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Abstract
We address the task of selecting the fastest algorithm, in terms of runtime, for determining skeptical
acceptance under preferred semantics in abstract argumentation frameworks out of a set of multiple
algorithms by means of machine learning. To be precise, we examine four “classical” machine learning
techniques, as well as three graph neural networks, and compare all of these approaches with regard to both
prediction accuracy and the total amount of time the selected algorithms require to solve a given test set in
an experimental analysis. Our set of algorithms includes three solvers from the International Competition
on Computational Models of Argumentation. Our results demonstrate that graph neural networks are a
promising method for algorithm selection in abstract argumentation, as two out of three neural network
models outperform all four classical machine learning approaches.
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1. Introduction

Approaches to formal argumentation [1] include non-monotonic reasoning techniques that focus
on the interaction between arguments and counterarguments. One of the most influential theories
in this area is the pioneering work on abstract argumentation by Dung [2], which introduced
abstract argumentation frameworks to model the interplay between arguments, and various
semantics to decide the acceptability of these arguments. Argumentation scenarios are represented
as directed graphs where vertices represent arguments, and “attacks” between arguments are
modeled as directed edges. In order to reason with these graphs, one is usually interested in
identifying sets of arguments (extensions) that are mutually acceptable, given a specific semantics.
Typical problems in abstract argumentation include deciding whether an argument is included in
one (or all) extensions under a given semantics, and enumerating one (or all) extensions under a
given semantics. Several of these reasoning problems are NP-hard [3].

In recent years, there has been an increased effort to develop algorithms and systems to solve
these high-complexity problems [4, 5]. Various works have shown that combining different algo-
rithms, e.g., in portfolios, can be beneficial [6, 7]. Vallati et al. [8] investigate predictive models
using well-known machine learning approaches to perform algorithm selection. More precisely,
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they evaluate numerous sets of (mostly graph-based) features in terms of their expressiveness for
this classification problem. Given the increasing research interest in deep learning approaches in
abstract argumentation [9, 10, 11, 12], the question arises as to how these methods can be utilized
for algorithm selection. In this work, we investigate the applicability of Graph Neural Networks
(GNNs) to perform instance-based algorithm selection. To be precise, we follow up on the work
by Vallati et al. by examining four “classical” machine learning techniques (k-nearest neighbors,
naive Bayes, random forest, and support vector machine), as well as three GNN approaches
(Graph Convolutional Network [13], Graph Isomorphism Network [14], and GraphSage [15])
for the task of predicting the fastest among a selection of three sound and complete solvers
(ArgSemSAT [16], Fudge [17], and µ-toksia [18]). In this work we focus on the selection of
classifiers, while Vallati et al. focus on the selection of features to use with such classifiers.

The remainder of this paper is structured as follows. In Section 2, we discuss the relevant
preliminaries with regard to abstract argumentation, as well as both classical machine learning
and graph neural network techniques. Section 3 comprises an overview of our approach and
methodology. In Section 4, we present an experimental analysis, and we conclude in Section 5.

2. Preliminaries

In the following, we provide an overview of the fundamentals of abstract argumentation on the
one hand, and of classical machine learning as well as graph neural network methods on the other
hand.

2.1. Abstract Argumentation

An abstract argumentation framework is a tuple AF= (A,R) where A is a set of arguments and
R is a relation R ⊆ A×A. For two arguments a,b ∈ A the relation aRb means that argument
a attacks argument b. For a ∈ A define a− = {b | bRa} and a+ = {b | aRb}. We say that a set
S ⊆ A defends an argument b ∈ A if for all a with aRb then there is c ∈ S with cRa.

Semantics are given to abstract argumentation frameworks by means of extensions [2]. An
extension E is a set of arguments E ⊆ A that is intended to represent a coherent point of view on
the argumentation modelled by AF. Arguably, the most important property of a semantics is its
admissibility. An extension E is called admissible if and only if

1. E is conflict-free, i. e., there are no arguments a,b ∈ E with aRb and
2. E defends every a ∈ E,

and it is called complete (CO) if, additionally, it satisfies

3. if E defends a then a ∈ E.

Different types of classical semantics can be phrased by imposing further constraints. In particular,
a complete extension E

• is grounded (GR) if and only if E is minimal,
• is preferred (PR) if and only if E is maximal, and
• is stable (ST) if and only if A= E ∪{b | ∃a ∈ E : aRb}.



a1 a2 a3 a4

Figure 1: Abstract argumentation framework AF1 from Example 1.

All statements on minimality/maximality are meant to be with respect to set inclusion. Note that
the grounded extension is uniquely determined and that stable extensions may not exist [2].

Example 1. Consider the abstract argumentation framework AF1 depicted as a directed graph in
Figure 1. In AF1 there are three complete extensions E1,E2,E3 defined via

E1 = {a1}
E2 = {a1,a3}
E3 = {a1,a4}

E1 is also grounded and E2 and E3 are both stable and preferred.

In this work we only consider the task of skeptical acceptance under preferred semantics, which
we denote as DSPR.

2.2. Classical Machine Learning Methods

The task considered in this paper is the selection of the fastest solver for a given problem instance.
Thus, we are dealing with a classification problem: our goal is to classify which one of the
algorithms at hand is most suitable to solve DSPR wrt. a given AF and a corresponding query
argument a ∈ AF.

There exists a plethora of machine learning (ML) approaches which solve different types
of classification problems. The overall goal of an ML method is to “learn” from given data
(training data) in order to apply this “knowledge” on unknown data (test data). For this work, we
selected a total of four supervised machine learning techniques, namely k-nearest neighbor, naive
Bayes, random forest, and support vector machine, which will be explained in more detail in the
following. The term supervised refers to the fact that all labels of the training data are known
at all times during training, meaning that in our application scenario, for each instance in the
training dataset (i.e., for each AF and corresponding query argument), the fastest solver is known.

k-Nearest Neighbor The k-Nearest Neighbor (KNN) approach [19, 20] is based on the idea
of classifying a datapoint according to its nearest k neighbors. More specifically, given a datapoint
Y we aim to classify, we calculate the distance of all datapoints in the training data to Y . Then we
select the k datapoints with the shortest distance to Y (i.e., the k nearest neighbors). Finally, we
assign Y the class which is most frequently found among the nearest neighbors, using a voting
rule.



Naive Bayes According to Bayes’s well-known Theorem (based on [21]), the probability of a
datapoint Y = (y1, . . . ,yn) belonging to class cd ∈ {c1, . . . ,cm} is

p(cd | Y ) =
p(Y | cd)p(cd)

p(Y )
,

where p is a probability function. The naive Bayes (NB) classifier is built on the “naive” as-
sumption that the value of a certain feature is independent of any other feature (i.e., given cd ,
y1 is independent of y2, and so forth), given the value of the class variable. Because of this
independence assumption, we can use p(Y | cd) = p(y1 | cd) · . . . · p(yn | cd), and get

p(cd | Y ) =
p(y1 | cd) · . . . · p(yn | cd) · p(cd)

p(y1) · . . . · p(yn)
.

Since the denominator is constant (it is the same for each class) we can ignore it. Finally, we can
classify Y by determining the class with the highest probability (cmax):

cmax = argmax
j∈{1,...,m}

p(c j)
n

∏
i=1

p(yi | c j)

Random Forest A Random Forest (RF) is an ensemble of decision trees which vote for the
most popular class [22]. A decision tree is, as the name suggests, a tree structure in which the
inner nodes are essentially test nodes, and the leaf nodes correspond to class labels. A test node
checks certain feature values of a given sample and computes some outcome which is associated
with one of the node’s subtrees. To classify a datapoint, we start at the root of the decision tree
and propagate from test node to test node, until we reach a leaf node—which contains a class
label, i.e., the classification result [23]. To construct an RF, for each individual decision tree, we
randomly select a number of samples from the training set, and we randomly select a number of
features to be considered [22].

Support Vector Machine The underlying principle of a Support Vector Machine (SVM) is
that we view training samples as vectors in a vector space, which can be separated by hyperplanes,
according to their class assignment. If the classes of the data at hand are not linearly separable
(which is usually the case), we can apply a kernel function, which essentially transfers the training
data to a higher dimension. If the dimension is high enough, the data become linearly separable
[24].

2.3. Graph Neural Networks

We select a total of three different Graph Neural Network (GNN) architectures, namely Graph
Isomorphism Network, Graph Convolutional Network, and GraphSage, which will be explained
in more detail in the following. The core idea of message passing GNNs is to learn node or graph
representations by iteratively aggregating local neighborhood information of a node (messages or
embeddings) using non-linear transformations. Varying definitions of how the embeddings of the
neighborhood nodes are aggregated (aggregate function) and how they are combined with the



node embeddings from previous iterations (combine function) lead to different GNN architectures.
After the final iteration, the embeddings encapsulate structural information of a node, respectively
graph. These generated embeddings can then be used for downstream prediction tasks. For
node classification tasks, the embedding of the final iteration is used for prediction. For graph
classification tasks, a so-called readout function is used to aggregate node embeddings to obtain a
representation of the entire graph.

Graph Isomorphism Network The Graph Isomorphism Network (GIN) [14] models the
Weisfeiler-Lehman graph isomorphism test [25] in a neural network. It implements the aggregate
and combine functions as the sum of the node embeddings and a multi-layer perceptron (MLP)
[26] with non-linearity. For graph-level readout, the node embeddings of every layer are summed
up and concatenated to get the final graph representation.

Graph Convolutional Network Graph Convolutional Networks (GCNs) [13], are initially
motivated by sprectral graph convolutions [27, 28]. Following the definition in [14], they integrate
the aggregation and combine step as an element-wise mean pooling, followed by a ReLU [29]
non-linearity.

GraphSage The GraphSage [15] model was proposed with three different aggregation func-
tions: (1) a mean aggregator, (2) a Long Short-Term Memory (LSTM) [30] aggregator and (3) a
max-pooling aggregator. In this work, we consider the mean aggregator variant of GraphSage.
The combination function is a concatenation followed by a linear mapping.

3. Machine Learning-based Approaches for Algorithm
Selection

Various works in automated reasoning have investigated the concept of generating models that
allow for identifying the most appropriate—or best—algorithm for an instance of a particular
(computationally complex) problem. Empirical predictive models (EPMs) have been employed
in many areas of Artificial Intelligence, such as the Satisfiability Problem (SAT) or Answer
Set Programming (ASP), with great success [31, 32]. A basic distinction is made between two
approaches: classification approaches and regression approaches. Classification approaches
assign any given instance a single category corresponding to the algorithm, which is predicted to
be the fastest. Regression approaches, on the other hand, try to predict the actual runtime of each
algorithm under consideration. The algorithm with the lowest predicted runtime is then selected.

In this work, we consider algorithm selection for the skeptical acceptance wrt. preferred
semantics as a classification problem. Let S = {s1, ...,sn} be a set of solvers and let A be the set
of all argumentation frameworks. Conceptually, a classifier C is a mapping C : A→ S, where any
AF ∈ A is assigned a solver s ∈ S that solves this instance the fastest. These mappings can be
learned using ML methods. In order to achieve that, classical supervised ML approaches need
some numerical representation of the instance in question, mainly referred to as features. In [8],
Vallati et al. showed that classical ML methods can be exploited for algorithm selection in the



context of abstract argumentation and identified informative features for classifying instances.
However, only little work as been done in the area of computational models of argumentation for
investigating the exploitability of modern deep learning techniques for algorithm selection. In this
paper, we focus on GNNs, because, on the one hand, they have already been used successfully in
argumentation [10, 11], and on the other hand, no pre-calculation of features—which is often
time-consuming—is necessary for classification. These properties make GNNs a promising
approach in the given context.

4. Experimental Analysis

In this section, we present the results of an experimental analysis, in which we (1) investigate the
applicability of different GNN architectures to select the most appropriate solver given an AF
and (2) compare them to “classical” machine learning approaches. The analysis aims to give an
overview of whether and to what extent GNNs are suitable for algorithm selection in abstract
argumentation, and how they differ from classical methods in terms of performance. Below, we
describe the experimental setup and subsequently discuss our findings.

4.1. Experimental Setup

In this work, we consider three SAT-based approaches for solving the problem of skeptical
acceptance under preferred semantics: ArgSemSAT , Fudge, and µ-toksia.

ArgSemSAT The ArgSemSAT solver [16] is the winner of the preferred semantics track at the
2017 International Competition on Computational Models of Argumentation (ICCMA’17). It
iteratively calls a SAT solver to compute complete labelings and encoding constraints to drive
the search towards the solution of decision and enumeration problems. It is written in C++ and
can be used with the Minisat [33] or the Glucose [34] SAT solver. For our experiments we use
ArgSemSAT with Glucose.

Fudge The Fudge solver [17] tightly integrates satisfiability solving technology to solve a
series of abstract argumentation problems. While most of the encodings used by Fudge derive
from standard translation approaches, Fudge makes use of completely novel encodings to solve
the skeptical reasoning problem wrt. preferred semantics. It is written in C++ and uses the
satisfiability solver CaDiCaL 1.3.131.

µ-toksia The µ-toksia solver [18] ranked first in all reasoning tasks of the ICCMA’19. It
is a “purely” SAT-based system that is heavily based on the incremental use of SAT solving.
This means, for iterative calls, the state of the SAT solver is maintained. By that, only a single
SAT solver is instantiated during a single program run. It is implemented in C++ and includes
interfaces to the Glucose [34] and CryptoMiniSAT [35] SAT solvers. We used µ-toksia with
CryptoMiniSAT as an underlying SAT solver for our experiments.

1http://fmv.jku.at/cadical/
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Table 1
Characteristics overview of considered argumentation frameworks.

# Arguments # Attacks Density Degree

Mean 409.95 14,441.19 0.088 70.45
Minimum 100.00 224.00 0.003 0.00
Maximum 1,499.00 204,110.00 0.702 726.00

It should be noted that we considered various other solvers such as Pyglaf [36], Heureka [37],
or ConArg2 [38] in our initial experiments. However, finding a fruitful mix of solvers to select
from is a challenge in itself. We analyzed different combinations of solvers with regard to two
criteria: (1) the number of instances for which each solver achieved the best performance and (2)
the differences in runtimes (compared to the other solvers) wrt. the best-solved instances of each
solver. The second criterion, in particular, is essential, since significant differences in the runtimes
of solvers are fundamental in order for a given instance to benefit from the selection of a certain
solver. This is also reflected in the fact that all machine learning-based approaches for algorithm
selection introduce some overhead, for example, for calculating instance features. If there is
no significant difference in execution times, the potential time savings of selecting the fastest
solver get nullified due to the mentioned overhead. Our analysis showed that the combination of
the selected solvers yielded the best-balanced ratio of the best-solved instances per solver and
exhibited significant differences in their runtimes. It should also be noted that the goal of the
evaluation is to compare the machine learning algorithms for algorithm selection, and not the
selected algorithms themselves.

To collect sufficient training and test data, we randomly generated a total of 6200 argumentation
frameworks using three different generators of the ICCMA’17: AFBenchGen2, SccGenerator,
and StableGenerator.

The AFBenchGen2 [39] generator was used to create instances of (1) Erdös-Renyi [40] and
(2) Watts-Strogatz [41] graphs. The SccGenerator aims to generate AFs with many strongly
connected components, whereas the StableGenerator aims to generate AFs with many stable
extensions (and therefore many preferred extensions). A detailed description of these generators
can be found in [42]. All generators have been parameterized as described in [43]. We randomly
selected a query argument for the DSPR task for each generated instance. A cutoff value of
600 seconds (10 minutes) per instance was imposed. For each solver, we recorded: (1) the
number of solved instances, (2) the number of timed-out instances, (3) the number of crashed
instances, and (4) the execution time per instance. The runtime of unsolved instances—timed-
out or crashed—was set equal to the cutoff. A total of 785 instances were excluded because
all solvers failed to solve them within the given time frame. Due to memory limitations of
the experimental environment, another 230 (very large) instances had to be excluded, as they
could not be processed. No further systematic exclusions were made. We randomly divided the
remaining 5185 instances into separate training and test data following an 80%/20% train/test
split2. Table 1 shows the characteristics of the considered AFs.

For each instance, the fastest solver determined its ground-truth label. We ran the experiments

2Download: https://fernuni-hagen.sciebo.de/s/UkL9WRjegFlGyhk
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on a virtual machine running Ubuntu 20.04 with a 2.5 GHz Intel(R) Xeon(R) E5-2680 CPU and
60 GB of RAM.

We trained and evaluated four different supervised machine learning techniques: k-Nearest
Neighbor (KNN), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM)
(see Section 2.2), using scikit-learn3 [44], a machine learning framework for Python4. As input for
the classifiers, we use the three best features that Vallati et al. [8] identified for the classification
task. Namely, these are (1) the number of vertices, (2) the density of the directed graph and (3)
the minimum degree value of the directed graph. We also included the in- and out-degree of the
query argument with regard to the corresponding argumentation framework as additional features.

Further, we trained and evaluated three widely adopted GNN models: Graph Isomorphism
Networks (GIN) [14], Graph Convolutional Networks (GCN) [13], and GraphSage [15] (see
Section 2.3). Each model features one pre-message passing layer (256-dim MLP), three message
passing layers (determined by the respective GNN model) and two post-message passing layers
(256-dim MLP). Each model is trained for 1000 epochs using the Adam [45] optimizer with a
learning rate of 0.01 and batch normalization [46]. Results are reported for the final epoch. All
models were trained without additional pre-calculated node, graph, or edge features. For the
training and evaluation we use GraphGym [47], a platform for designing and evaluating GNNs.

To compare the performance of the approaches—both GNNs and classical ML methods—we
use accuracy, precision, and recall to measure how accurate the predictions are. For all approaches
the precision and recall are reported for each individual solver, following the definitions

Precisions =
T Ps

T Ps +FPs

Recalls =
T Ps

T Ps +FNs
,

where s denotes the class of the corresponding solver. True Positive (T P) are the elements that
have been labeled as positive by the model and are actually positive, while False Positive (FP)
are the elements labeled as positive, but they are actually negative. False Negative (FN) elements
have been labeled as negative but are actually positive. The accuracy is defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN

where T N denotes the True Negative elements, i.e., the elements that the model correctly labeled
as negative5. In addition, we measure the overhead (CPU-time) of calculating the features (which
is only necessary for the classical ML approaches), and the actual classification time. For the
GNN models, we also measure the prediction times when utilizing a GPU instead of a CPU.
All models were trained and evaluated on a virtual machine running Ubuntu 20.04 with a 3.7
GHz AMD Ryzen 5 5600X 6-Core Processor, 32 GB of RAM and a NVIDIA GeForce RTX
3070 GPU with 8 GB of RAM. In order to accelerate the training process of the GNNs, training
was carried out on the GPU.
3https://scikit-learn.org/stable/index.htm
4The KNN classifier was parameterized with n_neighbors = 17 and the RF classifier with random_state = 11,
min_samples_split = 30, and min_samples_leaf = 10. The remaining classifiers (NB and SVM) were used
with their default configurations.

5Note that, unlike precision and recall, the accuracy is not calculated by class but across all classes.

https://scikit-learn.org/stable/index.htm


4.2. Results

To begin with, we examine how accurate the predictions of both the classical ML methods and
the GNN approaches are. For this purpose, we first draw a comparison to the work by Vallati
et al. [8]. The authors report a precision of 0.68 wrt. ArgSemSAT (which is the only solver
considered in both their work and ours) when using an RF classifier with the three features that
were determined to be the most expressive (see Section 3 for more details). Our experiments
resulted in a precision of 0.83 when training an RF with the same three features, and a precision
of 0.84 when using the in- and out-degree of the query nodes as additional features (see Table 2).
Although the precision value wrt. ArgSemSAT is significantly higher in our experiments, we also
observe a lower value wrt. the overall accuracy: Vallati et al. report an accuracy of 0.70 when
using the three most expressive features, while our experiments only yield an accuracy of 0.64 (or
0.65 when additionally using in- and out-degree as features). This is due to the fact that the other
two solvers we used in our experiments are predicted less precisely. As the upper part of Table 2,
which includes the results regarding the classical ML methods, indicates, the precision values wrt.
both Fudge and µ-toksia are lower than those wrt. ArgSemSAT , regardless of the selected ML
method. Nevertheless, the precision values regarding Fudge are still higher than those regarding
µ-toksia in all cases. Moreover, we can observe very low recall values wrt. µ-toksia (between
0.12 and 0.18), but rather high recall values wrt. Fudge (between 0.88 and 0.91). The reason for
this is that a large number of µ-toksia instances are classified as Fudge instances—e.g., our RF
classifier predicts 215 out of 260 µ-toksia instances to be Fudge instances. Further, the results
show that the overall accuracy of the classical ML methods lies between 0.60 (NB) and 0.65
(RF).

With regard to the GNN methods, our experiments reveal similar results: again, ArgSemSAT
tends to have the hightest precision, µ-toksia has rather low and Fudge a rather high recall,
and a large number of µ-toksia instances are classified as Fudge (see the lower part of Table
2). However, GraphSage exhibits a slightly different behavior: here, the precision is higher wrt.
µ-toksia (0.90) than wrt. Fudge (0.66). The overall accuracy values of the GNN approaches lie
between 0.63 (GIN) and 0.71 (GraphSage), and are consequently a bit higher on average than
those of the classical ML approaches.

The second aspect we aim to examine, besides classification accuracy, is the overall solving
time. For each approach, we sum up the solving time of each individual test instance with regard
to the respective predicted solver, to calculate the total solving time.

For comparison we consider the time required by each solver when solving all test instances
(see Table 3). Note that Fudge is clearly overall the fastest solver with 24,248 seconds, compared
to 45,248 seconds (ArgSemSAT) and 77,734 seconds (µ-toksia). The results concerning the
classical ML techniques are presented in the upper part of Table 4. We see that the overall solving
time is quite similar with regard to KNN, RF, and SVM (between 24,507 and 24,538 seconds),
only NB is considerably slower (27,794 seconds). The former three classifiers also perform an
algorithm selection which results in a total solving time that is shorter than that of using Fudge
(i.e., the fastest individual solver) for all instances. Only the NB classifier yields an algorithm
selection which results is a longer solving time. However, NB also exhibited the lowest accuracy
(0.60), which could explain this outcome. On the other hand, we notice that the SVM classifier
produces the shortest total solving time, even though it did not feature the highest accuracy.



Table 2
Overview of precision, recall, and accuracy wrt. the predictions made by the different ML and
GNN techniques. Note that we abbreviated ArgSemSAT by “ArgSS”.

Precision Recall Accuracy
ArgSS Fudge µ-toksia ArgSS Fudge µ-toksia

KNN 0.79 0.63 0.46 0.59 0.88 0.17 0.64
NB 0.77 0.59 0.38 0.46 0.89 0.18 0.60
RF 0.84 0.63 0.49 0.61 0.90 0.15 0.65
SVM 0.86 0.60 0.46 0.47 0.91 0.12 0.62

GCN 0.82 0.61 0.58 0.55 0.92 0.13 0.64
GIN 0.93 0.60 0.50 0.45 0.96 0.08 0.63
GraphSage 0.95 0.66 0.90 0.46 0.99 0.33 0.71

Table 3
Overview of the total amount of time required to solve the entire test set wrt. each of the three
solvers, as well as the number of times each solver was the fastest, and the number of times
each solver produced a timeout. Note that each timeout added 600 seconds to the total solving
time.

Total solving time (s) Fastest Timeouts

ArgSemSAT 45,248.24 224/1037 52/1037
Fudge 24,720.96 553/1037 20/1037
µ-toksia 77,733.74 260/1037 80/1037

Likewise, this effect can be observed wrt. the GNN methods. The lower part of Table 4 shows
that GIN, which has the lowest accuracy of all GNN methods (0.63), produces a slightly lower
total solving time than GraphSage, which has a significantly higher accuracy of 0.71. Overall,
the GNN methods perform superior to the classical ML methods. Only the “fastest” classical
ML method (SVM) accomplishes a slightly superior algorithm selection than the “slowest” GNN
method (GCN).

As of yet, we only considered the solving time required by the selected algorithms. However,
we additionally need to consider the time required for each prediction, and in the classical ML
case also the time required to compute the features of each test instance. The latter amounts
to an average of 0.0077 seconds per instance (i.e., 8.02 seconds for the entire test set). The
time needed to predict all test instances is < 0.5 seconds for KNN, NB, and SVM, only the RF
takes longer (5.2 seconds in total). The GNN approaches require significantly more time for the
prediction process—they take between 58.4 seconds (GIN) and 68.2 seconds (GCN). However,
these values were measured when the predictions we conducted on the CPU. When using the
GPU, we can drastically reduce the prediction time to values between 0.9 seconds (GIN) and 1.3
seconds (GCN). Moreover, even if there was no GPU available, both GIN and GraphSage would
still outperform all classical ML models. For instance, wrt. GIN, we have 24,410.0 seconds of
total solving time plus 58.4 seconds of prediction time, i.e., a total of 24,468.4 seconds, which is
already less than the shortest total solving time wrt. the classical ML methods (24,506.7 seconds),



Table 4
Overview of the total amount of time required to solve the entire test set if the solvers predicted
by each ML/GNN method were used, respectively. We additionally provide the number of times
the fastest solver was predicted (which corresponds to the respective accuracy value), and the
number of timeouts that still occur.

Total solving time (s) Predicted fastest Timeouts

KNN 24,531.20 662/1037 20/1037
NB 27,794.33 624/1037 22/1037
RF 24,538.38 675/1037 20/1037
SVM 24,506.66 643/1037 20/1037

GCN 24,507.27 666/1037 20/1037
GIN 24,410.00 654/1037 20/1037
GraphSage 24,414.01 739/1037 20/1037

regardless of the additional time required for prediction and feature generation.

5. Conclusion

In the scope of this work, we examined different ML approaches for the task of algorithm
selection in the field of abstract argumentation. We followed up on a study by Vallati et al. [8],
who investigated the use of different sets of features to be used in ML methods for algorithm
selection. Our work, on the other hand, does not focus on the selection of features, but on the
selection of the classifier. Moreover, in addition to a number of “classical” ML methods (namely
KNN, NB, RF, and SVM), we also considered three different graph neural networks (namely
GCN, GIN, and GraphSage). For the classical ML methods, we used those three features which
Vallati et al. determined to be the most expressive. To be precise, these are the number of vertices,
the density of the directed graph, and the minimum degree value of the directed graph. In addition
to these graph-based features, we used the in-degree and out-degree of the query nodes.

One noteworthy result of our experiments is that µ-toksia instances were often classified as
Fudge instances, and that this effect did not only occur with the classical ML methods, which are
feature-based, but also with the GNN methods, which are not given any pre-calculated features
explicitly6. Nevertheless, our results demonstrated that neural networks are generally a useful
approach for the task of algorithm selection. In particular, GIN and GraphSage performed superior
to all classical ML approaches in terms of the total solving time of the predicted algorithms, even
including a rather lengthy prediction time when no GPU is available. However, there is still room
for improvement—if we always used the fastest solver, the total solving time would be 14,430
seconds, which is 40.9% less than our best result (see Table 4).

Furthermore, we examined the prediction accuracy of the different approaches and discovered
that a higher accuracy does not automatically lead to a shorter overall solving time. This suggests
that in some cases the classifier did not only fail to predict the fastest solver, but also failed to

6We also conducted an experiment in which we additionally fed the neural networks the same features that were used
with the other ML methods. However, this did not improve our results.



predict the second fastest (i.e., it predicted the slowest one). Hence, one idea to consider in future
work is to introduce some sort of weighting which penalizes the prediction of a slower solver
more than the prediction of a faster one during training. Regarding the classical ML methods,
one could use a different set of features which is more suitable for the newly considered solvers
(Fudge and µ-toksia). However, this might lead to an increase in feature generation time which
must always be weighed against the potential reduction in solving time. Further issues which
could be addressed in future work are the consideration of other argumentation semantics and
tasks, as well as other GNN architectures.
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