
Robust Software Agents with the Jadescript
Programming Language
Giuseppe Petrosino1,†, Stefania Monica1,† and Federico Bergenti2,*,†

1 Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, 42122 Reggio
Emilia, Italy
2 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, 43124 Parma, Italy

Abstract
This paper discusses several recent additions to the Jadescript agent-oriented programming language that
regard the effective detection and handling of exceptional and erroneous situations at runtime. These new
features were introduced to better support the mission-critical level of robustness that software agents are
normally demanded to exhibit. The description of these new features is supported by an analysis of the
state of the art of exception handling in programming languages, and it is complemented by a discussion
on planned future developments. First, the novel exception handling mechanism introduced in Jadescript
is presented, and the conceptual similarities and differences with the exception handling mechanisms
normally provided by mainstream programming languages are emphasized. Second, the recent additions
to Jadescript designed to support failures in behaviours are described, and these additions are related to
the novel exception handling mechanism. Finally, the recent language support to manage stale messages
using dedicated message handlers is presented and discussed.

Keywords
Robust software agents, exception and error handling, Jadescript, JADE

1. Introduction

Agents and Multi Agent Systems (MASs) provide a good candidate paradigm to create robust
software systems. For example, agents can react to perturbations in the environment, but they
can also exhibit proactivity, acting timely to prevent problematic situations. On the other hand,
MASs can benefit from the fault-tolerance mechanisms and strategies that have been already
studied in distributed computing, e.g., replicating services and gracefully degrading the system
to a state of limited functionality.

In general, exceptions are used in software development to represent particular situations
that can be encountered at runtime. In agent technologies, these situations can arise from the
inner machinery of each individual agent or from the obstacles that it encounters while trying
to achieve its design goals. However, in MASs, exceptional or erroneous situations can also
arise in the social structures that are created among interacting agents.

WOA 2022: 23rd Workshop From Objects to Agents, September 1–2, Genova, Italy
*Corresponding author.
†
These authors contributed equally.
$ giuseppe.petrosino@unimore.it (G. Petrosino); stefania.monica@unimore.it (S. Monica);
federico.bergenti@unipr.it (F. Bergenti)
� 0000-0001-6234-5328 (G. Petrosino); 0000-0001-6254-4765 (S. Monica); 0000-0002-4756-4765 (F. Bergenti)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:giuseppe.petrosino@unimore.it
mailto:stefania.monica@unimore.it
mailto:federico.bergenti@unipr.it
https://orcid.org/0000-0001-6234-5328
https://orcid.org/0000-0001-6254-4765
https://orcid.org/0000-0002-4756-4765
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


All these challenges and opportunities are tackled by software engineering techniques, and
they can also be effectively addressed by means of tools integrated in the languages in which
software agents are written. These techniques commonly fall under the umbrella of exception
handling, and the set of tools in charge of helping programmers to achieve exception handling are
normally called exception handling mechanisms. These mechanisms are specifically required for
Agent-Oriented Programming (AOP) [1] languages, and they cannot be limited to the mechanisms
adopted by mainstream programming languages.

Jadescript [2, 3, 4, 5] is a recent AOP language designed to develop JADE [6, 5] agents. It
provides a set of agent-oriented linguistic constructs and related abstractions, namely agents,
(agent) behaviours, and (communication) ontologies. Agents written in Jadescript are executed
in JADE platforms, and they interact via asynchronous messaging. Therefore, Jadescript adopts
an event-driven programming style. It presents declarative aspects like pattern matching [7],
but the language is mostly imperative, and it adopts a syntax that recalls the syntax of agent
pseudocode. As an AOP language, Jadescript requires specific language facilities to represent
and handle exceptions, and it offers original solutions to problems pertaining to this scope. Note
that the solutions that Jadescript offers satisfy a set of key requirements:

1. They must be useful, i.e., they must effectively help programmers with representation of
exceptional situations and detection/prevention of errors;

2. They must to properly blend with the existing constructs of the language;
3. They must not tamper with desirable properties of the source code of Jadescript agents,

like readability, modifiability, and reusability;
4. They must match the programming style adopted by Jadescript (in particular, event-driven

programming); and
5. They must not affect the runtime performance of nominal behaviours (i.e., behaviours in

the absence of perturbations and exceptions).

This paper presents three new language facilities for exception handling that extend Jadescript
and that satisfy these requirements.

Moreover, this paper includes in Sect. 2 an overview of the state of the art on exception
handling mechanisms in software agents and MASs. The overview provides relevant background
information on exception handling in agents, and it also includes a discussion on exception
handling mechanisms in MASs. These mechanisms treat exception handling as a problem of
society design, whose solution involves social and coordination abilities. However, the main
contribution of this paper concerns agent design, and societal issues are not treated for the
following reasons. First, no mechanisms to represent and handle exceptional situations related
to the internal errors of agents were available in Jadescript. The added improvements to the
language are described in detail in Sect. 3. Second, the presented improvements are also related
to mechanisms that are strongly related to the Jadescript agent model. These mechanisms are
called behaviour failure and stale message handler, and they are discussed in Sect. 4 and Sect. 5,
respectively. Finally, Jadescript can possibly include a support for explicit exception handling at
the MAS level, but such a support would require language features (e.g., interaction protocols)
that are still planned for future developments. These and other future developments are briefly
discussed in Sect. 6, which also concludes the paper.



2. Related Work

Exception handling in software systems was extensively studied, e.g., in [8, 9, 10]. These
papers mostly focus on the main design issues of structured exception handling for traditional
programming languages. Actually, these papers define exception conditions as conditions,
detected while attempting to perform an operation, that are brought to the attention of the
operation user by the operation itself.

Such a relationship between operation users and operations is apparent in Akka [11], which
proposes the supervision model as the core mechanism to handle exception conditions in the
actor model. Akka actors are organized in a hierarchy characterized by dependency relationships
among actors and their creators (parents). When an actor 𝑎𝑗 creates the actor 𝑎𝑘, 𝑎𝑗 is said to
be the supervisor of 𝑎𝑘, which, in turn, is said to be its subordinate. Supervisors request the
completion of sub-tasks to subordinates, and in turn handle their failures. Each time an actor
fails, its supervisor is notified and it intervenes by:

1. Aborting the execution of the subordinate actor;
2. Resuming the execution of the subordinate actor, removing the conditions that caused

the failure;
3. Resetting the subordinate actor, and therefore restarting its execution with a fresh internal

state; or
4. Failing, thus escalating the failure.

Notably, this approach promotes the let it crash fault tolerance model, in which faulty actors are
designed to be destroyed to let supervisors prepare new attempts at completing the operations.

SARL [12] is both an AOP and an object-oriented programming language. As a member of
the second category, it proposes an exception handling mechanism similar to the ones used
in mainstream object-oriented programming languages. Exception throwing is performed by
means of the usual throw statement, and try/catch/finally is used to handle exceptions at
runtime in a structured way. Note that SARL is based on Xtend [13], which is a Java dialect. For
this reason, SARL agents are executed by the Java virtual machine, and the feedback about the
exception conditions is contained in objects whose classes implement the Throwable interface.
In addition, SARL proposes a supervisor mechanism similar to the mechanism that Akka uses.
This mechanism is based on the possibility of failure events to be propagated to parent agents
by means of the builtin emitToParent function.

In addition, Baldoni et al., in their recent paper [14], showed how SARL can be extended to
achieve a richer sort of exception handling to target the MAS level. Their proposal allows to
create social expectations with respect to exception handling in the conducts of agents. This
extension can be implemented with the adoption of a special SARL space, in which each agent
can emit events to:

1. Register as handler for a specific type of exception;
2. Register as potential raiser of a specific type of exception, as a consequence of a particular

type of event; or
3. Raise exceptions, represented by means of Java objects.



The proposed special SARL space provides a mechanism used by raiser agents to notify handler
agents about exceptional situations, but it also provides a way to create awareness about the
distribution of responsibility on exception handling among interested agents.

A counterargument to the supervisor approach is that it limits the degree of autonomy of
agents. This is one of the main reasons that drove Platon et al. [15, 16] to propose an exception
handling mechanism that keeps the autonomy of agents as an aspect of primary importance.
Their proposal is based on the idea that “ [agents] can take their own decisions, notably concerning
normal and exceptional events”, and therefore “exceptions make sense inside agents” [17]. Their
proposal is based on a specific agent model (the exception-ready agent) that lets agents detect
exceptions in their interactions with the environment. An exception-ready agent evaluates
percepts on the basis of relevance and expectations, using an internal representation that is
updated as the agent acts on the environment. From each percept evaluation, an agent can
automatically classify an event as normal or exceptional. Events belonging the latter class are
handled by application-specific mechanisms internal to the agent.

Similarly, Souchon et al. [18] claim that supervisor-type architectures are not a satisfactory
solution for MASs because agents should encapsulate their own conducts. They combine
this argument with the idea of the need for an exception handling mechanism that should be
integrated with the agent platform, and they implemented this view in their Sage model for the
MadKit MAS. Their model is based on their vision of agents as service providers and as role
takers. Therefore, they implemented an exception handling mechanism that supports concerted
exception handling at the service and role levels, in which agents can coordinate to handle
critical situations represented by sets of exceptions signaled from the called services or from
the responses of the agents with specific roles.

In the Belief-Desire-Intention (BDI ) AOP language Jason [19, 20] exceptional situations in plan
execution are managed by means of the plan failure feature. In particular, it is assumed that a
plan in the intention stack of the agent triggered by an event +!g can always fail. When this
happens, the Jason interpreter automatically puts a -!g goal on top of the same intention stack.
This causes the agent to search for an appropriate plan in its plan library to be executed as an
alternative. The approach that Jason proposes allows programmers to code robust reactions, e.g.,
to reattempt to reach the goals with an alternative course of actions (i.e., contingency plan), or
to create a new set of conditions for which the original plan is expected to succeed. Jason does
not provide a mechanism to explicitly program agents that coordinate to handle exceptions at
the MAS level. However, JaCaMo [21], which is the MAS development suite composed of Jason,
CArtAgO [22], and Moise [23], provides effective exception handling through responsibility
distribution in agent organizations [24].

JADE, and therefore Jadescript, already provides ways to represent exceptional and erroneous
conditions in the MAS. Actually, as specified by FIPA [25], there are several performatives
that can be used to communicate the presence of exception conditions. In particular, not_-
understood messages are used to signal message validation errors, i.e., to signal that an
unexpected or malformed message was received. Moreover, failure messages can be used
to signal failed attempts at performing actions. Messages with the failure performative are
required to provide (in a tuple, together with the attempted action) a proposition to describe the
reasons for which the attempted action failed. Note that a failure message always implies that
the attempted action was considered feasible by the agent at the time it attempted to perform



it. Finally, an agent can signal to a requester agent that a particular requested action is not
supported or not authorized by means of a refuse message. The content of this message is
always a tuple containing the action that was not performed and a proposition describing the
reason for the refusal. These messages are used by Jadescript agents during their interactions,
but they are of primary importance also to perform core operations in the agent platform.
This is because the Agent Management System (AMS) of a JADE platform provides essential
services (e.g., agent creation) that are supposed to be accessed by means of request messages.
Therefore, to handle exceptions during the execution of these operations, the agent is supposed
to be able to handle and interpret not_understood, failure, and refuse messages.

3. Exceptions in Jadescript

Jadescript descends from JADEL [26], and it compiles to Java [27]. JADEL was based on a dialect
of Java, namely Xtend [13], which supports Java exceptions with the throw statement and the
ordinary try/catch/finally construct. All these exception-related facilities were inherited
by JADEL from Xtend, but their immediate inclusion in Jadescript required attentive selection
and ultimately called for a deep redesign.

First, it was decided not to include Java-like checked exceptions in Jadescript. These exceptions
represent a good tool to increase software robustness by preventing exceptions to occur without
anticipation in the context of a method invocation. As a matter of fact, checked exceptions are
a subset of exceptions that, in order to be thrown by a method, require to be explicitly declared
in the signature of the method. However, checked exceptions come with several drawbacks.
Notoriously, checked exceptions tamper with modifiability because existing code cannot be
easily updated to treat new exception conditions. For example, if a method declares that it can
throw exceptions of type E1, and in a later version of the code it needs to address scenarios in
which E2 exceptions, unrelated to E1 exceptions, are thrown, the introduction of this change
propagates to all the uses of the method. This kind of refactoring is considered acceptable by
someone, arguing that the change of the signature of a method is an operation that is often
done by simply changing its name, argument count and types, and return type. However,
these features of methods tend to be more unchanging than exceptions, whereas exceptions
are related to conditions that are often difficult or impossible to predict when designing the
method in its first implementations. Checked exceptions force the explicit acknowledgment of
these conditions in the caller code, producing friction with adaptability.

Second, it was decided not to include the try/catch/finally construct in Jadescript. This
choice was taken because of the significant reduction of readibility that this construct introduces
in the language, as the it may obfuscate control flow, increase the risk of resource leaks, and
promote convoluted code. Moreover, this construct tends to be difficult to understand, as its
specification “contains a large number of corner cases that programmers often overlook” [28]. The
solution to allow exception handing in Jadescript described in this section does not use this
construct, and it blends well with the other key features of the language. Most importantly, it
preserves the characteristic readibility that is an appreciated quality of the language.

In Jadescript, programmers implement the details of the behaviours of their agents as proce-
dural sections of code included in procedures, functions, and event handlers. These procedural



sections are structured sequences of operations that can fail at runtime. Examples of common
operations that can fail at runtime are:

1. Division by zero;
2. Access to an nonexistent value in a list, which is referenced by an index that is not within

the range of valid indexes;
3. Access to an nonexistent entry in a map, which is addressed using a key that has not been

assigned to an entry; and
4. Convert a text into another value (e.g., integer, real, timestamp), when the input

value is not properly formatted for the conversion.

The presence of these, and other similar failures, implies that the language requires features to
effectively detect and handle exception conditions. To meet this requirement, a new exception
handling feature has been recently added to Jadescript. The novel exception handling feature
encompasses three aspects that are worth discussion:

1. A way to represent the exception conditions in a structured manner;
2. A way to notify the operation caller of the emergence of exception conditions; and
3. A way to detect exception conditions from the context of the operation caller.

To meet the first requirement, the new exception handling mechanism uses propositions. This
design choice is particularly fit for Jadescript because it already provides the proposition
abstraction to model facts about the world, and therefore propositions can be used to describe
the conditions that caused the operation to notify the caller. In particular, application-specific
atomic propositions and predicates can be declared by means of proposition and predicate
declarations, respectively, in user-defined ontologies. For built-in exceptions and errors, the
corresponding propositions and predicates are predefined in the provided basic ontology. For
example, accessing a list with an invalid index would produce an exception described by the
IndexOutOfBounds proposition. Please note that the basic ontology is used by all Jadescript
agents and its concepts, actions, and propositions are always available to programmers.

Exceptions can be notified using the throw statement. As in other ordinary procedural
languages, the statement is introduced by the throw keyword, and it requires an expression. In
Jadescript, this expression must evaluate to a proposition describing the exception condition.

The on exception event handler was added to the language to detect exceptions. Several
occurrences of this event handler can be added to the body of agents and behaviours. By default,
an on exception handler captures all kinds of exceptions, but several constraints can be added
to the head of the handler to allow programmers to restrict the set of captured exceptions. As
for message handlers, the constraints on the captured exceptions can be expressed in two ways,
which can be combined. The first way, called when-expression, declares constraints written as
Boolean expressions that can include values extracted from the exception and from the state of
the agent. Note that when-expressions must be composed of operations without side effects,
and this requirement is checked at compile-time. The second way, called pattern matching, is
already available for message handlers [7], and it can be used to easily declare the type and
the internal structure of the proposition describing the expected exception, destructuring the
proposition in parts. The proposition describing the exception condition can be accessed in
handler bodies and in when-expressions by means of the exception keyword.



1 agent AlarmClock
2 property wakeUpTime as timestamp
3

4 # Receives a text (time) containing the timestamp as start-up argument
5 on create with time as text do
6 # Attempts to convert time to a timestamp, throwing an exception if the
7 # format of time is invalid
8 wakeUpTime of this = time as timestamp
9 # Activates a behaviour performing the task at the specified time

10 activate DoWakeUp at wakeUpTime
11

12 # Exception handler that aborts the agent because the start-up argument
13 # is invalid
14 on exception IvalidTimestampTextFormat(theText) do
15 log "Invalid timestamp format for argument ’" + theText + "’."
16 do shutdown

Figure 1: An example of an exception handler used to capture invalid arguments passed to an
AlarmClock agent.

When multiple exception handlers are defined within the same behaviour declaration or
agent declaration, the handler to be executed is selected by attempting to match the exception
description against the pattern and the when-expression of each exception handler. The search
continues until a handler matches successfully, but when no applicable handlers can be found,
the exception escalates. An exception escalation results in two different outcomes, depending
on the context. If the exception escalates from the code of an agent declaration, the agent shuts
down after emitting an appropriate message to the log and properly deregistering from the
platform. Conversely, when the exception escalates from the code of a behaviour declaration,
the behaviour fails. Fig. 1 shows a simple example of an on exception handler that uses a
pattern to capture relevant exceptions.

4. Behaviour Failure

In Jadescript and in JADE, (agent) behaviours are the main components of the layered architec-
ture of the agents. They are executed concurrently by the agent, and they are used to model
the tasks that are performed by the agent. The operations that compose these tasks can fail
for several reasons, like the ones described in Sect. 3. Moreover, some scenarios can benefit
from the explicit signaling of the failure of a behaviour as part of the design of the agent.
Note that a well-designed behaviour can fail even if no operations threw an exception. For
example, a behaviour can detect, during its execution, that the requested task could no longer
be completed. In these cases, the failure of the behaviour correctly expresses the general idea
that some conditions prevent the task to be successfully performed.

Note that the failure of a behaviour for the reasons mentioned above is different from the
action of throwing an exception. The latter simply indicates that, during the execution of an



operation, some conditions that require attention are met. The failure of a behaviour, instead,
brings an additional negative meaning (i.e., the task can no longer be completed). Moreover, the
exceptions of ordinary procedural languages always happen in a context in which there is a
hierarchy of operations defined by the caller-called relationships. Therefore, when an exception
occurs, a responsibility chain can be computed by navigating the call stack from top to bottom.
Behaviours do not enjoy such a hierarchical structure, since, even if a behaviour can (create
and) activate another behaviour, both behaviours continue to execute concurrently in the agent.
In addition, any behaviour can be deactivated and reactivated at a later time by a different
behaviour. For these reasons, it is useful to have an exception handling mechanism that is
intimately designed around the idea of behaviour failure and that matches the peculiarities of
the behaviour execution model in Jadescript agents. This new mechanism encompasses two
ways to cause the failure of a behaviour:

1. An unhandled exception escalates from the code of the behaviour; and
2. The fail statement is executed for a specific behaviour.

Sect. 3 describes the way an exception can cause a behaviour to fail in the first case. Instead,
to explicitly cause a behaviour to fail in the second case, programmers can use the new fail
statement. The syntax of the fail statement is the following:

⟨FailStatement⟩ ::= ‘fail’ ⟨Expr:Behaviour⟩ ‘for’ ⟨Expr:Proposition⟩

The statement requires two arguments that are provided as expressions. The first argument,
which follows the fail keyword, is the value representing the behaviour that is failing. The
second argument, introduced by the keyword for, is a proposition that represents the reason
for the failure of the behaviour. Note that in the case of an escalated exception, the proposition
describing exception condition is automatically used as the reason for the failure. Moreover,
note that the expression evaluating to the failing behaviour can refer to any behaviour. This
can be used to design behaviours that can detect the failure of other behaviours, thus providing
a high degree of flexibility in managing failures. When a behaviour fails, it is automatically
deactivated, and an appropriate on behaviour failure handler is executed, if available.
The on behaviour failure handler is similar to exception handlers. Its head supports the
specification of a pattern that can possibly match the proposition describing the reason for the
behaviour failure. Moreover, it has a special variable behaviour that can be accessed within
the when-expressions and that can be matched against behaviour patterns. Behaviour patterns
are a novel addition to the language. They match against behaviours, and they are composed of
two parts. The syntax of a behaviour pattern is:

⟨BehaviourPattern⟩ ::=
(︀
⟨PatternVar⟩ ‘as’

)︀
? ⟨PatternBehaviourType⟩

⟨PatternVar⟩ ::= ⟨Identifier⟩ | ‘_’

⟨PatternBehaviourType⟩ ::= ⟨Type:Behaviour⟩ | ‘_’

where ⟨PatternVar⟩ is a name that unifies with the behaviour value, and ⟨PatternBehaviourType⟩
is the expected behaviour type [29]. Both parts can be replaced with underscore signs to include
placeholders that allow any value or any type to match [29]. For example, b as TestBehaviour



1 agent ExampleAgent
2 # The agent kills itself in case of fatal problems
3 on behaviour failure FatalProblem do
4 do shutdown
5

6 # The agent activates a contingency plan, if available
7 on behaviour failure when behaviour matches b as TaskWithAlternative do
8 activate ContingentBehaviour(taskParameter of b)
9

10 # The agent stubbornly reactivate failing behaviours
11 on behaviour failure when behaviour matches b as _ do
12 activate b

Figure 2: Examples of behaviour failure handlers with different handling strategies.

matches against any behaviour of type TestBehaviour, and the behaviour value is unified
with the variable b. Another example of a behaviour pattern is b as _, which matches against
any type of behaviour. This behaviour pattern is useful when there is the need to perform
common operations on a behaviour (e.g., reactivate it) without knowing the exact type of the
behaviour. Just like for the other types of event handlers, the search for a matching handler
is done by checking all available handlers, from the top of the agent declaration to its bottom,
until a matching handler is found. Fig. 2 shows some examples of behaviour failure handlers
with different handling strategies.

5. Stale Message Handlers

Jadescript agents schedule active behaviours using a non-preemptive scheduling algorithm,
sharing the internal state of the agent and its message inbox. The message inbox is a queue
that contains all the messages received by the agent that are still waiting to be handled. Every
time a behaviour is scheduled, all the headers of its on message handlers are checked against
the messages in the inbox. This is useful to declaratively define to which incoming messages a
behaviour should react. However, if a message does not match against the set of constraints of
a handler, the message is kept in the inbox at its current position to ensure that another handler
(potentially in another behaviour) could successfully handle it. When no handlers in any of
the active behaviours successfully match against a message in the inbox, the message does not
get extracted, and therefore it remains in the inbox, potentially for an indefinite amount of
time (it becomes stale). This is not a problem for the execution of the agent because in JADE,
and therefore in Jadescript, the inbox is a message queue with limited capacity, and when full,
the oldest messages are simply discarded. This has the effect of potentially ignoring relevant
messages. Actually, agents are often requested to properly react to stale messages because
ignoring all of them can prevent the identification of situations that call for the attention of
the agent. To do so, application-specific code is required to define proper message handlers to
react to the messages that are not captured by any other handler. When the agent has only one
behaviour, the processing of stale message can be easily performed by simply writing an on



1 cyclic behaviour B1 uses ontology O1
2 # Handle P1
3 on message inform P1 do
4 # Body of the handler
5

6 # Handle all other messages
7 on message do
8 send not_understood message to sender of message
9

10 cyclic behaviour B2 uses ontology O2
11 # Handle P2
12 on message inform P2 do
13 # Body of the handler
14

15 # Handle all other messages
16 on message do
17 send not_understood message to sender of message

Figure 3: A toy example that shows a simple but ineffective strategy to capture stale messages.

message handler at the end of the behaviour body, without constraints (i.e., with no patterns
and no when-expressions) on the handled messages. The body of this handler can define how the
agent reacts to all the incoming messages that are not expected to match against the constraints
of the other message handlers. This approach is perfectly valid for single-behaviour agents,
but it is problematic for agents with several active behaviours. Consider the toy example in
Fig. 3. Here, two behaviours are defined, namely B1 and B2. Both of them handle inform
messages, with propositional contents P1 and P2, respectively. Both of them also declare an on
message handler with no constraints intended to capture all other types of messages. If both
behaviours are active for the same agent, it could happen that, during the execution of B1, a
message inform P2 gets removed from the inbox and treated as not understood, replying to
its sender using a not_understood performative. The opposite situation, i.e., B2 handles a
message intended for B1, could also happen. Moreover, note that the delegation of the task of
handling stale messages to a third specific behaviour does not solve the problem. Actually, the
problem of handing stale messages when agents have multiple active behaviours is not easy to
solve without specific language facilities because the provision of a behaviour to check which
messages are of interest for other active behaviours would be too complex and fragile.

To deal with this kinds of scenarios, two new features have been recently added to Jadescript.
The first feature is the new on stale message handler, which extracts a stale message from the
inbox and executes a section of code to handle it. To this purpose, a stale message is defined as
a message that did not match against any on message handler after all active behaviours have
been executed at least once since its reception. Consider the example in Fig. 4. In this example,
the MAS contains two classes of agents (among others). The agents in these two classes, namely
Seller and Buyer, provide the services for acting as intermediaries in selling and buying
goods represented by the Item concept. In the example, only the code of Seller agents is



1 ontology SellAndBuy
2 # An item that can be sold or bought
3 concept Item(id as integer, name as text)
4 # The action of selling an Item for at least minPrice
5 action Sell(item as Item, minPrice as integer)
6 # The action of buying an Item for at most maxPrice
7 action Buy(item as Item, maxPrice as integer)
8

9 # Seller agents are designed to negotiate Sell requests
10 agent Seller uses ontology SellAndBuy
11 on create do
12 activate HandleSellRequests
13

14 # HandleSellRequests behaviours are designed to satisfy Sell requests by
15 # negotiating with Buyer agents
16 cyclic behaviour HandleSellRequests uses ontology SellAndBuy
17 on message request Sell(item, minPrice) do
18 # Commits to the request
19 send message agree (content of message) to sender of message
20 # Contacts potential buyers and starts negotiations (not shown)
21

22 # The on stale message handler
23 on stale message do
24 if performative = request and content matches Buy(_,_) do
25 # Action Buy is not supported by the Seller agent
26 send refuse (content of message, NotSupported) to sender of message
27 else do
28 # In all other cases, the message could not be understood by the agent
29 send not_understood (message) to sender of message

Figure 4: Simple example of a stale message handler.

shown because Buyer agents and their HandleBuyRequests behaviours are similar. When a
request Sell(item, maxPrice) message arrives, the Seller agent commits to the request
and it starts a negotiation (not shown in this example). Normally, a Seller agent does not
provide the service of buying items, which is instead provided by Buyer agents. For this reason,
the HandleSellRequests behaviour does not provide message handlers to capture requests to
buy items. However, a Seller agent understands the meaning of buying and it can handle stale
messages with those requests in a correct manner, i.e., by explicitly refusing the request. In these
cases, the design proposed in the example strongly promotes reusability and composibility of
behaviours. As a matter of fact, a Trader agent, defined as an agent that is both a Seller and
a Buyer, can be easily implemented by activating both the HandleSellRequests behaviour
and the HandleBuyRequests behaviour. The two behaviours are active at the same time, but
they would not race for messages because messages are flagged as stale only if both behaviours
had the opportunity to handle them at least once.

The second feature that has been recently introduced in Jadescript is the putback statement,



which enables a fine-grained management of the message inbox. This statement accepts a
message expression as argument right after the putback keyword and, when executed, it puts
the message in the inbox, in front of all other messages. Note that any message can be used
with the putback statement, and it is not assumed that the message has been recently removed
from the message queue.

Finally, the default behaviour of Jadescript agents in the presence of stale messages has been
also changed to effectively benefit from the two recent additions to the language. When no on
stale message handler is defined in an agent or in any of its active behaviours, the agent now
automatically extracts stale messages and it handles them in the following way:

1. If the stale message is a not_understood message, the agent writes a message to the
log to signal the problem; and

2. In all other cases, the agent replies with a not_understood message to the sender of
the stale message.

This behaviour was adopted to make the handling of stale messages consistent with the be-
haviour of agents and services regulated by FIPA specifications [30], which assume that agents
are designed to reply with not_understood messages to all messages with unexpected per-
formative, ontology, or content.

6. Conclusion and Future Work

This paper presented some relevant language features that have been recently added to Jadescript.
These features use dedicated language constructs that match the event-driven programming
style promoted by Jadescript, keeping a high degree of readability, modifiability, and reusability
without affecting performance in nominal cases. In particular, this paper discussed several
additions to Jadescript that regard the representation, detection, and handling of exceptions.
These exceptions, coupled with related exception handlers, can be used to detect errors and
failures. Moreover, this paper shown how the failure of agent tasks, implemented by behaviours,
can be tackled by means of the new behaviour failure mechanism. Finally, this paper discussed
a new way to effectively define the behaviour of an agent when unexpected messages are
received. In summary, the novel features that has been recently added to Jadescript, as described
in this paper, can effectively help programmers to detect and handle exceptional and erroneous
situations at runtime, thus achieving the level of robustness that is needed in several critical
application scenarios (e.g., [31, 32]).

Future enhancements planned for the language comprehend custom interaction protocols,
whose inclusion in the language provides several new opportunities regarding exception han-
dling. Custom interaction protocols promote coordination by explicitly structuring conver-
sations among agents as finite state machines. In this context, Jadescript agents engaging
interaction protocols can consequently adopt the exception-ready agent execution model pro-
posed by [17]. As a matter of fact, the agents that send messages act on the mental states of
message receivers. These mental states have an internal representation in the sender agent,
and such a representation can be abstracted from the current state of the engaged protocols,
and it can be updated automatically after each message, either sent or received. Therefore, the



percepts (i.e., the received messages) can be automatically classified as normal or exceptional
using a relevance filter and an expectation filter. In particular, a message can be considered as
relevant if it belongs to the same conversation of the message that initiated the conversation.
Moreover, a relevant message matches the expectations of the receiving agent if it belongs to
the set of acceptable interactions taken from the state of the conversation according to the
rules defined by the protocol. If a relevant message is classified as unexpected, the interaction
protocol mechanism can throw an exception, and it can cause the failure of the behaviour
designed to handle the reception of the message.

Custom interaction protocols can also be designed to support the definition of strategies for
automatic recovery from erroneous states, taking inspiration from the strategies that language
parsers adopt to recover from syntax errors (e.g., defining synchronization points) [33]. Inter-
action protocols can also be used to create stable social structures among Jadescript agents,
and, in this way, they can be used to build exception raiser-handler relationships, as suggested
in [14, 24]. This provides the freedom needed to distribute responsibility about exception
handling among the agents participating in a protocol.

The exception handling mechanism built on the proposed behaviour failure mechanism
can be improved if the language is extended to support explicit hierarchical organizations of
behaviours. As a matter of fact, the current version of Jadescript includes only two types of
(simple) behaviours, namely one-shot and cyclic behaviours [29]. Even if these are normally
considered as sufficient to organize the tasks of the agents, Jadescript behaviours can benefit from
a higher degree of reusability if the language could include composite behaviours. Composite
behaviours, as available in JADE [34], are behaviours that embed child behaviours executed with
specified scheduling policies (e.g., sequentially, in parallel, or based on a finite state machine).
The embedder-embeddee relationships that are formed by the composition of behaviours can
then be used to implement supervision strategies with respect to behaviour failures. Failures of
child behaviours could be handled by behaviour failure handlers defined in parent composite
behaviours, and the hierarchy tree could be traversed upward to reach the agent, which would
act as the root supervisor for all of its behaviours.

Acknowledgments

This work was partially supported by the Italian Ministry of University and Research under
the PRIN 2020 grant 2020TL3X8X for the project Typeful Language Adaptation for Dynamic,
Interacting and Evolving Systems (T-LADIES).

References

[1] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60 (1993) 51–92.
[2] F. Bergenti, S. Monica, G. Petrosino, A scripting language for practical agent-oriented

programming, in: Proceedings of the 8th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control (AGERE 2018) at ACM
SIGPLAN Conference Systems, Programming, Languages and Applications: Software for
Humanity (SPLASH 2018), ACM, 2018, pp. 62–71.



[3] F. Bergenti, G. Petrosino, Overview of a scripting language for JADE-based multi-agent
systems, in: Proceedings of the 19th Workshop “From Objects to Agents” (WOA 2018),
volume 2215 of CEUR Workshop Proceedings, RWTH Aachen, 2018, pp. 57–62.

[4] G. Petrosino, F. Bergenti, An introduction to the major features of a scripting language
for JADE agents, in: Proceedings of the 17th Conference of the Italian Association for
Artificial Intelligence (AI*IA 2018), volume 11298 of Lecture Notes in Artificial Intelligence,
Springer, 2018, pp. 3–14.

[5] F. Bergenti, G. Caire, S. Monica, A. Poggi, The first twenty years of agent-based software
development with JADE, Autonomous Agents and Multi-Agent Systems 34 (2020).

[6] F. Bellifemine, F. Bergenti, G. Caire, A. Poggi, JADE–A Java Agent DEvelopment Frame-
work, in: Multi-Agent Programming, volume 25 of Multiagent Systems, Artificial Societies,
and Simulated Organizations, Springer, 2005, pp. 125–147.

[7] G. Petrosino, F. Bergenti, Extending message handlers with pattern matching in the
Jadescript programming language, in: Proceedings of the 20th Workshop “From Objects to
Agents” (WOA 2019), volume 2404 of CEUR Workshop Proceedings, RWTH Aachen, 2019,
pp. 113–118.

[8] J. B. Goodenough, Exception Handling: Issues and a Proposed Notation, Communications
of the ACM 18 (1975).

[9] J. B. Goodenough, Exception handling design issues, ACM SIGPLAN Notices 10 (1975).
[10] J. B. Goodenough, Structured exception handling, in: Proceedings of the 2nd ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ACM, 1975, pp.
204–224.

[11] Lightbend, Akka platform by lightbend, www.lightbend.com/akka-platform, 2022. Ac-
cessed on July 10th, 2022.

[12] S. Rodriguez, N. Gaud, S. Galland, SARL: A general-purpose agent-oriented programming
language, in: Proceedings of the IEEE/WIC/ACM International Joint Conferences of Web
Intelligence (WI 2014) and Intelligent Agent Technologies (IAT 2014), volume 3, IEEE, 2014,
pp. 103–110.

[13] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt Publish-
ing, 2013.

[14] M. Baldoni, C. Baroglio, G. Chiappino, R. Micalizio, S. Tedeschi, Exception Handling in
SARL as a Responsibility Distribution, Procedia Computer Science 201 (2022) 795–800.

[15] E. Platon, S. Honiden, N. Sabouret, Challenges in exception handling in multi-agent
systems, in: SELMAS 2006: Software Engineering for Multi-Agent Systems V, volume 4408
of Lecture Notes in Computer Science, Springer, 2006, pp. 41–56.

[16] E. Platon, N. Sabouret, S. Honiden, A definition of exceptions in agent-oriented computing,
in: ESAW 2006: Engineering Societies in the Agents World VII, volume 4457 of Lecture
Notes in Artificial Intelligence, 2007, pp. 161–174.

[17] E. Platon, N. Sabouret, S. Honiden, An architecture for exception management in multia-
gent systems, International Journal of Agent-Oriented Software Engineering 2 (2008).

[18] F. Souchon, C. Urtado, S. Vauttier, A Proposition for Exception Handling in Multi-Agent
Systems, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.6182&rep=rep1&type=pdf,
2008. Accessed on July 10th, 2022.

[19] R. H. Bordini, J. F. Hübner, BDI agent programming in AgentSpeak using Jason, in:

www.lightbend.com/akka-platform
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.6182&rep=rep1&type=pdf


CLIMA 2005: Computational Logic in Multi-Agent Systems, volume 3900 of Lecture Notes
in Artificial Intelligence, 2006, pp. 143–164.

[20] R. H. Bordini, J. F. Hübner, Jason: A Java-based interpreter for an extended version of
AgentSpeak, jason.sourceforge.net, 2007. Accessed on July 20th, 2022.

[21] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, A. Santi, Multi-agent oriented programming
with JaCaMo, Science of Computer Programming 78 (2013) 747–761.

[22] A. Ricci, M. Piunti, M. Viroli, A. Omicini, Environment programming in CArtAgO, in:
Multi-agent programming, Springer, 2009, pp. 259–288.

[23] J. F. Hübner, O. Boissier, R. Kitio, A. Ricci, Instrumenting multi-agent organisations with
organisational artifacts and agents, Autonomous Agents and Multi-Agent Systems 20
(2010) 369–400.

[24] M. Baldoni, C. Baroglio, S. Tedeschi, R. Micalizio, Distributing responsibilities for exception
handling in JaCaMo, in: Proceedings of the 20th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2021), International Foundation for Autonomous
Agents and Multiagent Systems, 2021, pp. 1752–1754.

[25] FIPA, FIPA Communicative Act Library Specification, www.fipa.org/specs/fipa00037/
SC00037J.html, 2021. Accessed on July 24th, 2021.

[26] F. Bergenti, An introduction to the JADEL programming language, in: Proceedings of
the 26th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2014),
IEEE, 2014, pp. 974–978.

[27] G. Petrosino, E. Iotti, S. Monica, F. Bergenti, Prototypes of productivity tools for the
Jadescript programming language, in: Proceedings of the 22nd Workshop “From Objects
to Agents” (WOA 2021), volume 2963 of CEUR Workshop Proceedings, RWTH Aachen, 2021,
pp. 14–28.

[28] W. Weimer, G. C. Necula, Exceptional situations and program reliability, ACM Transactions
on Programming Languages and Systems 30 (2008).

[29] G. Petrosino, E. Iotti, S. Monica, F. Bergenti, A description of the Jadescript type system,
in: Proceedings of the 3rd International Conference on Distributed Artificial Intelligence
(DAI 2022), volume 13170 of Lecture Notes in Computer Science, Springer, 2022, pp. 206–220.

[30] FIPA, FIPA Agent Management Specification, www.fipa.org/specs/fipa00023/SC00023J.
html, 2002. Accessed on June 24th, 2021.

[31] E. Iotti, G. Petrosino, S. Monica, F. Bergenti, Two agent-oriented programming approaches
checked against a coordination problem, in: Proceedings of the 2020 International Sym-
posium on Distributed Computing and Artificial Intelligence, Springer, 2020, pp. 60–70.

[32] E. Iotti, G. Petrosino, S. Monica, F. Bergenti, Exploratory experiments on programming
autonomous robots in Jadescript, in: Proceedings of the 1st Workshop on Agents and
Robots for Reliable Engineered Autonomy (AREA 2020) at the European Conference on
Artificial Intelligence (ECAI 2020), volume 319 of Electronic Proceedings in Theoretical
Computer Science, UNSW, 2020, pp. 55–67.

[33] S. L. Graham, S. P. Rhodes, Practical Syntactic Error Recovery, Communications of the
ACM 18 (1975).

[34] F. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent Systems with JADE, Wiley
Series in Agent Technology, John Wiley & Sons, 2007.

jason.sourceforge.net
www.fipa.org/specs/fipa00037/SC00037J.html
www.fipa.org/specs/fipa00037/SC00037J.html
www.fipa.org/specs/fipa00023/SC00023J.html
www.fipa.org/specs/fipa00023/SC00023J.html

	1 Introduction
	2 Related Work
	3 Exceptions in Jadescript
	4 Behaviour Failure
	5 Stale Message Handlers
	6 Conclusion and Future Work

