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Abstract

Given a collection of multidimensional time-series that contains an unknown type and number of network structures
between variables, how efficiently can we find typical patterns and their points of variation? How can we interpret important
relationships with obtained patterns? In this paper, we propose a new method of model-based clustering, which we call network
clustering via graphical lasso (NGL). Our method has the following properties: (a) Interpretable: it provides interpretable
network structures and cluster assignments for the data; (b) Automatic: it determines the optimal cut points and the number
of clusters automatically; (c) Accurate: it provides reliable clustering performance thanks to the automated algorithm. We
evaluate our NGL algorithm on both real and synthetic datasets, obtaining interpretable network structure results and
outperforming state-of-the-art baselines in terms of accuracy.
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1. Introduction

Many applications generate time-series data including
those used in automobiles [1], biology, social networks
and in relation to financial data. In most cases, these
data are multidimensional, and it is important to find
typical patterns, which have a specific network structure.
In practice, real-life data have multiple distinct patterns,
which differentiate their network structures. For exam-
ple, automobile sensor data from a driving session can be
composed of some basic actions and some abrupt actions
(i.e., going straight, turning right, turning left, slowing
down, sudden braking, sudden turning). The network
structure is equal to the graph structure. In this case, sen-
sors can be represented as nodes, and sensor interactions
can be represented as edges. For a turning action, lateral
acceleration and steering angle may have an edge and
for a braking action, brake pedal stroke and longitudinal
acceleration may have an edge.

In this paper, we focus on finding a network structure
automatically from multidimensional time-series data.
Understanding the structure of these networks is useful
because it allows us to devise models of sensor interac-
tion, which can be used to analyze such behaviours as
fossil-efficient driving. However, there are many network
structures in the data, which change over time, and it is
difficult to find a meaningful segmentation point since no
one knows how data change. Moreover, the number of
clusters should be selected automatically to find abrupt
changes or for an extension to online learning, because
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in most cases, we do not know the optimal number of
clusters in advance.

In this paper, we propose an automatic algorithm,
called network clustering via graphical lasso (NGL),
which enables us to summarize multidimensional time-
series into meaningful patterns efficiently based on the
graphical lasso problem. Intuitively, the problem we wish
to solve is as follows.

InformalProblem 1. Given a large collection of mul-
tidimensional time-series data with underlying network
structures 𝑋 , Find a compact description of 𝑋 , which
consists of:

1. a set of segments and their cut points

2. a set of segment groups (i.e., clusters) of similar
network structures

3. the optimal number of clusters

Contrast with Competitors. We will compare NGL
with existing methods from the viewpoint of network
inference. Network estimation with time-series informa-
tion has been studied as a method for analyzing eco-
nomic data and biological signal data because of the
high interpretability of its graphical model [2]. Graphical
lasso [3, 4] is a network estimation method that provides
an interpretable sparse inverse covariance matrix due to
the ℓ1-norm. Time varying graphical lasso (TVGL) [5]
is a network estimation method that takes time informa-
tion into account. Although this method can find change
points by comparing the network structure before and
after a change, it can’t find clusters. Toeplitz inverse
covariance-based clustering (TICC) [6] and time adaptive
Gaussian model (TAGM) [7] are clustering methods based
on network structure. TICC uses Markov random fields
(MRF) and Toeplitz matrices to capture the inherent rela-
tionships among variables. TAGM is a fusion of a hidden
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Markov model (HMM) and a Gaussian mixture model
(GMM). These methods find clusters depending on the
network structure of each subsequence. This provides
clusters with interpretability and allows us to discover
patterns that other traditional clustering methods are
unable to find. Both incorporate a graphical lasso to cap-
ture the interaction between variables but require the
number of clusters to be specified as prior information.
Consequently, only our approach satisfies the need for
interpretability and find the optimal number of clusters
automatically.

Contributions. The main contribution of this work is
the concept and design of NGL, which has the following
desirable properties:

1. Interpretable: NGL provides the underlying
graphical structures and cluster assignments in
data, which help us to interpret important rela-
tionships between variables.

2. Automatic: We formulate data encoding
schemes to reveal distinct patterns/clusters, each
of which captures the network structure. The
proposed method requires no parameter tuning
to specify the number of clusters.

3. Accurate: NGL is a simple yet powerful algo-
rithm for time-series segmentation using a graphi-
cal lasso, which outperforms state-of-the-art com-
petitors in terms of accuracy.

2. Preliminary

In this paper we investigate an automatic network struc-
ture clustering for large multidimensional time-series
data. We will describe a few key concepts and back-
ground materials in this section.

2.1. Problem definition

Consider a set of 𝑝-dimensional time-series data con-
sisting of 𝑇 sequential bundle observations, 𝑋 =
{𝑥1, 𝑥2, ..., 𝑥𝑇 } and there are |𝑥𝑖| ≥ 1 different observa-
tions at each time 𝑖. 𝑥𝑖 ∈ R𝑝 is the 𝑖-th multidimensional
bundle observation, and each bundle observation vector
is sampled from any𝐾 multivariate normal distributions
𝑥𝑖 ∼ 𝑁(0,Σ𝑘). The network structure is equal to the
graph structure, in which a given 𝑥𝑖 ∼ 𝑁(0,Σ𝑘), each
variable represents a node, and the covariance matrix
Σ𝑘 forms an edge. Our goal is to find the cluster assign-
ments of these 𝑇 bundle observations into 𝐾 clusters
ℱ = {ℱ1,ℱ2, ...,ℱ𝐾}, where ℱ𝑘 is a cluster assign-
ment set of 𝑋𝑘 ⊂ 𝑋 (𝑠.𝑡. 𝑘 = 1, 2, ...,𝐾) represented
by a set of 𝐾 matrices, i.e., Θ = {𝜃1, 𝜃2, ..., 𝜃𝐾}. There-
fore, letting 𝑀𝑘 = {𝜃𝑘,ℱ𝑘} be a compact description

for 𝑋𝑘 in the 𝑘-th cluster, the full parameter set that we
want to estimate consists of 𝑀 = {𝑀1,𝑀2, ...,𝑀𝐾}
and the number of clusters 𝐾 .

2.2. Graphical lasso problem

We first consider the static inference that estimates 𝜃𝑖.
The optimization problem is written as follows:

minimize𝜃𝑖∈𝑆
𝑝
++

− 𝑙𝑙(𝑥𝑖, 𝜃𝑖) + 𝜆||𝜃𝑖||𝑜𝑑,1,

𝑙𝑙(𝑥𝑖, 𝜃𝑖) = |𝑥𝑖|(log det 𝜃𝑖 − 𝑇𝑟(𝑆𝑖𝜃𝑖)),

where 𝑆𝑖 is the empirical covariance
(1/|𝑥𝑖|)

∑︀|𝑥𝑖|
𝑗=1 𝑥𝑗𝑥

𝑇
𝑗 , 𝑥𝑗 are the different samples,

𝑆𝑝
++ is the space of the positive definite matrices,
𝜆 determines the sparsity level of the network, and
‖ · ‖𝑜𝑑,1 is the off-diagonal ℓ1-norm. This is a convex
optimization problem, which imposes the ℓ1-norm
restriction.

2.3. TVGL problem

To infer a time-varying sequence of networks, TVGL [5]
extends the above approach, which is designed to infer a
set of inverse covariance matrices Θ. TVGL solves the
problem below:

minimize𝜃𝑖∈𝑆
𝑝
++

𝑇∑︁
𝑖=1

−𝑙𝑙(𝑥𝑖, 𝜃𝑖) + 𝜆||𝜃𝑖||𝑜𝑑,1 + 𝛽

𝑇∑︁
𝑖=2

𝜓(𝜃𝑖 − 𝜃𝑖−1),

where 𝛽 determines how strongly correlated neighboring
covariance estimations should be. The penalty function
𝜓 encourages similarity between 𝜃𝑖 and 𝜃𝑖−1. Different
types of 𝜓 allow us to enforce different restrictions in the
time-varying similarity. This problem is solved by em-
ploying the alternating direction method of multipliers
(ADMM) [8], which is a well-established method for solv-
ing the convex optimization problem. For more details,
please see, e.g., [5]. Although TVGL can find a changing
point by comparing 𝜃𝑖 and 𝜃𝑖−1, it cannot find a cluster
simultaneously. Throughout this paper our method uses
TVGL to optimize the graphical lasso problem.

3. Algorithms

The previous section described how to estimate a set of
inverse covariance matrices Θ. Now the questions are
(a) how to describe the model, (b) how to find optimal
cut points, and (c) how to assign segments to optimal
clusters. There are three main ideas behind our model:

1. Model description cost: We use the minimum
description length (MDL) principle as a model
selection criterion for choosing between alterna-
tive segmentation and cluster descriptions. We



propose a novel cost function to estimate the de-
scription cost of the graphical lasso model.

2. CutPointSearch: We modify the generic bottom-
up algorithm [9] to enhance its ability to han-
dle time-series data. Initially we adopt short seg-
ments and iteratively merge with an adjacent pair
that satisfies the cost restriction.

3. NGL: We use the EM algorithm to cluster the
segments obtained by CutPointSearch while de-
termining the optimal number of clusters auto-
matically.

3.1. Model description cost

The MDL explains the model in a parsimonious way that
calculates the required number of bits. Thus, it follows
the assumption that the more we can compress the data,
the more we can generalize its underlying structures.
In a nutshell, we want to find the minimum number of
graphical lasso models needed to express the data. The
goodness of the model 𝑀 can be described as follows:

< 𝑋;𝑀 > = < 𝑀 > + < 𝑋|𝑀 >, (1)

where < 𝑀 > shows the cost of describing the model
𝑀 , and < 𝑋|𝑀 > represents the cost of describing the
data 𝑋 given the model 𝑀 .
Model Coding Cost. The description complexity of
model𝑀 is the sum of the following elements: The num-
ber of clusters𝐾 requires log*(𝐾). 1 The total number of
observations of each cluster requires

∑︀𝐾
𝑘=1 log

*(|ℱ𝑘|).
The mean value of each cluster which has a size 𝑝× 1,
requires

∑︀𝐾
𝑘=1(𝑝 × 𝑐𝐹 ). The inverse covariance ma-

trix of each cluster which has a size 𝑝 × 𝑝, requires∑︀𝐾
𝑘=1 |𝜃𝑘| ̸=0(2 log(𝑝)+𝑐𝐹 )+log*(|𝜃𝑘| ̸=0), where |·| ̸=0

describes the number of non-zero elements in a matrix
and 𝑐𝐹 is the floating point cost. 2

Data Coding Cost. Given a model 𝑀 , encoding cost of
the data 𝑋 using Huffman coding [10] is computed by:
< 𝑋|𝑀 >=

∑︀𝐾
𝑘=1 𝑙𝑙(𝑋𝑘, 𝜃𝑘). Our next goal is to find

the best model 𝑀 that minimizes Equation (1).

3.2. Automatic cut point detection

So far, we have described how we calculate the MDL
cost for our model. The next question is how to find
optimal cut points that minimize MDL cost efficiently;
we still have numerous candidates with which to merge
to summarize similar subsequences into a compact model,
and thus we modify the bottom-up algorithm to prevent a
pattern explosion. We answer this question in two steps,
MergeSegment and CutPointSearch.

1Here, log* is the universal code length for integers
2We used 4× 8 bits in our setting

3.2.1. MergeSegment (inner loop)

Assuming that neighboring segments tend to belong to
the same cluster, we update cut points through Merge-
Segment. We consider given cut points 𝑐𝑝 = {𝑐0, 𝑐1,
..., 𝑐𝑚}, and a set of inverse covariance matrices at each
segment Θ𝑆 = {𝜃,𝑐0 , 𝜃𝑐0,𝑐1 , ..., 𝜃𝑐𝑚,}, where the num-
ber of segments is 𝑚+ 1. And the set of inverse covari-
ance matrices at each segment, which consists of only
even/odd-numbered cut points Θ𝐸 = {𝜃,𝑐0 , 𝜃𝑐0,𝑐2 , ...}
and Θ𝑂 = {𝜃,𝑐1 , 𝜃𝑐1,𝑐3 , ...}. 𝑋𝑐𝑖,𝑐𝑗 , 𝑀𝑐𝑖,𝑐𝑗 , and 𝜃𝑐𝑖,𝑐𝑗
are the data, model, and inverse covariance matrix from
cut points 𝑐𝑖 to 𝑐𝑗 . Our goal is to determine if a seg-
ment should be merged with its neighboring segment. As
shown in Figure 1, we have three candidates as updated
cut points: (a) Solo has three segments all separated, (b)
Left and (c) Right have two segments in which one side
is merged. We compare the MDL costs using Equation
(1), in these three cases, (a) vs. (b) vs. (c), and select the
best cut points so that they minimize the local MDL cost.
For example, if (b) has the lowest cost, 𝑐𝑖+2 is added to
the updated cut points. If (a) has the lowest cost, there is
no change from the previous cut points. We iterate this
process throughout the whole sequence.

3.2.2. CutPointSearch (outer loop)

This algorithm finds the optimal cut points. We are now
given bundle𝑋 and initial cut points 𝑐𝑝. The user decides
the interval of initial cut points. Since TVGL forces a
time-varying similarity with neighboring network, we
calculate Θ𝑆 ,Θ𝑂 , and Θ𝐸 using the TVGL graphical
lasso optimization method. After obtaining each Θ, we
run the MergeSegment algorithm to update the cut points.
We iterate this process until the cut points are stable.

3.3. Automatic clustering: NGL

Now we have optimal cut points, which means that there
are a limited number of segments that have enough sam-
ples with which to estimate the network structure. Next,
we assign segments to a cluster and find the optimal num-
ber of clusters. As Algorithm 1 shows, we use the EM
algorithm to classify each segment. For each iteration we
vary 𝐾 = 1, 2, 3, ..., and minimize the function below:

arg min

𝐾∑︁
𝑘=1

−𝑙𝑙(𝑋𝑘, 𝜃𝑘) + 𝜆||𝜃𝑘||𝑜𝑑,1, (2)

In the E-step, we assign each segment to the optimal
cluster, so that the log likelihood is maximized. In the
M-step, we calculate the 𝜃𝑘 value of each cluster using a
normal graphical lasso optimization algorithm. Until the
cost function increases, we vary 𝐾 so as to minimize the
cost function.



Figure 1: Illustration of the three candidates. We compare

the each MDL costs of these candidates.

Algorithm 1 NGL(𝑋, 𝑐𝑝)
1: Input: Bundle 𝑋 , initial cut point set 𝑐𝑝
2: Output: Cluster parameters Θ and cluster assignments

ℱ
3: 𝑐𝑝𝑜𝑝𝑡 = CutPointSearch(𝑋, 𝑐𝑝); 𝐾 = 1;
4: while improving the total cost < 𝑋;𝑀 > do
5: Θ = ModelInitialization(𝑐𝑝𝑜𝑝𝑡,𝐾);
6: repeat
7: ℱ = AssignToCluster(𝑋,Θ, 𝑐𝑝𝑜𝑝𝑡); /* E-step,

Equation (2) */
8: Θ = GraphicalLasso(𝑋,ℱ); /* M-step */
9: until convergence;

10: Compute < 𝑋;𝑀 >; // 𝑀 = {Θ,ℱ}
11: 𝐾 = 𝐾 + 1;
12: end while
13: return 𝑀 = {Θ,ℱ};

4. Experiments

We evaluate our method on both synthetic and real
datasets.

4.1. Accuracy on synthetic data

In this section, we demonstrate the accuracy of NGL on
synthetic data. We do so because there are clear ground
truth networks with which to test the accuracy.
Experimental Setup. We randomly generate synthetic
multidimensional data in R5, which follows a multivari-
ate normal distribution 𝑋 ∼ 𝑁(0, 𝜃−1). Each of the
𝐾 clusters has a mean of 0⃗, so that the clustering re-
sult is based entirely on the structure of the data. For
each cluster, we generate a random ground truth inverse
covariance as follows [11]:

1. Set 𝐴 ∈ R5×5 equal to the adjacency matrix of
an Erdős-Rényi directed random graph, where
every edge has a 20% chance of being selected.

2. For every selected edge in 𝐴 set 𝐴𝑖𝑗 ∼
Uniform([−0.6,−0.3]∪ [0.3, 0.6]). We enforce a
symmetry constraint whereby every 𝐴𝑖𝑗 = 𝐴𝑗𝑖.

3. Let 𝑐 = 𝜆min(𝐴) be the smallest eigenvalue of
𝐴, and set 𝜃 = 𝐴 + (0.1 + |𝑐|)𝐼 , where 𝐼 is an
identity matrix.

We run our experiments on four different temporal se-
quences: "1,2,1","1,2,3,2,1","1,2,3,4,1,2,3,4","1,2,2,1,3,3,3,1".
We generate each dataset 10 times and report the mean
and standard deviation of the macro-F1 score.

Baseline Methods. We compare our method to
three state-of-the-art methods and one ablation method.
TICC [6] and TAGM [7] take network structure into ac-
count. Since both methods need to specify the number
of clusters, we gave the true number of clusters only to
these methods. AutoPlait [12] is multi-level HMM based
automatic method for time-series clustering. NGL no-cps
is our NGL method without CutPointSearch. Our method,
including NGL no-cps, requires us to specify initial cut
points. We set its interval at every 5 points throughout
the synthetic experiments.
Clustering Accuracy. We set each segment in each of
the examples to have 100 observations in R5 (for exam-
ple, "1,2,1" has a total of 300 observations). Table 1 shows
the clustering accuracy for the macro-F1 scores for each
dataset. As shown, NGL significantly outperforms the
baselines. Our method consistently achieves the highest
accuracy and lowest standard deviation. AutoPlait does
not consider network structure, so it does not find any
clusters. Although we gave the true number of clusters𝐾
to TICC and TAGM, the average accuracy of our method
is more than 10% higher. NGL no-cps shows that find-
ing a large segment by CutPointSearch has meaning of
grouping adjacent observations into the same cluster.
Effect of Total Number of Samples. We next focus on
the number of samples required for each method to accu-
rately find clusters. We take the "1,2,3,4,1,2,3,4" example
and vary the number of samples. As shown in Figure 2,
our method outperforms the baselines for almost all seg-
ment lengths. Our method has a constantly high average,
even for relatively small segment lengths. This is because
our CutPointSearch algorithm correctly find cut points
even if the sample size is small.

4.2. Case study

Here, we show that our NGL provides an interpretable
result with real-world financial data. In general, stocks,
bonds, and currency prices are correlated. By examining
historical financial data, we can infer a financial network
structure to reveal the relationships between them. We
use hourly currency exchange rate data 3 of AUD/USD,
EUR/USD, GBP/USD, and USD/CAD from 2005 to 2018.
Assuming that the underlying network structure is con-
sistent for a week, we normalized the data for each week.
We also set the initial cut points at a week to capture the
weekly correlation trend. The top of Figure 3 shows the
clustering result obtained with NGL. During the global
financial crisis (from mid-2007 to early 2009), we found
that the network structure changed. There are abrupt
changes on 2016/5/16 ∼ 2016/6/5, the bottom of Fig-
ure 3 shows how the correlation changed during this
period. As we can see, a correlation related to the United

3https://github.com/FutureSharks/financial-data

https://github.com/FutureSharks/financial-data


Table 1

Macro-F1 score of clustering accuracy for four different temporal sequences, comparing NGL with state-of-the-art methods

(higher is better).

Model NGL TAGM (KDD’21) TICC (KDD’18) AutoPlait (SIGMOD’14) NGL no-cps

1,2,1 0.93± 0.05 0.83± 0.25 0.85± 0.26 0.67 0.62± 0.13
1,2,3,2,1 0.96± 0.03 0.74± 0.21 0.89± 0.18 0.40 0.66± 0.15
1,2,3,4,1,2,3,4 0.94± 0.03 0.78± 0.26 0.82± 0.21 0.25 0.66± 0.11
1,2,2,1,3,3,3,1 0.93± 0.05 0.89± 0.17 0.83± 0.26 0.38 0.62± 0.07

Figure 2: Plot of clustering accuracy macro-F1 score vs. num-

ber of samples for NGL and two other state-of-the-art meth-

ods.

Figure 3: Clustering result of NGL using currency datasets.

Kingdom changed significantly. This was in response to
the United Kingdom European Union membership ref-
erendum on 2016/6/23, which may have caused public
concern.

5. Conclusion and Future work

In this paper, we presentedNGL, which is an interpretable
clustering algorithm. We focused on the problem of the
interpretable clustering of multidimensional time-series
data with underlying network structures. Our proposed
NGL indeed exhibits all the desirable properties; it is
Interpretable and Automatic and Accurate.

In future work, we will focus on the following direc-
tion: Online learning. In several situations, network
inference needs to operate in an online fashion. And to
the best of our knowledge, no study has dealt with online
clustering based on network structure. In this context, we
will develop an extension of our methods by utilizing the
novel sliding window and bottom-up (SWAB) algorithm
[9].
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