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Abstract
Finding a performant machine learning model usually requires exploring different combinations of model hyperparameters,
preprocessing steps, data generation and train logic. To facilitate a clear analysis of the factors that determine accuracy,
it is useful to make the data processing and train pipeline highly configurable such that a combination of a code version
and configuration file uniquely determines the behaviour of the system. A poor configuration system can lead to repetitive
code that is hard to maintain, understand, and brittle due to insufficient configuration validation logic. This paper outlines
the design and usage of confr, a concise and flexible configuration system geared towards Python-based machine learning
projects. It combines some of the capabilities of commonly used systems (such as gin-config, OmegaConf, and Hydra) into a
library which aims to reduce repetitive code and maintenance overhead. It can be used both as part of a notebook-based
and script-based workloads, and can be used for ensuring that there is no accidental difference between inference-time and
train-time behaviour.
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1. Introduction
The goal of machine learning (ML) practitioners is to find
a ”good model”. This is broadly determined by three fac-
tors: (training and validation) data, code (preprocessing,
model implementation, train loop), and hyperparame-
ters (configuration). By hyperparameters we mean any
non-learnable parameter/configuration that influences
how the code gets executed, which may be in the data
processing, model intialisation or inference, or train loop.
When running experiments, exact and immutable ver-
sions of the three should always be stored, so that we
can (1) analyse the factors that influence accuracy and
(2) reproduce the results of an earlier experiment.

Early in developing a ML system, code tends to hard-
code most choices for data processing, model implemen-
tation and hyperparameters. Experimentation in this
setting would require changes to the code, which means
that to compare two experiments one needs to find the
differences of code used in each train run, or rely on the
experimenter’s description of the hypothesis that was
tested. Given that most ML experiments are done in
notebooks where comparing code with version control is
difficult, comparing large numbers of such experiments
is not feasible.
A better approach is to make the code highly config-

urable, so that alternative behaviours can be achieved by
using different hyperparameter values. Now triggering
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many train runs (on the same code and data version) cre-
ates a dataset of hyperparameter sets and corresponding
evaluation metrics. The relationship between hyperpa-
rameters and metrics can be analysed for insights that
inform future hyperparameter choices or code changes.
A highly configurable train pipeline also lends itself for
automatic model tuning approaches such as brute-force
grid/random search, or methods like Bayesian optimi-
sation that use ML to find values for hyperparameters
which maximise validation accuracy.

There are many ways to make a system configurable,
such as creating an ad hoc solution from scratch or using
a 3rd party config1 system. The following is a list of
qualities we would expect from a config system, which
we will later use to evaluate our proposed system confr
against alternatives.

1. Minimise boilerplate code. There should not
be much repetitive code to have a highly config-
urable system.

2. Minimise repetitive config. There should be
ways to reuse, rather than repeat, individual con-
fig values.

3. Composability of config objects. It should be
possible to reuse and compose different configu-
rations, which is crucial for large systems.

4. Low maintenance overhead. A config system
should reduce (rather than add to) the difficulty
of refactoring and developing the code base.

5. Low cognitive load. A config system should
make it easy to understand which variables are

1We use the words ”config” and ”configuration” interchangeably, as
is common in industry.
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configurable and where that configuration comes
from. It is highly related (but not fully deter-
mined) by the following three qualities.

6. Clearly identifyable configurable arguments.
It should be clear just by looking at a function if its
argument is a configurable hyperparameter. This
improves readability and decreases the chance of
accidentally forgetting to provide a config value.

7. Consistent mapping between config keys
and variables / arguments. The system should
encourage a one-to-one mapping between keys2

in the config file and configurable arguments.
Such mapping alleviates the cognitive load in
translating differences between config keys and
variable names, and makes it easy to search for
all places where a config key is used.

8. Global config values. In most cases we expect
the value of a config key to be the same across the
code base, and a config system should encourage
this. For example, if a preprocessing function
assumes max_img_dimensions = (128, 128),
then so should the function which builds the neu-
ral network whose input tensor would have the
shape (128, 128, 3) - otherwise the model’s in-
put dimensions would be incompatible with the
images created by the preprocessor.

9. Centralised, multi-key validation of config.
Validation of config values should be centralised
in a single place, rather than scattered around the
project in an ad hoc manner. This (1) ensures we
fail quickly with a helpful message when read-
ing a faulty config (rather than waiting for the
relevant code path to be reached, which may hap-
pen at a much later state), and (2) allows defining
validation logic that sets constraints on several
config keys simultaneously.

10. Usable in a notebook as well as CLI. The
system should be easy to use in an exploratory
notebook-based setting, where one might want
to dynamically (re-)define and access config val-
ues, and to ultimately write the current active
configuration to a file. It should also work in a
script-oriented CLI3 setting, where main config-
uration is loaded from a file, and certain config
values or whole sections can be overridden via
command line arguments.

11. Configurable Python references and single-
tons. It should be possible to refer to Python ob-
jects (functions, classes, constants, objects) and
create global singletons from callable references
(functions, classes).

2Configuration files are (possibly nested) key-value pairs. We call
the names of configurable hyperparameters as ”config keys”.

3CLI - Command Line Interface

2. Related Work
In this section we provide a brief overview of existing
configuration systems. We first describe what typical
ad hoc solutions look like, and then look at three config
systems which are commonly used4 for ML workloads:
OmegaConf [2], gin-config [1], and Hydra [3]. gin-config
is explicitly designed for ML work, while OmegaConf
and Hydra are generic config systems.

2.1. Ad Hoc Systems
Machine learning projects that do not use a specialised
config system tend to consist of Python scripts where hy-
perparameters are defined as command line arguments.
Libraries like argparse5 and click6 can be used for easier
parsing of command line arguments or providing argu-
ments via environment variables. The individual config
values get passed to downstream functions where neces-
sary.

Alternatively, a regular Python dictionary containing
the configuration might be read from a YAML/JSON file,
and passed along to functions that depend on it. Either
the full configuration object or individual config values
might be passed along, depending on programming style.
It is generally not easy to unify such CLI-based and file-
based configuration styles without using a specialised
config system.

2.2. OmegaConf
OmegaConf builds on YAML file format, and adds a pow-
erful interpolation mechanism, which enables accessing
config keys from other parts of the file. The below exam-
ple shows both absolute (${server.host}$) and relative
(${.url}$) references to other parts of the config file.

OmegaConf configuration is represented as a Python
object, which can be accessed as a nested object or dic-
tionary:

4By ”commonly used” we mean systems we were able to find by
doing relevant Google searches, reading relevant discussion threads,
and looking at GitHub activity for these projects.

5https://docs.python.org/3/library/argparse.html
6https://click.palletsprojects.com/



2.3. gin-config
gin-config makes use of @gin.configurable decora-
tors around function and class definitions. For func-
tions (and initialisers of classes) decorated like this, ar-
guments are substituted from the global config which is
initialised with gin.parse_config_file("conf.gin").
Attributes with default value of gin.CONFIGURED need
to have a config specified in the .gin config file; other
arguments can (but do not have to be) configured with
gin.

The config file is a custom text format, which is a sim-
plified subset of Python. Using dnn.num_outputs = 10
would ensure all functions named dnn will have
the value of num_outputs substituted as 10. Us-
ing path.to.mymodule.dnn.num_outputs = 10 would
ensure it happens only to the function in the
path.to.mymodule module. As special syntax, values
that start with ”@” refer to other gin-configurable func-
tions or classes; values that start with ”@” and end with
”()” first get called before being passed as arguments.

2.4. Hydra
Hydra is a feature-rich config system. The entrypoint
function of the program using Hydra should be anno-
tated with a @hydra.main decorator, which defines the
directory where config files are stored, and config name
(filename without the .yaml extension in the directory).
When called, the function receives an OmegaConf cfg

object as an argument, which can be passed to down-
stream functions. Therefore the config files support all
the syntax and functionality of OmegaConf, and some
features that Hydra adds. For detailed examples, refer to
Hydra documention7.

3. Overview of confr
In this section, we show the basics of how to use
confr. For complete and up-to-date documentation see
https://github.com/mattiasarro/confr.

3.1. Basic Usage
In confr, configs are initialised similarly to gin-config:
functions and classes can be decorated with confr.bind,
which ensures that function and class initialiser argu-
ments will be substituted from the currently active config.
The following example shows a function that expects at
least the num_outputs key (and optionally layer_sizes)
to be defined in conf/base.yaml. Before calling any confr-
configured functions, confr.init must be called, which
creates an implicit global config object.

7https://hydra.cc/docs/intro/



All config files use the special form of YAML used
by OmegaConf (with a few special cases described in
the next subsections). In the default case, the argu-
ments get bound to top-level config keys of the same
name in the YAML file. So in the above example, our
conf/base.yaml could look like this:

3.2. Custom Config Key to Argument
Mapping

In some cases, a one-to-one mapping of config keys to
function argument names can be limiting, so we offer two
ways to customise this. Assume we have the following
config:

Whenwrapping a functionwith confr.bind, we could
tell it to only map keys under the neural_net config key:

The other option is to pass the full path in the config
to confr.value:

3.3. Python References and Singletons
confr adds special syntax to the YAML format supported
by OmgaConf, which can be used to load Python object
or initialise global singletons. Config values which start
with a ”@” are ”Python references”8. A common use

8References to Python objects and references to other config values in
the file look quite similar, since they both use dot notation. Python
references start with a ”@”, and they refer Python modules like
in absolute imports (which usually correspond to folder structure).
Referencing other parts of a config file start with a ”$” and refer
to the ”path” in the YAML file, which follows the nesting of config
keys.

for this is to make a preprocessing or augmentation func-
tion as a configurable argument, so that you can try out
different preprocessors without changing the code. For
example:

When predict is called, the Python module
my.module is imported and the resize_and_crop at-
tribute is read from it. Any Python object could be refer-
enced in config files - function, class, variable, constant
- as long as its module is available on PYTHONPATH,
which usually includes all modules in the project root as
well as installed libraries such as tensorflow.

Config values which start with a ”@” and end with
”()” are singletons - Python references which get called
before becoming part of the current active config and
being passed as keyword arguments. For example you
might define an encoder: @my.module.my_encoder()
key-value pair in the config. Now if a function defines an
argument as encoder=confr.value, then @my.module
gets imported and its my_encoder() callable gets called
before being passed as the argument value. Once
my_encoder() is called, its return value gets mem-
oized and any subsequent functions which use the
encoder config will receive the same, pre-initialised
object. Singletons can be referenced in other parts
of the config using the familiar OmegaConf format of
${config_key.subkey.singleton}$.

Note that my_model1 and my_model2 in the following
listing are the same object.



3.4. Scoped Arguments in Singletons
If you would like to configure input arguments specifi-
cally for singletons, you can do the following:

Now my_model1 singleton will be initialized
with location="/path/to/weights.h5" and
my_model2 singleton will be initialized with
location="/path/to/weights2.h5". This way
they can both define an input argument called location
and still receive a unique value at initialization time.
We call my_model1/location as a scoped argument, i.e.
the value of location is present in only the my_model1
singleton scope.
Note that you can still use the regular, non-

scoped arguments along with scoped ones. For ex-
ample, both my_model1 and my_model2 might define
img_h=confr.value, and this value will be the same
when initializing both singletons.

3.5. Call-time Overrides
When running a Python program configured with confr,
individual values can be overriden in two ways:

1. Passing command-line arguments such as
--key1.subkey1=value.

2. Setting environment variables such as
confr__key1__subkey1=value.

3.6. Run-time overrides
When working in a notebook, modifying the YAML file
to change the active config is cumbersome. You could
instead initialize the config at the start of the notebook
by selectively providing overrides to the keys you care
about like this:

If you do not want to re-initialise the whole con-
fig, but would like to set individual config values, use
confr.set("my_key", value). Doing this would not
re-initialise other config keys or singletons that may de-
pend on my_key.
You may also want to provide overrides to config

values temporarily, for the duration of calling a func-
tion (and any downstream functions called by this func-
tion). For example, you might want to iterate over a

list of p_thresh values and calculate accuracy for each
p_thresh.

Our first attempt at solving this would look like this:

This would work if precision is the only place that
uses the p_thresh that is passed in. But if precision
calls sub_function whose p_thresh value comes from
confr, then the value of p_thresh in sub_function will
be the same as in the config file and not the one we passed
to precision. What we need here is to temporarily set
the value of p_thresh config key in the whole confr, like
this:

3.7. Config Spanning Multiple Files
Suppose you have the following config files:

Once the config is loaded, the effective final config
would look like this, because the _file special key tells
confr to take the configuration for neural_net subkeys
from another file.
But you could also override which neural net config

gets used, by passing --neural_net._file=deep when
running the program. Note that there is a convention be-
tween the config keys and the folders from where _file
references are searched.



3.8. Accessing the Active Config
Sometimes we need to explicitly fetch the value of a
key in our config system. You can use confr.get and
confr.set accessors to modify the current active conf:

You can also save the current active config as a YAML
file, for example at the end of training. The code for
training the model and doing inference should be in the
same version control project; train-time and inference-
time pre-processing should be handled by the same func-
tion(s). This way, if code for inference is initialised from
the same code revision and active config that was used
during training, there would be no accidental difference
between train time and test time behaviour.

3.9. Validation
Two types of validations can be done with confr. Each
config file with name filename.yaml can have an op-
tional filename_types.yaml counterpart, which de-
fines the datatype of all (or a subset of) the config keys.
Currently, only primitive Python types are supported,
but more complex solutions will be added.

For example:

However, once the config gets complex enough, there
is a need to validate different combinations of config
values. For example, imagine we have the following
config, which states that 50% of the samples come from
labelled dataset, 25% come from data generator 1 and 25%
come from generator 2:

In confr we can define a validator that ensures that
everything in samples_per_batch sums to batch_size.



4. Evaluation
Wewill now evaluate the competing systems and confr on
the desired qualities outlined in the introduction, giving
each a somewhat subjective BAD / OK / GOOD mark.

1. Minimise boilerplate code.
• BAD: ad hoc, OmegaConf. Passing down
configuration dictionaries or individual
config values can be very verbose. So can
be setting up CLI arguments in ad hoc sys-
tems.

• OK: Hydra. Different functions can request
a config object, and read individual keys
from it. However generally there is a single
config object that gets passed along.

• GOOD: gin, confr. Configurable function
arguments receive a value directly from
the config system, which is most concise.

2. Minimise repetitive config.
• BAD: ad hoc. No way to reuse / refer to
other values in YAML/JSON files.

• OK: gin-config. It is possible to reuse val-
ues, but in a cumbersome way, and the con-
fig file format is somewhat verbose (since
all occurences of a config value need to be
listed).

• GOOD: OmegaConf, Hydra, confr. It is
possible to reuse values and create concise
config files.

3. Composability of config objects.
• BAD: ad hoc, OmegaConf, gin-config. Not
supported.

• GOOD: Hydra, confr. Supported.

4. Low maintenance overhead.
• BAD: ad hoc, gin-config. Passing along
config objects/values slows down refactor-
ing. gin-config also often requires config
changes when the relevant code changes
(renaming/moving functions). Ad hoc sys-
temsmight need tomaintain CLI argument
lists.

• OK: OmegaConf, Hydra. Moving code
around requires changes to passing of con-
fig values, but this is less troublesome than
changes required by gin-config or main-
taining CLI argument lists in ad hoc sys-
tems.

• GOOD: confr. Config files and other parts
of the source generally do not need to be
changed on renaming or moving functions,
because the config file makes no assump-
tions about where the config is used and
config values do not need to be propagated.

5. Low cognitive load.
• BAD: gin-config, Hydra. It is not clear,
without reading the configuration file and
upstream code carefully, which arguments
are configured and where the value comes
from.

• OK: ad hoc, OmegaConf, confr. The initial
cognitive load of understanding how a con-
figurarion is loaded in ad hoc systems and
OmegaConf is low (for example, it’s easy
to understand what reading a YAML file or
using argparse does). However it is much
harder to reason about how the whole sys-
tem behaves due to the next three qualities.
In confr, it takes more effort to think about
many possible places where configurations
can come from (multiple files, command
line overrides), but it is easier to reason
about the whole system due to the follow-
ing three qualities.

6. Clearly identifyable configurable argu-
ments.

• BAD: ad hoc, OmegaConf, Hydra. When
reading code (that is ”far away” from the
part that initialises config), it is not clear
which arguments are configurable.

• OK: gin-config. It is possible to make it ex-
plicit that some arguments should receive
a value from configuration, but this is not
a requirement.

• GOOD: confr. It is intentionally not pos-
sible to configure an argument in confr
without making it explicit in code that the
value is configurable.

7. Consistent mapping between config keys
and variables / arguments.

• BAD: ad hoc, OmegaConf, gin-config, Hy-
dra. In all these systems such consistency
is not encouraged, which makes it harder
to read, understand and refactor.

• GOOD: confr. Such consistency is enforced
by default, though in rare cases it is possi-
ble to bypass this (for example when you
need to use an externally-provided config
file).

8. Global config values.
• BAD: ad hoc, OmegaConf, Hydra. It is easy
to have multiple configuration objects, or
to have a different value in different places
for the same config key.

• GOOD: gin-config, confr. There can be
only one globally active configuration. In
confr, each config key always has the same
value.



9. Centralised, multi-key validation of config.
• BAD: gin-config. No validation system pro-
vided, hard to add one.

• OK: ad hoc, OmegaConf, Hydra. Cen-
tralised validation system can be added
through user code to OmegaConf or file-
based ad hoc systems, though this is harder
to do in CLI-based ad hoc systems in a con-
cise way. Hydra has a validation system,
but this is mostly limited to data type based
checks, which are insufficient.

• GOOD: confr. Supported, built in.

10. Usable in a notebook as well as CLI.
• BAD: ad hoc, OmegaConf, gin-config. Ad
hoc systems tend to work well either for
notebook-based approaches (e.g. reading
a global YAML file as a config dict), or
work as a sophisticated CLI script, but not
both. There is no support to override op-
tions from the CLI in OmegaConf and gin-
config.

• GOOD: Hydra, confr. Can be used in both
settings.

11. Configurable Python references and single-
tons.

• BAD: ad hoc. Usually not supported.
• OK: OmegaConf, Hydra. Supported, but
cumbersome to use.

• GOOD: gin-config, confr. Supported, easy
to use.

The results are summarised in the following table.
From it we can see that confr exhibits the good quali-
ties of Hydra and gin-config, while alleviating some of
the downsides one or the other. This is not a coincidence,
since confr was in many ways inspired by these two,
though the exact way confr achieves these qualities may
be different.

There are features not supported by confr which other
libraries provide that will be added in later versions: tab
completion and more detailed type checking provided by
Hydra. Hydra also has some features that were intention-
ally not made part of confr, such as multi-run options,
custom working dir and logger config, since these were
not considered relevant with respect to the evalation cri-
teria, which we considered most useful for a ML-oriented
config system.
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