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Abstract

Data is becoming an important central point for making de-
sign decisions for most software. Game development is not an 
exception. As data-driven methods and systems start to pop-
ulate these environments, a good question is: can we make 
models developed from this data transparent to users? In this 
paper, we synthesize existing work from the Intelligent User 
Interface and Learning Science research communities, where 
they started to investigate the potential of making such data 
and models available to users. We then present a new area ex-
ploring this question, which we call Open Player Modeling, 
as an emerging research area. We define the design space of 
Open Player Models and present exciting open problems that 
the games research community can explore. We conclude the 
paper with a case study and discuss the potential value of this 
approach.

Introduction
As data science and Machine Learning (ML) become in-
creasingly adopted in a wide range of everyday digital prod-
ucts, there is a rapidly growing demand to make the underly-
ing algorithmic processes and models more transparent. As a 
response, new research areas such as eXplainable AI (XAI) 
and Interactive Machine Learning (IML) have emerged to 
investigate how to make data science and ML models less 
opaque and more interpretable (Fails and Olsen Jr 2003; 
Gunning 2017; Amershi et al. 2014). Researchers have made 
progress to open the black box of various ML algorithms 
in a wide range of domains, including image recognition, 
Natural Language Processing (NLP), and personalized apps. 
However, how to apply such progress to make these models 
and processes open to end-users, who may not AI experts, 
remains an open problem (Stumpf et al. 2009; Kulesza et al. 
2013).

With a few exceptions(Zhu et al. 2018; Hooshyar et al. 
2020; Zhu and Ontañ ́on 2020), current games research on 
how to improve the transparency of AI and data is lim-
ited. This paper focuses on player modeling, an active game 
AI research area that studies computational models of play-
ers in games (Yannakakis et al. 2013). Player modeling can 
benefit from increased transparency because it is often used
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by different human stakeholders. In the game development
process, analysts use player models to gain further insights
into different player types and improve the gameplay (Seif
El-Nasr, Drachen, and Canossa 2013). Game designers use
them for personalization, such as tailoring game content to
individual players’ learning needs (Kantharaju et al. 2018).
Players are beginning to use player modeling. For exam-
ple, an e-Sports player can use automatic coaching systems
that model her gameplay and recommend different game-
play strategies tuned to her specific skills and preferences.
These applications require player models to be transparent
to not only experts in interpreting behavioral data but also
regular players. Finally, as one of the desiderata for human-
centered AI (Miller 2019), transparency can contribute to the
fairness of player models and engender player trust.

This paper proposes a new research area — Open Player
Modeling(OPM) — to make computational models of play-
ers accessible and more transparent to players themselves.
This involves answering questions such as WHAT data or
models would be useful for players, HOW would such data
be communicated, and WHEN to show these models or
the resulting processes, such as recommendations or predic-
tions, to players in the gameplay experience. Our core po-
sition is that open player modeling is a promising research
area that can potentially empower players to learn from their
own data, increase their trust in AI, and enhance the effec-
tiveness of some games as interventions. In e-Sports, OPM
can be used to enhance the experience of spectators and to
help players learn from other players’ gameplay strategies.
In this paper, we illustrate the usefulness of OPMs through a
case study showing how an OPM can be applied to an edu-
cational game on parallel programming. We argue that OPM
can increase players’ reflection on their learning strategy and
self-regulate learning more effectively.

The contribution of this paper is the following. 1) We
identify Open Player Modeling as a promising new research
area by synthesizing related research in separate communi-
ties: games, intelligent user interfaces, and intelligent tutor-
ing systems. 2) We provide a theoretical framework to map
out the design/problem space of open player modeling and
identify key open problems. 3) We offer a case study of how
OPM can be used to enhance players’ experience and capa-
bilities.



Related Work
Constructing computational models of how users interact
with digital systems is the subject of user modeling re-
search(Fischer 2001) and its domain-specific forms such as
player modeling(Yannakakis et al. 2013) and student/learner
modeling(VanLehn 1988). These models are then com-
monly used in many areas for data mining, data analytics,
and automatic content adaptation. Currently, the vast major-
ity of these models are hidden from humans or designed for
trained analysts (Nguyen, El-Nasr, and Canossa 2015). In
this section, we discuss existing work that attempts to make
them more open to end users such as players.

Open User and Learner Modeling
Most existing research efforts on showing users computa-
tional models of their behavior concentrate in the Intelligent
User Interfaces (IUI) community. Most notably, Open User
Modeling (OUM)(Brusilovsky, Hsiao, and Folajimi 2011)
aimed to make the process and products of user models ex-
plicit and available to users themselves. Existing research
found that OUMs can improve a user’s understanding of the
system (Knijnenburg et al. 2012; Gretarsson et al. 2010) and
encourage reflection on users’ data and actions (Bull, Brna,
and Pain 1995; Bull 2004; Gretarsson et al. 2010). When ap-
plied to the context of web-based e-learning, studies showed
that OUM, sometimes referred to as Open Learner Model-
ing (OLM), helped students improve self-reflection and the
meta-cognitive processes (Hsiao, Bakalov, and Brusilovsky
2013; Hsiao and Brusilovsky 2017, 2012; Hsiao et al. 2012;
Law et al. 2017; Kump et al. 2012; Brusilovsky, Hsiao, and
Folajimi 2011). In addition to individual open models, re-
cently, researchers started to explore the social aspects of
OUMs. Motivated by social comparison theory (Suls and
Wills 1991), Hsiao and Brusilovsky (Hsiao and Brusilovsky
2017) proposed what they called Open Social Student Mod-
els by making a student’s model visible to other students
going through the same learning experience. In a user study,
they observed that students “spent more time on [the sys-
tem], attempted more self-assessment quizzes, and explored
more annotated examples” (p. 10).

Open Player Models (OPM) extend the main idea behind
OUM/OLM to computer games. The majority of existing
work on OUM/OLM is based on adaptive web applications
where hyperlinks are the primary source of user interaction.
As argued below, player interactions within games tend to be
more complex than with web applications. Thus, OPMs face
unique challenges in terms of how to open the models and
how to make the resulting information useful to the players.

Open Models in Games
Traditional player models, a component of the AI systems
in games, are used directly by the game system to, for ex-
ample, adapt the gameplay experience. They are typically
not designed to be open to human users. As game user re-
search develops, post-hoc player models start to be devel-
oped and are visualized for user researchers, game analysts,
game business teams, and game developers. Such models are
then used in the game production pipeline for various pur-
poses, including enhancing the game design or tuning the

technical aspects of the game (Seif El-Nasr, Drachen, and
Canossa 2013). Since these models are designed for highly
trained experts, not the average players themselves, they are
often highly technical.

The most developed applications of OPMs for non-
technical stakeholders are dashboards of player perfor-
mance. Dashboards are broadly used in modern computer
games to display player performance stats, such as win rate,
quality of solutions in puzzle games, and average speed in
racing games. More recently, with the increased popular-
ity of e-Sports, more sophisticated dashboards have been
developed. Such dashboards have also been extended for
spectators to show what is happening within the match
(Koomen 2020; Kokkinakis et al. 2020; Charleer et al. 2018;
Kriglstein et al. 2020). Recently an increasing number of
companies, e.g., SenpAI and Mobalytics, focus on develop-
ing AI-enhanced dashboards, such as recommendation sys-
tems targeting different kinds of MOBA games.

On the research side, several works investigated dash-
boards for various games (Charleer et al. 2018; Kokkinakis
et al. 2020; Koomen 2020; Robinson et al. 2017). For ex-
ample, Charleer et al. (2018) sought to explore the effect
of dashboards on spectators’ experience and how they were
used to gain insight into the game. They ran surveys to
study the value of different metrics to help design their dash-
boards. Based on this study, they developed specific dash-
boards geared towards the different games studied and eval-
uated their usefulness. They found that the dashboards were
useful in that they facilitated analysis and interpretation, but
some participants wanted access to data as they liked to dig
into the data themselves and took pride in doing so. Further,
researchers discussed issues of trust and warned about the
complexity of the visualizations as well as issues of cogni-
tive load. Most relevant is a proposed idea called Transpar-
ent Player Models (Hooshyar et al. 2020). In their proposal,
researchers adapted Open Learner Models into educational
games and proposed to use learning analytics and visual-
ization to expose learner models to players. While similar
to (Hooshyar et al. 2020), our work encompasses a broader
scope of player modeling, in addition to educational games,
we include MOBA games, health games, and other seri-
ous games. Further, our work is situated in games research,
specifically looking at player modeling as part of the player
experience and questioning how players can benefit from
viewing models of their gameplay data.

Open Player Modeling
We propose the new term Open Player Modeling (OPM) to
unify the range of practices of showing players computa-
tional representations of their gameplay data. These models
can vary in their computational complexity — ranging from
players’ in-game performance through descriptive statistics
(e.g., average speed) to cognitive, affective, or behavioral
models of player characteristics (e.g., learning preferences
in educational games). Figure 1 shows the key components
of OPM. First, player’s gameplay log data is processed to
produce a player model. In some cases, human experts are
involved to provide labeling and domain knowledge to the
modeling process. Next, these models are explained and



Figure 1: Components of Open Player Modeling

communicated to the players and other stakeholders (e.g.,
game analysts) through text, visualization, or other media.
In cases of complex player models with low interpretability,
such as deep neural network-based player models, extra ef-
fort is needed in producing explanations to the underlying
models before they can be communicated to the players.

Open Player Modeling as a New Research Area
As shown above, there are pockets of knowledge about open
models in different research communities. So is OPM sim-
ply an extension of the prior work to a new domain, or is
it fundamentally different from them? Below, we argue that
there are four reasons why OPM is the latter.

First, player data is typically more complex than the type
of user data applied to OLM and OUM research. As sum-
marized above, most existing OLM and OUM research are
conducted based on how users interact with hypermedia ap-
plications. In comparison, players interact with games with
higher frequency and longer duration. A 2020 international
report1 shows that although gamers typically play for an av-
erage of 1.37 hours at a time, many of them play for longer
sessions. In the U.S. players’ average longest consecutive
play sessions are 5.10 hours. All the above statistics indicate
the size and complexity of player data.

Second, player modeling techniques are different from
those used in other open models domains. Because play ex-
perience often involves time and virtual space, most player
models involve a way to deal with the time and space
continuum. Some models aggregate over these dimensions
(Drachen et al. 2014), while others specifically look into
sequence analysis methods that span time and space (e.g.,
(Sifa, Drachen, and Bauckhage 2018; Kleinman et al. 2020;
Pfau, Smeddinck, and Malaka 2018; Min et al. 2014)).

Third, most player models will integrate some way of
measuring or integrating preference, emotions, and engage-
ment (some examples of these models have been discussed
in Yanakakis et al.’s paper and book (2013; 2018)). These
factors are important for personalizing the play experience
and also for developing game content. Due to the influence
of game characters on team performance within a game like
DoTA or League of Legends, such aspects will also need to
be modeled (e.g., (Chen et al. 2018b)). Such types of mod-
els have been exemplified in many of the MOBA AI types of

1https://www.limelight.com/resources/white-paper/state-of-
online-gaming-2019/\#spend, last accessed on January 31, 2021.

recommendation systems, including in Senpai.gg and Mob-
alytics.gg, which recommend items, characters, or other as-
pects of gameplay that are based on player state modeling.

Fourth, how players interact with OPM may be different
from other open models, imposing new research questions
for open models in the context of play. Players’ desire to
improve their in-game performance and win the game may
provide them with the extra motivation to use OPM. Com-
pared to users of other open models, gamers are more fa-
miliar with viewing information about their activities. Many
games already use player stats to communicate how well
each player is doing. In some complex games, players have
to make sense of a wide range of stats and use them to inform
gameplay decisions. Having this background means players
may be more prepared to make use of more sophisticated
open models in ways they may not be outside games. It thus
makes OPM an exceptionally suitable domain to investigate
eXplainable AI problems of communicating complex AI de-
cisions to end-users.

Design Space of Open Player Modeling
This section maps the problem space of OPM along two
main dimensions: the nature of the player models and their
level of openness.

I. Types of Player Models There are different ways that
different models in the literature have been categorized. For
example, Yanakakis et al. (2013) categorized computational
player models in terms of their computational structure
defining them as model-based techniques (techniques that
embed a theoretical or expert model that is used to derive
the player model), model-free techniques (those that con-
struct a model based on data without a specific knowledge
or theory), and hybrids that mix model-based and model-free
techniques. Another approach to categorize models is the ap-
proach borrowed from statistics or engineering, where mod-
els are categorized into: (a) descriptive, where data is used
to show or describe what has happened, this can be done at
different levels of abstraction, (b) predictive, where data is
used to predict an outcome or a state, (c) diagnostic, which
extends a descriptive model to specifically answer specific
questions, and (d) prescriptive extends predictive models to
prescribe what to do next.

While these frameworks are useful conceptual tools from
the algorithmic perspective, they contain information that
players may find unnecessarily complicated. Since OPM is
used by players, we propose an adapted framework to clas-
sify player models from the players’ perspective.

1. Descriptive Models tend to describe a system or a phe-
nomenon, constraints, complexity, and interaction. An
example is a descriptive model that contains a player’s
problem-solving process using the gameplay sequence of
how she solves a puzzle in a level (e.g., (Ahmad et al.
2019; Kleinman et al. 2020)). Models can vary in terms
of the abstraction level that they encompass and they can
offer players information about what has happened.

2. Prediction Models offer a forecast on a state of the game
or the player (Yannakakis et al. 2013; Camilleri, Yan-
nakakis, and Liapis 2017; Henderson et al. 2020; Shaker



et al. 2013). Some of these models may target the pre-
diction of an outcome, e.g., skill level or win/loss (Kang
and Lee 2020; Lan et al. 2018; Norouzzadeh et al. 2017).
Other models may predict players’ state emotions (Yan-
nakakis et al. 2013), churn (Castro and Tsuzuki 2015;
Tamassia et al. 2016), or players’ next action or a goal
based on observed behavior (Min et al. 2014; Harrison
et al. 2014; Harrison and Roberts 2011). Players can use
these models to get a glimpse of the likely outcomes in
the future and assess their current gameplay accordingly.

3. Reflection Models offer players information about their
play, such as score or strategy, as a way to allow players
to reflect on their performance.
An alternative way to categorize player models is based

on the type of service they offer. For example, for reminders,
these models tend to be context-aware and use expert knowl-
edge to show specific information to players based on their
play and the data analyzed. A good example of this model
can be seen in the Senpai.gg tool, where players can use the
reminders to improve their gameplay. Another service type
is recommendations. These models offer recommendations
for items, characters, or specific elements to player pre- or
during play (Chen et al. 2018a,b; Bertens et al. 2018).

II. Level of Openness We classify OPMs into the follow-
ing levels of openness based on how much of player mod-
eling process is revealed to the players and whether players
can modify their models.

1. Open Model Outcome has the lowest level of openness.
It communicates to players the result of the player mod-
els, without detailed information of how the models were
calculated from the players’ gameplay behavior. For ex-
ample, an OPM of an adaptive game similar to Left4Dead
may communicate to the player that its model of her is
that she is a highly-skilled player, and therefore the game
is sending her more difficult enemies. Notice this type of
OPM does not contain information about how the user
model is computed. It focuses on what the model is. The
main benefit of this type of OPMs is its simplicity. Es-
pecially when players are engaging in time-critical game-
play, such as combat, extra information of the model can
be overwhelming.

2. Open Model Process reveals the computational process
through which the outcome of player models are calcu-
lated from the input of player behavior. For instance, this
type of OPM can use visualization to display the clus-
ters of players based on their gameplay and show a player
where her gameplay is situated. It can also be used to ex-
plain certain predictions that the game AI has made (e.g.,
probability of winning a game). The main benefit of this
type of OPMs is that they can help players understand
WHY and HOW they are modeled in a particular way.

3. Editable Open Models affords the highest level of open-
ness. In addition to making the player model open to the
players, they allow players to modify their own models.
When designed well, editable models can improve the ac-
curacy of the models by allowing players to make correc-
tions. For instance, editable OPMs can be used in adaptive

games for physical rehabilitation patients. The game can
model a player’s joint limitations based on her movements
in the gameplay and other information (Pirovano et al.
2012) in order to generate targeted exercises. However, if
there is an error in the player model, it could likely lead to
pain and additional injury. Through Editable Open Mod-
els, players can see their own models and make appropri-
ate corrections so that the game can provide the most suit-
able exercises. Since Editable Open Models allow players
to directly modify the player models, there is a higher re-
quirement for players to understand how the models func-
tion and therefore provide the correct editions. Additional
design considerations are also needed to align players’ in-
terests (e.g., the desire to win) with the model accuracy.

Open Problems
This section discusses the main open problems of OPM.

Make Player Models Explainable and Transparent
Opening player models to players requires the underlying
player models to be explainable, especially for the models
with higher levels of openness. The game AI community
has developed a large body of work to model players, but
the vast majority of them are black boxes. A key open prob-
lem for OPM research is how to improve the transparency
of player modeling. For systems that use AI modeling tech-
niques that have low interpretability (e.g., deep learning),
how can we still offer insights to players about why the
player model classified them in a certain way. For other
models, how can we choose the appropriate level of abstrac-
tion to reduce the noise of low-level actions and highlight
the main trends that are useful to differentiate among the
different players?

Communicate Open Models to Players Once we have an
explainable player model, research is needed to effectively
communicate the model to players. Currently, information
visualization has been a primary tool to convey player stats.
As OPMs may contain more complex information, more re-
search is needed to expand the current work on visualiza-
tion and multi-modal explanations (e.g., visualization, text,
and voice). What is the information that the players want to
know about their own models? How can we visualize high-
dimensional player data and gameplay traces? For OPMs
of open model outcome, how can we help players estab-
lish the connection between their gameplay actions and the
model outcome? For OPMs of open model process, how can
we provide relevant information without overwhelming the
player? And for editable open models, can we provide suf-
ficient scaffolding so that the players can provide more in-
formed edits to the model?

Design Player-AI/Model Interaction in the Eco-System
of Games Compared with other eXplainable AI domains,
a unique aspect of OPM is that it needs to be embedded in
the rich game-player interaction context. This allows us to
investigate new OPM and explainable AI research questions
in a wide variety of contexts. For example, we can explore
when and how to provide OPM information to players in
the entire player experience. In open learner modeling litera-



ture, the models are often displayed at the end of a pedagog-
ical module for reflection.However, in educational games, it
is possible that OPM can be used to provide guidance and
encourage reflection during the gameplay. How can we ad-
dress different player needs at various stages of the game
and incorporate OPM accordingly? Can we even align the
gameplay incentives with OPM so that players are moti-
vated to provide accurate information to the editable player
models? One notable design challenge is the potential con-
flict between OPM and immersion. OPM is not for every
game. Directing players’ attention into the player models,
like any extra-diegetic features, may interrupt the narrative
or emotional immersion. Game designers need to be mind-
ful of these interruptions. Alternatively, OPM can be directly
incorporated into the core game mechanics (e.g., as a meta-
gaming feature(Kleinman, Caro, and Zhu 2020)).

Ethical Considerations

By increasing the transparency of player models, OPMs will
highlight the ethical issues that have underlined user model-
ing in games. Similar to the research of ethics of AI (Ha-
gendorff 2020; Jobin, Ienca, and Vayena 2019) and user
modeling (Mobasher et al. 2020), making sure that OPMs
embody human-centered values, such as fairness, account-
ability, and privacy, is a challenging research problem. For
example, when we model players using emotions or web-
cam data, how would we open such models while also en-
suring privacy. These issues need further examination. An-
other example is that game analytics tools regularly use ag-
gregation (e.g., averages, typical gameplay paths, heatmaps)
to abstract player data. While they are useful to describe
“average” players, those who play differently can receive
less design attention and thus be marginalized. In an OPM
for learning (e.g., see case study below), we need to make
sure that less popular problem-solving processes do not get
buried and the OPM can serve all players.

Another example of the ethical considerations of OPM is
privacy. A good example is alluded to earlier on emotions
or visual identifiable information embedded in the models.
How do we share players’ traces in a socially responsi-
ble way? By showing the different gameplay strategies, the
OPM can reveal struggling players. Would it expose these
players to potential toxic behaviors in games? Or, can we
steer what OPM reveals towards self-improvement and as-
sistance from the game and its community? Finally, player
modeling is rarely completely accurate. Opening these mod-
els up to players further raises questions around accountabil-
ity. What happens when the model incorrectly characterizes
a player? Editable open models allow players to identify and
repair these instances, but they also impose additional chal-
lenges of explainability and preventing players from poten-
tially exploiting the system.

Case Study
Below we discuss a case study of OPM in an educational
game. Note this work is still ongoing and the validation of
this model has yet to be measured.

Context: Learning Game called Parallel
Parallel is a single-player 2D puzzle game, designed to teach
parallel and concurrent programming core concepts, espe-
cially non-determinism, synchronization, and efficiency, to
Computer Science undergraduate students (Zhu et al. 2019;
Ontañón et al. 2017). In each level, arrows (the equivalent of
threads) move along a pre-determined set of tracks (a pro-
gram). A player places semaphores (wait function in par-
allel programming) and buttons (signal) in order to direct
arrows to pick up packages and deliver them to the des-
ignated delivery points. In addition, the game contains di-
rectional switches to represent conditional statements. In
essence, the player designs a synchronization mechanism
to coordinate threads executing in parallel. Once the player
successfully delivers all required packages, she wins and
moves to the next level. Because the arrows move at ran-
dom speeds in each simulation, the puzzles in Parallel are
non-deterministic. The game allows learners to test their so-
lutions with one configuration of arrow movement schedule
at a time before they submit their final solution. At that point,
the game will systematically check if the solution works in
all configurations.

From an in-class user study (Zhu et al. 2020), we ob-
served the difficulty for students to think in a multi-threaded
way. Specifically, players tend to assume the same problem-
solving strategy even when they encountered problems. It
often leads to stagnation in learning. Based on this observa-
tion, we hypothesize that enabling players to see their own
problem-solving patterns through OPM, especially in the
context of others’, can encourage reflection, motivate them
to explore other problem-solving strategies in the game, and
hence enhance learning.

Open Player Modeling for Parallel
Player Model Type We believe that the use of OPM
here can potentially enable players to reflect on their own
problem-solving patterns and explore new ways when com-
paring them with other players’. Here we decided to use a
descriptive model, where low-level gameplay actions, such
as mouse clicks and button presses, are abstracted into
higher-level actions such as level test, placing a semaphore,
linking a semaphore to a signal, etc., which focuses on
decision-making and problem-solving strategies. A key
challenge here is that, directly showing players’ every game-
play action will be overwhelming in terms of the number of
actions as well as the complexity of the action sequences.
Yet the established technique of showing aggregated player
stats hides necessary information about problem-solving
strategies. This challenge creates a rich domain for OPM
to explore how to model player action sequences and how
to make them open and transparent to players for reflec-
tion (Villareale et al. 2020).

Level of Openness Since our goal is to improve play-
ers’ reflection and learning, we intend our player model
to be open in a way that players can use to compare
their gameplay/problem-solving process with others’. We
decided to explore Open Model Outcome as the foundation
type of OPM. In our case, the model is the individual play-



Figure 2: A screenshot from Glyph where a user highlighted
four different sequences or patterns for solving this game
level. These patterns are highlighted in red, blue, green, or-
ange shown in the sequence graph (right) with the corre-
sponding traces shown in the state graph (left).

ers’ problem-solving processes, expressed as sequences of
abstracted player actions during a level.

We use visualization, through the Glyph visualization
system, to communicate the OPM to the players. Glyph
(Nguyen, El-Nasr, and Canossa 2015), developed to display
traces of players’ sequences of actions, supports comparison
across many players. It is composed of a dual-view interface
that shows data from two related perspectives: a state graph
and a sequence graph. A state graph shows a sequence of ab-
stract behaviors and abstracted states. As shown in Figure 2
Left, this state graph representation is a node-link graph.
The nodes represent different game states — a game state
is a context of the game where a player action is taken. The
links between these nodes are actions that a player took to
get from one state to another.

To facilitate comparison of individual action sequences,
we augmented the state graph with a synchronized sequence
graph showing the popularity and similarity of sequence pat-
terns exhibited by users (see Figure 2 Right). Each node in
the sequence graph represents a full play trace, the size is an
indication of popularity, i.e. how many players made these
actions. Further, the distance between each node provides a
visual representation of similarity/dissimilarity. For this par-
ticular level, the Glyph-based OPM revealed three distinc-
tive ways that players in our dataset have solved it. The se-
quence graph (Figure 2 Right) shows three distinct clusters
of the gameplay sequences. A player can locate her game-
play sequence and see how it relates to others.

To inspect this even further, the visualization system al-
lows users to interact with the graphs, highlighting differ-
ent sequences to inspect the decision-making steps in detail.
Figure 2 shows such rendering of four different paths to-
wards solutions for the level. This system then demonstrates
an example Open Player Model - visualizing a descriptive
process-oriented Model. One can thus imagine a player who
may be struggling with a level to inspect the data from an-
other player who was successful and follow through the
sequence: “added a wait statement for red arrow”, “tested
and failed”, “adjusted the wait statement for the red arrow”,
“tested and passed”. Visualizing such patterns can give the
player a way to inspect their own actions, reflect on them
and also compare them to others. The specificity of the de-
sign and the visualization will depend on the model used.

We are currently tackling several open problems. First,

we are investigating whether Glyph-based visualizations are
interpretable by regular players. It is possible that players
may find the state graph too difficult to understand. Through
user studies, we will test and refine appropriate techniques
that are informative and understandable to our target player
group. There needs to be a balance between the expressiv-
ity of the visualization and its understandability. Second,
we are also exploring the type of interactions and features
needed to make our OPM useful for reflection. For exam-
ple, we anticipate using annotations to allow users to leave
notes or reflections on detailed problem-solving processes.
Further, we also plan to use AI techniques to guide attention
to similar sequences or add filtering options. These inter-
actions will need to be tested through user studies. Third,
we also need to investigate the type of player model to con-
struct for an effective OPM. This is due to the fact that OPMs
are tightly coupled with how explainable the resulting visu-
alization is to the players. As mentioned above, there is a
tension between models that capture sufficient information
about problem-solving patterns (tend to be complex player
models) and models that can be easily understood by players
(tend to be simple player models).

Discussion and Conclusion
While the case study above specifically showcased one ex-
ample in the space of possible OPMs, there are many other
examples that one can imagine for Parallel. These include
recommendation models where the system recommends ac-
tions or strategies to players based on their models and level.
We can also imagine models that give players reminders
about specific aspects of the level to pay attention to, again
given players’ models. These types of models are different
from the descriptive models described above and can be ef-
fective for learning. However, they also need to be equipped
with more explanations for the information presented. These
could include different ways to establish the openness of the
model. We can imagine, for example, a system that explains
the process by which the model is developed, i.e. Open
Model Process. We can also imagine that sometimes such
models need to be edited or adjusted due to low accuracy
or issues with the model, in such cases, designers can inves-
tigate the use of editable models. Researchers can develop
different types of OPMs given the framework we outlined
through adjusting the model’s type and level of openness.
We hope these dimensions can help establish and further ex-
pand the work on player modeling to deliver better game
mechanics as well as ways to explore engendering trust and
fairness in the process of player modeling.
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