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Abstract

Recommender systems are deployed in dynamic environments with constantly changing interests and
availability of items, articles and products. The hyperparameter optimisation of such systems usually
happens on a static dataset, extracted from a live system Although it is well known that the quality of a
computed model highly depends on the quality of the data it was trained on, this is largely neglected
in these optimisations. For example, when concept drift occurs in the data, the model is likely to learn
patterns that are not aligned with the target prediction data. Interestingly, most scientific articles on
recommender systems typically perform their evaluation on entire datasets, without considering their
intrinsic quality or that of their parts. First, we show that using only the more recent parts of a dataset
can drastically improve the performance of a recommendation system, and we pose that it should
be a standard hyperparameter to be tuned prior to evaluation and deployment. Second, we find that
comparing the performance of well-known baseline algorithms before and after optimising the training
data window significantly changes the performance ranking.

1. Introduction

Recommendation systems are widely used to help users find the most relevant products and
articles from the large catalogues available on most websites, like news websites and e-commerce
shops. The environments in which they are deployed generate large volume information streams
on which the models need to be trained. Barring online learning methods and incremental
models, the usual approach is to take a static slice of this data stream and train the model on
this slice. Determining the optimal width of this slice is a challenging engineering problem.
Using too little data can cause the model to starve, and not learn anything relevant. Using more
data often results in longer training times, and larger models that take longer to predict.

In academic research, however, this is usually not considered to be such an issue. The typical
datasets used for experimental evaluation are static, and they are almost always used in their
entirety. Important steps have been taken to correctly evaluate recommendation techniques
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through temporal or leave-last-one-out splits [1, 2, 3, 4]. By using all historic events to train
models, however, these evaluations place an implicit trust on the earliest interactions in the
dataset to add useful information. Challenging this trust, algorithms have been designed
to diminish the impact of older interactions [5]. In the evaluation of algorithms, we show
that disregarding earlier interactions entirely during training can significantly improve the
performance of a recommender system in multiple settings. Intuitively, this is true for a simple
popularity baseline: Items that were popular in the past week are more predictive of next
week than items that were popular in the past year [6]. But is this also true for more complex,
personalised recommendation algorithms?

In this paper, we consider the maximum ‘age’ of an interaction, i.e. the time since it occurred,
used to build the model an additional hyperparameter during model training. In the remainder of
this paper, we will refer to the maximal age of an event used in training as the hyperparameter 9.

We investigate and answer the following three questions:

« RQ1: How does the optimisation of 6 impact the individual performance of an algorithm?

« RQ2: Does the optimisation of § change the relative performance between the algorithms?

« RQ3: How does the choice of § impact secondary metrics such as run time and coverage of
the item catalogue?

Additionally, through our experiments we show that the optimal ¢ has a significant impact
on model accuracy across algorithms and datasets. The biggest improvements are found for
algorithms that are agnostic of time, especially when deployed in highly dynamic environments
such as online news. Our findings strengthen our conviction that the hyperparameter ¢ is an
important consideration when determining which model performs best, both in future academic
research and production settings. We leave a comprehensive benchmark of algorithms with
optimal values of hyperparameter 4 to future work.

In Section 2 we highlight relevant related work. Section 3 describes how d should be considered
a hyperparameter, and how to set up an evaluation to mimic a real-world scenario. Also in
Section 3 we present the chosen algorithms, datasets and evaluation metrics. Finally, Section 4
discusses the experimental results with regards to the three research questions and presents the
results from two trials on news websites confirming our results. We also use our experiments
to give suggestions for the selection of values for 4.

2. Related Work

Research in data science has recognised that data drift is an import factor in training high
quality models for several decades [7, 8, 9, 10] More specifically, Fan [11] raised awareness for
the issues associated with the blind usage of older data in the context of binary classification.
As they conclude: “[...] using old data unselectively is like gambling”. When a dataset contains
drift and an algorithm is not equipped to deal with this drift, using only more recent data, i.e.
explicitly defining d, is a straightforward way to avoid training poorly performing models [11].

Recommender systems are used in highly dynamic environments and so naturally have to
deal with data drift. We can distinguish between two research directions related to handling data
drift, i.e. measuring accuracy under data drift and recommendation algorithms that perform



well under data drift. Regarding the former, improved data splitting techniques that better
reflect realistic recommendation scenarios have been proposed, e.g. timed splits [12, 13], a
sequential last item prediction split [14] and repeated time-aware splitting [15, 1]. In relation to
the latter, a large amount of time- and sequence-aware algorithms have been proposed over
the years. For a comprehensive overview we refer the interested reader to Campos et al. [12],
Ludewig and Jannach [16], Quadrana et al. [17] and Bogina et al. [5].

Relevant to our work, Vinagre and Jorge [18] summarised two generic methods for dealing
with concept drift in a data-stream. The first is to utilise a predetermined § and use it as a sliding
window over the data. The second is to utilise fading factors such that older interactions have
less influence on the similarities. Ludmann [19] used a contextual popularity algorithm, with §
equal to five minutes, thirty minutes and one hour, to great success in the CLEF Initiative in
2017. Similarly Ji et al. [6] showed that computing popularity using a small § or using fading
factors provided a much stronger baseline. Jannach and Ludewig [20] and Jannach et al. [14] find
similar indications that the recency of training data is important in a retail context. Our work is
inspired by these earlier efforts and aims to further anchor and broaden their findings regarding
popularity and similarity-based algorithms to other types of recommendation algorithms,
such as time- and session-aware algorithms. Examples of such time-aware algorithms are
neighbourhood-based models that use fading factors [21, 22, 23, 24, 25, 26], similar to Vinagre
and Jorge [18]. More recently, we see sequence- and session-aware algorithms that learn
sequential models utilising the order in user histories. Examples of such methods are STAN [27],
Sequential Rules [20], VS-KNN [20], and GRU4Rec [28]. In the wake of GRU4Rec, more and
more deep learning approaches have been proposed that incorporate sequential and/or temporal
information. [e.g. 29, 30, 2].

Recent reproducibility studies have challenged the performance of these complex deep
learning methods in a variety of domains. In two recent works, Dacrema et al. [31, 32] found
that “11 of the 12 reproducible neural approaches can be outperformed by conceptually simple
methods”, such as ItemKNN or UserKNN. Ludewig et al. [33] investigated the performance of
deep learning approaches compared to simpler baselines in a session context. They found that
“In the majority of the cases [...] it turned out that simple techniques outperform recent neural
approaches”. We follow their results, and focus on simpler baselines in our experiments.

3. Methodology

3.1. Recommendation Scenario

In many real-world applications, recommendation systems are used to generate recommen-
dations for users while they are looking at other articles or products. In these use cases, the
interest of the user is often captured mostly by their most recent interactions. A standard
evaluation protocol to model this situation is to perform either leave-last-one-out splits [2, 3, 4],
or iterative revealing [33].

We modify the leave-last-one-out evaluation to best approximate a (repeated) train-and-serve
architecture typically used in production settings and avoid leaking future information into our
model training [34]. Only data before a timestamp 7', the time at which the model is supposedly
retrained before serving, is used for training. Given the significant computational cost to



running our experiments, we use a single evaluation window and leave repeated evaluation as
suggested by Scheidt and Beel [15] for future work.

Formally, given a set of users U and a set of items I, let D = {(u,i,t) : uw € U,i € I,t € N}
be the dataset of interactions, where ¢ is the timestamp on which user u last interacted with
item 4.

To obtain a training dataset, we split the dataset on timestamp 7'; data before 7' (D7) is used
as training data for the algorithms. In addition to the other hyperparameters of each algorithm,
we introduced the hyperparameter § and so further limit our dataset used in training to data
after T — 6, ie. {(u,i,t) € Dep|T — 0 < t < T'}. Small values for § limit the training data to
only interactions that occurred close to the cut-off timestamp 7. The larger § becomes, the
more data is used to train the models.

To create the test dataset we extract only users that have at least 1 event after 7" and use all
but their last interaction (also those before 7T') as history to predict their last interaction, as in a
classical leave-last-one-out scenario.

To properly tune hyperparameters we introduce a second cut-off timestamp T,,o; < T,
such that our training dataset during hyperparameter optimisation are the events {(u,i,t) €
Dot |Tyar — 0 < t < Tyq}. To obtain the validation evaluation dataset, we extract users
that have an interaction between T),,; < t < T" and, analogous to the test dataset, use all prior
interactions to predict these users’ final interaction.

When predicting items for a user, both during validation and testing, we remove their
previously visited items from the recommendations, as is frequently done in real world settings
as well. We consider evaluating re-consumption in this setting as future work.

3.2. Datasets

For our experiments, we use five datasets, two from the news domain, and three from the
retail domain. We chose these two domains, because they are stereotypical real-world rec-
ommendation use cases, and we expect the domains to exhibit different behavioural patterns.
News has a pronounced concept drift as articles become irrelevant quickly, while in retail,
product relevance is typically stable for a longer period. Intuitively we expect this to result
in retail datasets benefiting from larger § values as they experience weaker data drift, while
performance on news datasets suffers more drastically when 9 is too large. In our selection of
datasets, we required them to be of sufficient size (> 1M interactions) and to contain timestamp
information for the item view events, which will be used to train models. For news, we use
the Adressa dataset [35] as well as a proprietary dataset, extracted from a live recommender
system, which we’ll call NEWS. Both of these datasets were collected over 7 days. In splitting
these datasets, we used the second to last day 12:00 to 23:59 as the source for the validation
target dataset, and the last day from 12:00 to 23:59 for the test target dataset. For retail, we
use the Yoochoose dataset from the Recsys Challenge in 2015 [36], the CosmeticsShop Kaggle
dataset [37] and a second proprietary dataset, extracted from a live recommender system, which
we’ll call RETAIL. All three of these datasets span a longer period than the two news datasets,
with CosmeticsShop collected over 152 days, Yoochoose over 182 days and RETAIL over 98
days. For the CosmeticsShop and Yoochoose datasets, we used validation and test sets of 14
days, for the slightly shorter but denser RETAIL dataset we used consecutive 7-day windows.



Table 1
Properties for the datasets used in the offline experiments

Dataset |D| |U| |I] Period Gini(item)
RETAIL 24237016 1302909 18255 98d 0.70
Yoochoose 16044427 1882684 44415 182d 0.76
CosmeticsShop 7877677 483080 27019 152d 0.60
NEWS 5943609 381797 3810 7d 0.87
Adressa 2532729 228 462 2790 7d 0.92

By using proprietary datasets as well as public datasets, we can link the offline experimentation
results to our online trials.

The properties of the datasets can be found in Table 1. We report the number of events (| D|),
number of users (|U]), number of items (||), the period during which data was collected, and
the Gini coefficient comparing visits per item [38]. The Gini coefficient is a statistical measure
of dispersion, and a high Gini coefficient indicates that a few items have the most interactions,
and all the others are interacted with much less frequently. News datasets typically have a
higher Gini coefficient, because every day only a few articles are relevant for all users.

3.3. Algorithms

We selected a combination of time-agnostic baseline algorithms, sequence-aware algorithms
and a time-aware algorithm to compare the impact resulting from optimising d for each of them.

Popularity The most visited items are recommended to each user. Recommendations are
only minimally personalised since items a user has interacted with before are removed from
the recommendations as per the scenario (See Section 3.1).

Item-kNN  One of the most well-known and frequently used baseline algorithms for neighbourhood-
based collaborative filtering [39, 40]. The model consists of a single matrix multiplication with

an item-item matrix § € RIIXII: ¢(X) = X S. Where, S; j holds the similarity between
items ¢ and j. The similarity metric to use is considered a hyperparameter. In our work we use
cosine similarity and conditional probability as defined in Deshpande and Karypis [40]. Recent
work on neural news recommendation highlights the remarkable competitiveness of simple
neighbourhood-based methods compared to more complex alternatives [16, 41].

Item-kNN with fading factors We use two versions of ItemKNN methods with fading
factors. The first,proposed by Ding and Li [42], applies an exponential decay on user histories
when using them for prediction. The item-item similarity matrix is computed exactly as it
would be for the ItemKNN algorithm. The prediction function is changed to ¢(X) = w(X)S,
where w applies an exponential decay on the interaction matrix X. The decayed value for a
user item interaction is w,; = e~oto—tui) with to representing now, and ¢,,; the last time
user u visited item ¢ and « is a hyperparameter. Despite the fading factor applied during



prediction, we consider this algorithm time-agnostic in our discussion, because the trained
model is time-agnostic. We will call this method “IKNN Ding” in the remainder of the paper.
The second method presented by Liu et al. [22] applies an exponential decay function on the
binary interaction matrix before computing the similarities S. The similarities .S are computed
as the cosine similarity between the columns of the decayed interaction matrix: w(X). The
decay function w is identical to the one used in IKNN, as is the prediction function ¢. The
hyperparameters v and aypregict Of the decay function can be chosen independently for training
and prediction, allowing for more flexibility. We’ll reference this algorithm as “IKNN Liu”.

EASE" This model was proposed as an extension of the well-known SLIM method [43, 44].
In EASE', the item-item matrix S is found through a least-squares optimisation problem that
allows for a closed-form solution. This makes the model much more efficient to compute than
iteratively optimised alternatives like Neural Networks, whilst yielding highly competitive
results. As the optimisation requires inverting the Gramian item-item matrix, EASE' becomes
more costly to compute as the size of the item catalogue grows.

GRU4Rec The first deep learning model for recommendations to utilise a GRU component to
model sequential patterns in a session or user’s history [45]. The model was inspired by text
analysis methods and aims to capture relations between words that frequently appear together
in a particular order. In our experiments, we use the variant that with Bayesian Personalised
Ranking (BPR) loss to optimise the model, rather than using cross-entropy loss. BPR is more
suited for our scenario, because it solves a ranking problem and does not approach the problem
as a binary classification task. In addition this loss is also more efficient to compute, so training
times are lower.

Sequential Rules (SR) Baseline algorithm using sequential association rules between items.
The model recommends items related to the last item a user has seen: ¢(X) = X;S. X,
is the binary last visit matrix, X;(u,i) = 1 only if ¢ is the last item visited by user u. The

asymmetric similarity between item i and j: \S; ;, is computed as ) %. Where 1(u, 1, j)
uclU 7

is an indicator function, that returns 1 only if user u has seen item j after item 4, and gap
returns the number of steps required to go from ¢ to j. A hyperparameter max_steps, specifies
how big this gap can maximally be before the co-occurrence is ignored. Ludewig et al. [33]
found that despite the simplicity of the algorithm, it performed competitively in sequential
recommendation tasks.

3.4. Evaluation metric(s)

We consider the problem of optimal ranking of items, also known as the Top-K recommendation
problem. We use Normalised Discounted Cumulative Gain (NDCG) [46], Catalog Coverage
(Coverage) [47], Recall [46] and Mean Reciprocal Rank (MRR) [40] as metrics. The metrics
were evaluated on the top K recommendations, with K € [10, 20, 50]. The goal we set for our
experiments is to generate an optimal ranking of items to be shown to the user as a list of



recommendations. Due to space considerations we report only NDCG@10 and Coverage@10
in this paper. Other results can be found in the public code repository’.

Our primary metric is NDCG. We choose this metric because it rewards models that put the
correct items higher in the list. Besides this primary metric, we also report the coverage of the
algorithms because the amount of items recommended is often seen as a secondary goal for
recommendation [48].

3.5. Parameter Optimisation

We determine the optimal hyperparameters for each algorithm and dataset combination by per-
forming a search over the hyperparameter space and evaluating performance on the validation
dataset.

Using a grid search, even one with coarse settings, would not be feasible given the large
amount of parameters for some of the algorithms, and the further addition of ¢ to be inspected
over a large range of potential values.

Rather than using a random search we utilised the Tree-structure Parzen Estimator [49] as
implemented in the Python hyperopt library? [50]. While none of our hyperparameter spaces
contains dependent hyperparameters, the approach still manages to find optimal hyperparameter
combinations in fewer trials than a random search would.

We don’t set a fixed amount of trials but give each algorithm-dataset pair a fixed amount
of time to run trials in order to find the best parameters. All algorithms were given six hours
to find the optimal hyperparameters, however, only GRU4Rec was unable to find convergence
within this timeframe. All other methods converged much sooner, often in less than two hours.
This way all experiments can be run in under a week without parallel computation on an 8-core
virtual machine with 52 GB of RAM, and a single NVIDIA Tesla T4 GPU. Due to insufficient
RAM, we could not train the EASE algorithm on Yoochoose and RETAIL datasets, and GRU4Rec
on the RETAIL dataset.

In order to enable the exploration of more hyperparameters for GRU4Rec we did not train
it to full convergence during optimisation. This might lead to a loss of performance in the
optimisation results, however, the loss will be similar for every parameter combination so we
can find the optimal parameter combination while saving time on each trial. For the final results
on the test dataset, we train the GRU4Rec models for 20 epochs, resulting in convergence.

"https://github.com/verachtertr/short-intent
*https://hyperopt.github.io/hyperopt/



4. Results

Table 2

Optimal § values found during optimisation, rounded to the nearest hour.
dataset RETAIL Yoochoose CosmeticsShop NEWS Adressa
EASE" - - 389 3 3
GRU4Rec - 733 1562 9 121
ItemKNN 877 228 2368 2 5
Popularity 3 25 286 1 1
SR 2059 185 2976 3 18
IKNN Ding 530 214 2278 2 5
IKNN Liu 2139 280 1939 3 117

In this Section we share the results of our experiments and answer the three research questions.
To enable reproduction and reuse of our experiments, we have made the code repository public®.

4.1. RQ1: “How does the optimisation of § impact the individual performance
of an algorithm?"

In Table 2 we present the optimal values for delta found during optimisation, and in Table 3 we
present the corresponding NDCG@10 values. We compute an NDCG value for both the model
trained on all training data (§ = co0) and on the optimised § (§ = optim).

The optimal choice of § depends on the combination of the dataset and the algorithm.

A popularity algorithm works best with only the most recent data. Its optimal training
window is on most datasets smaller than a day, with only CosmeticsShop exhibiting stable
enough behaviour for 10 days to be optimal. On the news datasets we find the most drastic
improvements, up to 30 times on the Adressa dataset. The extraordinary performance of the
Popularity algorithm on news datasets and Adressa in particular is explained by the extreme
popularity bias present in these datasets. In Table 1 you find that for Adressa the Gini coefficient
of the items is 0.92, and on the test dataset, the Gini coefficient is even higher: 0.98. This
indicates that almost all events happen on a very small group of popular items.

On the news datasets, the relevance of recent data is reflected in the optimal § values, the
time agnostic methods perform optimally using the last few hours to train. Only the time-aware
ItemKNN model (IKNN Liu) and GRU4Rec manage to use more than a day of data without
losing quality on the Adressa dataset. For both datasets, we see noticeable improvements in
performance for the time agnostic algorithms trained on only recent data. For the NEWS dataset,
with even more rapidly changing relevance, we see that all algorithms, even the time-aware
algorithm, perform optimally using only the last few hours of data.

On the retail datasets, we see their stability reflected in the optimal § values. CosmeticsShop
is a very stable dataset, and most algorithms perform optimally using almost all of the data
(The maximal value for § is 124 * 24 = 2976 hours). For RETAIL, we note that the optimal 9 is
usually smaller than on CosmeticsShop, but the performance gains are minimal. This implies

*https://github.com/verachtertr/short-intent



Table 3
NDCG@10 in % for optimised d values and § = oco. At the bottom of the table we report the correlation
between the ranking of algorithms trained with § = oo and the one with optimised 6.

dataset RETAIL Yoochoose  CosmeticsShop NEWS Adressa
delta oo optim oo optim 00 optim oo optim oo optim
EASE' - - - - 484 4.60 2.01 547 0.82 6.98
GRU4Rec - - 13,57 13.61 3.30 293 3.67 3.15 4.06 3.87
ItemKNN 6.42 6.43 16.50 17.84 4.89 490 1.27 491 044 5.40
Popularity  0.71 0.82 0.36 112 0.88 1.07 0.95 482 0.37 12.57
SR 9.30 9.30 19.04 20.69 7.23 7.23  3.23 447 3.59 4.53
IKNN Ding  8.50 851 17.10 18.52 6.44 6.43 1.49 5.76  0.60 6.44
IKNN Liu 8.81 8.81 18.84 18.68 6.41 6.40 2.60 3.56  3.92 3.91
correlation 1.00 1.00 1.00 -0.43 -0.71

that we can build a good model using less data, but adding the additional data does not hurt
performance as much as it did in the news use case. Yoochoose is the retail dataset where
optimisation of § has the largest impact. Most algorithms perform best using somewhere around
the last 10 days of data, only GRU4Rec requires a month of data to get the best model.

The GRU4Rec algorithm shows the most inconsistent behaviour between validation and
testing data. The optimal values found during optimisation do not seem to translate to optimal
performance during testing. One possible reason for this, is that the model takes much longer
to train, and so far fewer parameter combinations could be checked.

Choosing ¢ right is important to get the optimal performance for an algorithm given a dataset.
In some cases, the dataset will be stable enough that using all data is optimal. In others, however,
it’s only the last few hours that hold relevant events to build a model for the imminent future.

4.2. RQ2: "Does the optimisation of ) change the relative performance
between the algorithms?"

We compare how the rankings of algorithms sorted by NDCG change if we go from § = oo to
an optimised 4. For this comparison we use Kendall’s Tau correlation between the two rankings
of the algorithms [51]. We report these correlations at the bottom of Table 3. On the two news
datasets, we note a strong dissonance between the rankings. Both have a correlation value
below zero, indicating that the rankings have drastically changed. When é = oo, the time- and
sequence-aware approaches show superior performance, however, this is no longer the case
given an optimal ¢. The baseline methods surpass the deep learning methods and now perform
the best.

For the retail datasets we don’t see this effect, either § = oo is optimal (CosmeticsShop
and RETAIL), or the time agnostic algorithms were already outperforming the deep learning
methods, and their improvement only further established their rank (Yoochoose). There is
however no guarantee that the rankings will always remain the same, we can imagine that
for some combinations of algorithms this ranking would change. Especially when comparing
time-aware models with time agnostic baselines. The time-aware models will have a higher



Table 4
Coverage@10 in % for optimised & and using § = oco. Reducing d usually results in a lower coverage, as
older items are no longer recommended.

dataset RETAIL Yoochoose = CosmeticsShop NEWS Adressa

delta oo optim oo optim 00 optim oo optim oo optim
EASE’ - - - - 60.86 56.81 34.12 24.78  23.19 13.91
GRU4Rec - - 7152 52.75 70.02 66.84 41.00 18.53 34.52 32.69
ItemKNN 94.03 89.93 76.51 63.10 59.95 61.30 25.77 21.21  10.39 16.74
Popularity 0.22 0.17 0.07 0.13 0.20 0.15 3.70 1.50 1.94 0.90
SR 89.65 89.52 85.83 65.46 92.47 92.47 47.82 2444 4129 23.23
IKNN Ding  90.86 81.12 88.47 7190 93.68 93.99 14.38 22.05 14.62 17.03
IKNN Liu 88.17 88.15 78.28 73.22  93.19 93.98 65.70 30.42  71.36 68.57

performance when using the whole datasets, and the baselines manage to close the gap when
their training window is optimised. We can see this happen on Yoochoose, IKNN Ding’s
performance almost matches that of IKNN Liu with an optimised d, when it was outperformed
on the § = oo setting.

In most scientific articles, the results would be compared using a § = oo setting, and so
the time agnostic algorithms can be handily beaten by methods that do manage to take into
account the order and/or time of the interactions. However, simple baselines trained on the
more relevant - recent - part of the data, become much harder to improve on and even perform
best in some of our experiments. This highlights why it is so important to optimise d. If we do
not, we risk making the wrong conclusions.

4.3. RQ3: How does the choice of ) impact secondary metrics such as run time
and coverage?

In Table 4 we present the Coverage@10 results for the algorithm-dataset pairs. We see that in
general coverage is lower for the optimal 6. This is to be expected, because one of the side effects
of using less data is that older articles have no events, and so will not get recommended. Only
for ItemKNN and IKNN Ding on Adressa do we see an inverse effect: Shrinking the training
window increased the number of items recommended. This behaviour occurs when the historic
data drowns more recent interactions, such that even given the recent history of the user, the
model still mostly recommends a select group of older items. Reducing § levels the playing
field for the more recent items, and so more of them can get recommended depending on the
interests of the users.

A third metric impacted by the selection of § is the run time of the algorithms. Training a
model on less data usually leads to lower training and prediction times. We compute run time
as the sum of training and prediction time, thus accounting for both slow training and slow
prediction. Both are impacted by the amount of data used and both contribute to problematic
situations in production settings. In Table 5, the run time for the optimisation trials with optimal
0 and maximal ¢ are reported. Using less data leads to lower run times. For production settings,
this is an important insight. For example, on the Yoochoose dataset using the SR algorithm,



Table 5
Runtimes (in seconds) for optimal and non optimised §. Runtime is the sum of training and prediction
time. Decreasing § also decreases the runtime, as less data needs to be processed.

dataset RETAIL Yoochoose  CosmeticsShop NEWS Adressa

delta oo optim oo optim 00 optim oo optim oo optim
EASE' - - - - 815 791 38 30 14 7
GRU4Rec - - 7233 2990 5649 3824 1850 451 809 699
ItemKNN 198 188 96 20 117 55 43 14 15 4
Popularity 33 28 32 27 12 10 17 15 6 6
SR 2504 538 953 94 959 722 572 26 158 26
IKNN Ding 174 126 105 52 116 82 33 16 14 4
IKNN Liu 194 67 100 57 128 87 44 16 19 11

there is a small increase in performance when changing to an optimal J but also a 10-time
reduction in run time. This means that models can be updated more frequently and with lower
computational cost.

This highlights a final reason why using less data should be considered. When using as much
data as is available, we not only risk lower performance, we are also incurring higher computa-
tional costs and creating larger delays when building models and generating recommendations.

4.4. Online Tests

Complementing the offline results, we also performed two online trials on different news
websites. The goal for these trials was to optimise recommendation boxes that serve a list
of popular items to the users. Before the use of an automated optimisation of d, the training
window was chosen manually by engineers with some input from editors. By performing the
optimisation of § as suggested in this work, we found that the original values were not optimal,
and could be improved by using smaller § values.

In a first test, using the website from which the NEWS dataset was extracted, the box was
found on the homepage. The manual setting was to train every three hours. Thus 6 = 3h was
used as our control treatment. During the offline experiments, we found that § = 1h performed
optimally, and so for the test group we used this as the training window. The results of the AB
test showed that the optimised § = 1A training window resulted in an improvement in CTR (on
the box) of 7% during a period of three days. After which we concluded the test, and enabled
the new setting for all users. We could use a short testing window thanks to high traffic; Three
million recommendation lists were generated for both groups combined. The 7% improvement
we found online, is similar to the 10% improvement we found offline.

In a second test on a different news website, we found an optimal window of é = 2h after
parameter tuning. In this more extensive test, we deployed a similar recommendation list in
multiple locations on the website to make sure the positive effects were consistent. Furthermore,
the test was run for two weeks to allow for variations between days. We used two control
groups, one with training window § = 6h, and a second with § = 10h. Depending on the
location of the box we found an improvement in CTR of 7% to 8% over both control groups,



which performed nearly identical.

Even though these experiments were only done using a popularity-based algorithm, they
show the value in optimising the § parameter before deploying the algorithms in a production
setting. The improvements we find in our offline experiments for this algorithm were reflected
in our online experiments.

5. Conclusion

“Are we forgetting something?” we wrote in the title, and our answer is clearly: yes! When
training and evaluating recommender systems, we typically forget to take the quality of the
data into account, or even consider the use of only (the most) recent parts of the given datasets.
As we have presented in this paper, the performance of state-of-the-art algorithms drastically
changes when training only on a recent part of the data. Moreover, the performance ranking
of state-of-the-art (both baseline and neural) algorithms changes significantly when using the
optimal training window size §. We believe that we have clearly shown that the choice of the
0 matters, both to find the optimal performance of individual algorithms and to make a fair
comparison between algorithms. Optimising ¢ for each algorithm should be standard practice
in the evaluation of recommender systems. Not optimising § will favour only the algorithms
that account for drift.

6. Limitations and Future Work

In this work we focused on News and Retail datasets, as well as a selection of baseline algorithms.
In future work we want to extend the experiments, by including additional relevant domains,
such as entertainment, tourism and music, as well as using more recently presented state-of-
the-art sequential recommendation methods. In doing so we want to provide a comprehensive
benchmark of the state of the art in sequential recommendation.

Due to run time concerns we did not consider repeated evaluations. To solidify our findings,
and make sure that they hold on more than one split, we aim to report results over time in
future experiments.

This work’s experiments focus on short term effects, extending these results to long term
effects such as user retention is an interesting avenue for future research.
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