be either a 1 (indicating a manual translation run) or a 0
(indicating a machine translation run). Example:

[
{
"RUN_ID": "OFFICIAL_task_2_run1",
"MANUAL": 1,
"id": "noun_1",
"en": "Ambipom",
"fr": "Capidextre"

}
]



4. Evaluation metrics

For the wordplay translation tasks (Tasks 2 and 3), there do not yet exist any
accepted metrics of translation quality [41, 10]. MT is traditionally measured with
the BLEU (Bilingual Evaluation Understudy) metric, which calculates vocabulary
overlap between the candidate translation and a reference translation [42]. However,
this metric is clearly inappropriate for single-term wordplay translation evaluation,
as overlap measures operate only on larger text spans and not on individual words,
the morphological analysis of which can be crucial for neologisms [41, 10].

We hypothesised that the majority of proper nouns would not be translated auto-
matically. So we compared the target translation with source wordplay (metric not
translated ).

As our dataset for Task 2 contains “official” translations of wordplay instances
coming from various published sources (e.g., Pokémon names), we also tried filtering
out these official translations (metric official ).

We manually evaluated the non-official translations according the following met-
rics:

• lexical field preservation: A value of true is assigned to translations that
preserve the lexical field of the source wordplay (i.e., the translation is close to
a literal one).

• sense preservation: A value of true is assigned to translations that preserve
the meaning of the source wordplay.

• comprehensible terms: A value of true is assigned to translations that do not
rely on specialised terminology.

• wordplay form: A value of true is assigned to translations that employ (as
opposed to omit) wordplay.

5. Methods used by the participants

Five teams participated in Pilot Task 2: FAST_MT [43], TEAM_JOKER [44],
Cecilia [45], Agnieszka, and Lea_T5 [46]. Four of these teams submitted a total
of four runs. Lea_T5 worked on the data of the Task 2 and submitted a paper but no
run for the test set. TEAM_JOKER submitted a run and wrote a blog post but without
an article in CLEF Working Notes Proceedings. Agnieszka submitted a run without a
paper, though the team did notify the JOKER organisers of the method they used.

Three of the five teams (Cecilia, Agnieszka, and Lea_T5) used the SimpleT5 library2

for the Google T5 (Text-To-Text Transfer Transformer) model, which is based on the
transfer learning with a unified text-to-text transformer [31]. TEAM_JOKER also
fine-tuned Google’s T5 on the available examples for 18 epochs with 80% of the data
in the training set and 20% in the validation set. The only preprocessing they used
was to prefix each data point in English with “translate English to French:”. The

2https://github.com/Shivanandroy/simpleT5

https://github.com/Shivanandroy/simpleT5


Table 2
Scores of participants’ runs for Pilot Task 2

FAST_MT TEAM_JOKER Cecilia Agnieszka

total 284 284 284 242
not translated 0 0 0 0
official 250 159 216 230
non-official 34 125 68 12
lexical field preservation 16 13 5 0
sense preservation 13 11 5 0
comprehensible terms 26 59 16 2
wordplay form 3 12 3 1

teams that used the SimpleT5 library trained their models for a much lower number
of epochs, as after three epochs they observed overfitting.

The team FAST_MT also applied transformers [43]. They mapped the task of
translating single terms containing a wordplay to the problem of question answering
on texts extracted from the open-source parallel corpus OPUS [47]. They generated
the context for each English–French noun pair by pulling from OPUS English–French
parallel sentence pairs that contain at least one English noun in the English version.
Then a transformer-based model [48] from Hugging Face3 was trained to predict the
location of the corresponding French translation in the related contexts given an
English noun as a query.

6. Results

Our initial guess was that the majority of proper nouns would not be translated
by machine translation. However, as our dataset contained officially translated
named entities (e.g., from Pokémon) that may have been discoverable by participants
and large pretrained models, all participants translated all wordplay instances.
The results from Table 2 suggest that the majority of translated named entities
were indeed the official translations. TEAM_JOKER [44], however, provided very
interesting results, with almost half being non-official translations. Among these,
twelve translations were judged as being wordplay. We can also see that among non-
official translations, less than 10% are successful in terms of preserving wordplay.

As is evident from Table 3, the majority of non-official translations containing
wordplay are accidental, although we observe francisation of English terms. We
provide interpretations in the language of the corresponding wordplay. (For details of
the interpretation annotation, refer to our workshop overview paper [10].) Almost all
wordplay in this list are portemanteaux – i.e., words formed by merging the sounds
and meanings of two different words.

3https://huggingface.co/

https://huggingface.co/


7. Conclusion

While wordplay in named entities has been widely used as a literary device, its
translation is problematic both for human and algorithms due to its high ambiguity
and unorthodox morphology. As a rule, standard named entities are transliterated
from one language into another, as in case of names of persons, or kept unchanged to
preserve trademarks. However, these approaches do not preserve wordplay, which
can be crucial for understanding the pragmatics of a creative text.

In this paper, we presented an overview of Pilot Task 2 of the JOKER@CLEF 2022
track, where participants had to translate wordplay in named entities from English
into French. We constructed a parallel corpus of wordplay in named entities from
movies, video games, advertising slogans, literature, etc. Five teams participated
in the task. The methods employed by participants were based on state-of-the-art
transformer models, which exploit subword tokenisation. The participants’ models
were pre-trained on large text collections and fine-tuned on the JOKER training set.
We observed that, in many cases, the models provided the exact official translations.
This suggests that they were pre-trained on a corpus containing the same texts used
in the JOKER corpus. Where systems did suggest translations different from the
official ones, they rarely employed wordplay.
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