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Abstract. Selecting diverse instances for annotation is one of the key
factors of successful active learning strategies. To this end, existing meth-
ods often operate on high-dimensional latent representations. In this
work, we propose to use the low-dimensional vector of predicted proba-
bilities instead, which can be seamlessly integrated into existing meth-
ods. We empirically demonstrate that this considerably decreases the
query time, i.e., time to select an instance for annotation, while at the
same time improving results. Low query times are relevant for active
learning researchers, which use a (fast) oracle for simulated annotation
and thus are often constrained by query time. It is also practically rel-
evant when dealing with complex annotation tasks for which only a
small pool of skilled domain experts is available for annotation with
a limited time budget. Our code is available at: https://github.com/
sobermeier/low-dim-div-sampling.
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1 Introduction

Deep neural networks are the dominant choice for solving complex tasks, such as
image classification. Their great success depends in large part on the availability
of a sufficient amount of labeled data. Especially in domains with scarce pub-
licly available data, such as medical or industrial applications, annotations can
become prohibitively expensive due to the need for skilled domain experts. The
field of active learning thus aims at reducing the number of required annotations
by intelligently selecting instances for labeling. Since modern networks require a
significant amount of training time, the traditional setting where instances are
selected one after the other [13,15,20] has become infeasible [17], and a batch-
setting is commonly applied, where a fixed number of instances is selected for
annotation.

State-of-the-art approaches [3,9,18,19,16] follow two different paradigms (or
a mixture thereof): In uncertainty-based methods [4,5,10], those instances are
selected for which the model is the least certain about the prediction. In contrast,
diversity methods [3,6,7,16,18,19,22] focus on selecting a representative subset
of instances and avoid re-labeling similar instances. In this work, we focus on
the second class.
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Diversity-based methods often rely on high-dimensional representations ex-
tracted from the model’s last layers [3,6,7,8,11,16,18,22,21]. In the presence of
a large pool of unlabeled data, processing these representations can become a
bottleneck of the approaches resulting in increased query times. While these can
often be neglected when the annotation is delegated to a large pool of on-demand
crowd workers, in settings where domain experts are required, there is often only
a small number of available annotators with tight schedules. In these settings,
it is desirable to reduce the query time in addition to only requesting useful in-
stances for annotation. Similarly, in active learning research, where a simulated
oracle is used for annotation, the computational bottleneck is often the instance
selection.

2 Diversity Sampling on Low-Dimensional
Representations

In this work, we present a simple yet effective approach to accelerate diversity-
based methods, which replaces the high-dimensional latent features x ∈ Rd

by the vector of predicted class probabilities p ∈ Rc, where usually c ≪ d.
The approach can be applied to most diversity-based methods without large
modifications and effectively reduces the instance selection times.

We empirically evaluate our approach with multiple different diversity-based
active learning heuristics. Note that we do not consider uncertainty in this work
and focus only on underlying diversity concepts. However, the selected diversity
methods are key concepts of various popular active learning strategies, such
as [1,3,16,18,22].

1. KMeansCenter selects the points closest to the centroids of k-means cluster-
ing [14] with k = q clusters for annotation, where q denotes the query size.
As a recent example, CLUE [16] uses k-means clustering as diversity concept
enriched by uncertainty weighting.

2. KCenterGreedy iteratively selects the sample with the largest minimum dis-
tance to any already labeled instance. It is also known as CoreSet [18] and
one of the first solely diversity-based active learning methods.

3. KMeans++ [2] iteratively samples instances with probability proportional to
the minimum distance to already selected points in the current acquisi-
tion round. BADGE [3] is a prominent example using KMeans++ on high-
dimensional vectors.

For the iterative KCenterGreedy and KMeans++ algorithms, we keep an array
of minimum distance to already labeled samples, and update it whenever we
add another sample for labeling. The time complexity of selecting one batch of
queries is given in Table 1. Notice that for all heuristics, the time complexity
linearly depends on the vector dimension.

We empirically evaluate the MNIST [12] dataset of handwritten digits with
10 classes and a simple 2-layer fully-connected network with embedding dimen-
sionality 256 as in [3] for a proof-of-concept. The learning rate is set to 0.01,
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Table 1. Time complexity of a single acquisition round of the different diversity-based
heuristics. q denotes the query size, i.e., number of instances to select for labeling, nl/nu

the number of labeled/unlabeled samples (nl ≪ nu), d the vector dimensionality, and
i the number of iterations until convergence.

Algorithm Time Complexity

KMeansCenter O(q · nu · i · d)
KCenterGreedy O(nl · nu · d+ q · nu)
KMeans++ O(q · nu · d)

and we train the network from scratch for 10 epochs in each iteration. The ini-
tial pool contains 100 randomly chosen samples, and we select additional 100
instances per active learning iteration until a budget of 2,500 samples is ex-
hausted. We investigate three different input features x of the samples as input
to the heuristics:

1. the full-dimensional latent features, i.e., x ∈ Rd,
2. the vector of predicted class probabilities, i.e., x ∈ Rc, where c = 10 denotes

the number of classes,
3. PCA-reduced features, i.e., x ∈ Rd′

, where d′ ≪ d is the reduced dimension.
For comparability, we use the same dimensionality d′ = c = 10 for PCA.

Our results are shown in Fig. 1. The first column shows the accuracy vs.
the number of acquired labels. We observe that using the vector of predicted
probabilities not only maintains the performance of full-dimensional latent fea-
tures but also surpasses it for all three investigated diversity-based heuristics. In
contrast, PCA-reduced latent features result in comparable performance. The
third column compares the number of acquired labels against the cumulative
query time. Using the vector of predicted probabilities generally shows the low-
est cumulative runtime. Compared to using the output vectors, PCA requires an
extra step and is therefore somewhat weaker in terms of query times. However,
using full-dimensional latent features can lead to more than four-fold increased
cumulative query time depending on the heuristic, even in this relatively small
toy setting. The second column then combines both plots and shows the accu-
racy vs. the cumulative query time, demonstrating that both label efficiency and
query times benefit from our proposed method.

3 Conclusion

In this paper, we proposed to use the vector of predicted probabilities instead of
the high-dimensional latent features as input to diversity-based active learning
methods. As a proof-of-concept, we demonstrated on one dataset that for several
diversity-based heuristics, we could strongly reduce the query time while at the
same time improving the performance. Since the predicted probabilities of the
unlabeled data are usually exploited anyway during the active learning process,
no additional computations are required.
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Fig. 1. Comparison of the different techniques for three different acquisition functions.
The first column shows the accuracy w.r.t. the number of labels, the second column
accuracy vs. cumulative query time, and the last column the cumulative query time
vs. the number of acquired labels.

For future work, we would like to investigate this promising direction fur-
ther, particularly how well the insights transfer to other datasets and how to
best combine it with uncertainty-based methods. As an interesting observation,
using samples with diverse predicted probabilities might also implicitly lead to
selecting points of diverse uncertainty.
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