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Abstract

Software measurement is an effective technique for project management. It helps engineers to apply
engineering concepts to software development, providing a quantitative and objective foundation for
process and technology decisions. Many measurement procedures based on international standards have
been proposed to obtain the functional size of software. Some of the proposed procedures are automated
to minimize measurement variance caused by individual interpretations. However, all of the proposed
procedures are focused on ’classical computer’ Software, and none addressed Quantum Computer
Software. Based on the COSMIC-ISO 19761, and with functional requirements implemented in Qiskit,
this paper presents a functional size measurement (FSM) procedure for Quantum Computer Software.
The mapping of essential concepts in both Qiskit and COSMIC, as well as the establishment of mapping
rules for obtaining the information held in the Qiskit programs that is necessary for measurement, are
the foundations of the FSM approach proposed in this paper. Consequently, this procedure provides the
foundation for automating the measurement of Quantum Computer Software expressed in Qiskit.

Keywords
Quantum Computers, Quantum Metrics, FSM, COSMIC ISO 19761, Measurement, Measurement Automa-
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1. Introduction

Quantum computing hardware is rapidly evolving. When only two linked high-quality qubits
(quantum bits) were the state of the art only a few years ago, quantum computers of 5, 8, 9, 11,
16, 19, 20, and even 53 programmable and interactable qubits are now available today. In a few
years, quantum software should be widely used in research and the industry for cybersecurity,
notably cryptography, in the context of the internet of things (IoT) [1].

Software measurement is an effective technique for project management. It helps engineers
to apply engineering concepts to software development, providing a quantitative and objective
foundation for process and technology decisions. Software size, for example, is a measure of the
software product itself that can be used to calculate software development productivity ratios
and create objective estimating models for project effort and duration prediction. In practice,
the size of software, as measured in function points, is strongly connected to project work
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effort. In addition, Software functional size can be used for several purposes, namely: to obtain
system-related technical indicators early in the design phase (e.g. processor load [2] and energy
needs [3] [4]), which in turn can impact performance and hence cost.

The COSMIC method is a recognized ISO standard: ISO 19761 Software Engineering - COSMIC
— A functional size measuring method. On the COSMIC website, the newest edition of the
COSMIC handbook, version 5.0, is accessible (www.cosmic-sizing.org). While this version
incorporates certain improvements, the COSMIC method’s core concepts have remained intact
since it was initially published in 1999. COSMIC based FSM procedures and automation tools
for particular environments have also been proposed e.g. [5] and [6].

This paper is organized as follows: Section 2 presents related work on quantum computing
metrics and measurements, Section 3 presents a quantum computing overview. Sections 4 and 5
provide overviews of the COSMIC method and the Qiskit open-source software development kit,
then discuss how to apply the COSMIC method to Qiskit, including a Qiskit example. Section 6
introduces the FSM procedure designed for software specified using Qiskit and its rules. Section
7 presents an illustration of the proposed approach applied to an example. Section 8 presents
the steps followed in automating the proposed FSM procedure and the design of the automation
tool. Conclusions follow in section 9.

2. Related Work on Quantum Computing Metrics and
Measurement

Quantum metrics are scarce because Quantum computers are complex and relatively new
compared to classical computers. A number of studies were found in the literature, in this
section, the three most relevant ones are presented.

Volumetric benchmarks are a class of rectangular quantum circuits in which the dimensions
d and w are uncoupled to explore time/space performance trade-offs. Each VB establishes
a relationship between circuit shapes — (w,d) pairs — and test suites C. (w, d). A test suite
is a collection of test circuits with a similar structure. A single circuit C, a particular list of
circuits Cy...C), that must all be run, or a vast collection of alternative circuits equipped with a
distribution P, (c) can all be part of the test suite C for a given circuit form (C)[7].

w=0w+by+ny

In [8], the quantum noise metric is presented. Quantum noise may emerge from several
different sources. In any quantum system, there is never a single source of noise. It’s difficult
to figure out what the sources are and what their respective contributions are. Unwanted
interaction with the environment (both separate events and the inevitable decay of quantum
states), unwanted interaction between qubits, and imprecise control operations are all possible
causes. Each of them introduces errors with distinct features, resulting in a variety of models.

In [9], some software metrics were introduced from classical computers and how to map them
to the quantum computing realm. The author tackled different types of software metrics. Firstly,
code size metrics are mapped: Lines-of-Code (LOC) and Halstead’s Software Science metrics
to quantum computers. Secondly, Design Size metrics: Architectural Design Size metrics and
Detailed Design Size metrics are mapped to quantum computers. Finally, some structure metrics
such as McCabe’s Complexity Metric and Henry and Kafura’s Information Flow metric are also



mapped to quantum computers.
To our best knowledge, the literature review shows no published works proposing Quantum
Computer Software Functional Size Measurement.

3. Quantum Computing Overview

3.1. Quantum bit

A classical bit is a binary information unit used in traditional computing. It can have one of two
values: either 0 or 1. On the other hand, a quantum bit (or a qubit) differs from a conventional
bit in that any qubit with state |1)) can be represented by a linear combination (superposition)

of two bases in the quantum state space: |0) = [1 O]T and |1) = [0 1}T, such that:
) = al0) + 5]1)
where a, 8 € C, and the probability of either state being measured is a sure event.

19117 = lal* +18* =1

This can also be illustrated as a point in space by the Bloch sphere representation, where states
|0) and |1) are at the poles of the sphere[10] as shown in Figure 1 where

0 . 0
[4) = cos(35)10) + esin(2) 1)

Figure 1: Bloch sphere via [8]



3.2. Quantum circuit

Quantum circuits, also known as quantum logic circuits, are the most widely used general-
purpose quantum computing models, representing circuits that operate on qubits as an abstract
notion. A quantum circuit is a set of quantum gates that are linked together. And since any
multiple qubit operation can be described by a unitary transformation matrix U (reversible and
maintain the norm of the operands); this transformation U performed by the circuit determines
the structure, types and number of gates, and connectivity scheme of the quantum circuit. Since
any unitary matrix U is always invertible, the number of input and output qubits of a quantum
circuit is identical, and the quantum operators are reversible [11]. When a qubit is measured, the
measurement alters the state of the qubit, collapsing the superposition state |1/) of |0) and |1) to
a state without superposition (either |0) or |1)). However, once a qubit has been measured, the
measurement cannot be reversed. Therefore, the measurement is non-unitary (not reversible
and have probabilistic implementations)[10].

3.3. Quantum gates

A quantum gate can alter the state of a qubit in a similar way to that of a logic gate in a digital
circuit changing the state of a classical bit. A quantum gate can have just one input and one
output (single quantum state transition) or numerous inputs and multiple outputs (multiple
quantum state transition). Because the quantum operators must be reversible, no information
can be lost in quantum computing operations and the number of inputs and outputs must be
equal. Furthermore, an arbitrary classical circuit can be replaced by a quantum circuit that
is reversible by using the Toffoli gate, which can be used to implement NAND gates. Other
important quantum gates include: the Hadamard Gate (H) which can be used to prepare a qubit
in superposition, the Pauli-(X)Y,Z) gates (the Pauli-X (X) gate is the quantum counterpart of
the classical NOT gate), and the Controlled U gate which applies a unitary operation on the
second (target) qubit if the first (control) qubit is set to 1 (an example is the CNOT (CX) gate). A
Controlled U gate could also be used to acquire entangled qubits. Quantum entanglement is an
important element in quantum computing that is used in crucial effects such as fast quantum
error-correction, quantum algorithms, and quantum teleportation [10].

3.4. Quantum programming

The process of developing and building executable quantum computer programs to achieve a
certain computing outcome is known as quantum programming. A quantum program is made
up of code blocks with both classical and quantum components. A quantum program on a
quantum computer employs a quantum register of qubits to conduct quantum operations and
a classical register of classic bits to record qubit state observations and conditionally apply
quantum operators. As a result, a typical quantum program has two types of instructions. One
type of instruction is known as classical instructions, which work with the state of classical
bits and apply conditional expressions. Quantum instructions, for example, act on the state of
qubits and measure their values.



4. COSMIC Overview

COSMIC is an ISO-approved method for measuring FURs. It specifies how to divide the system
into layers and how to distinguish between the various data transfers in a system using what
are known as Functional Process boundaries. It also specifies the standards for determining the
measurement’s granularity. A COSMIC Functional Point (CFP) is the measurement unit, and
each data transfer is 1 CFP in size.

According to COSMIC, there are four types of data movements:

« Entry (E): A data movement that moves a data group from a functional user across the
boundary into the functional process where it is required.

« Exit (X): A data movement that moves a data group from a functional process across the
boundary to the functional user that requires it.

« Read (R): A data movement that moves a data group from persistent storage into the
functional process that requires it.

« Write (W): A data movement that moves a data group from inside a functional process to
persistent storage.

Persistent storage is defined as storage that allows a process to recover data that has been
changed by another functional process or another instance of the same process after a functional
process has terminated.

COSMIC rules cannot be used to directly measure the size of FURs; two additional steps must
be completed first:

« Measurement Strategy Phase, in which the scope and the purpose of the measurement is
defined. This is done by applying the COSMIC Software Context Model.

« Mapping phase, where the measurement rules of COSMIC are mapped and defined for
the domain being measured.

After the measurement phase, the final software size is obtained by adding the sizes of all the
functional processes within the measurement scope.

5. Qiskit Overview

Qiskit (qiskit.org) is an open-source software development kit (SDK) for programming quantum
computers at the circuit, pulse, and algorithm levels. It contains tools for writing and modifying
quantum programs, as well as for running these programs on local computer simulators or
IBM Quantum Experience Prototype quantum devices. It uses the circuit model for universal
quantum computation and can be used with any quantum hardware that follows this paradigm.

IBM Research developed Qiskit to facilitate the creation of software for IBM Quantum
Experience, a cloud service for quantum computing. External supporters, usually from academic
institutions, also contribute.

The Python programming language is used in the main version of Qiskit. Swift and JavaScript
versions were briefly explored, however development of these versions was discontinued.



Instead, there is MicroQiskit, a simplified reimplementation of fundamental functionalities that
can be easily transferred to other platforms.

There are several Jupyter notebooks with demonstrations of quantum computers in action.
Source code for scientific research papers using Qiskit as well as a series of activities to help
individuals understand the fundamentals of quantum programming are two examples. An
open-source textbook based on Qiskit is offered to complement college courses on quantum
algorithms or quantum computation

5.1. Qiskit example

from qiskit import *

circuit = QuantumCircuit(3,3)

circuit.x(@)

circuit.barrier()

circuit.h(1)

circuit.cx(1,2)

circuit.cx(e,1)

circuit.h(e)

circuit.barrier()
circuit.measure([0,1],[@,1])
circuit.draw(output="mpl")

circuit.barrier()

circuit.cx(1,2)

circuit.cz(e,2)

circuit.draw(output="mpl")
circuit.measure(2,2)

simulator = Aer.get_backend( gasm simulator')
result = execute(circuit, backend = simulator, shots = 1@00 ).result()
counts = result.get_counts()

from qiskit.tools.visualization import plot_histogram
plot_histogram(counts)
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Figure 2: Qiskit code

Figure 2 shows a simple qiskit code containing a circuit and some quantum gates. The code
implements a quantum teleportation algorithm. First, a quantum register with 3 qubits and a
classical register with 3 classical bits were created and then combined to form a quantum circuit.
Second, quantum gates such as the H gate, the X gate, and the CX gate were added. Finally, the
circuit of the code, as shown in Fig.4, runs on a local simulator called gasm simulator and stores
the values of the qubits in the classical bits.

This circuit could also run on a real quantum computer and the results could be presented in
different ways:

+ Matrix : the result = [A B]  where A represent the probability of being 0 and B is the
representation of the probability of being 1.

« Sphere: the result can be represented as point on the Bloch sphere, as shown in Figure 1,
that is a representation of the state of a qubit as the bottom pole represent 1 and the top
pole represent 0.

« Histogram : As shown in Figure 3, the result could be represented as the probabilities of
the different outcomes.

As shown in Figure 3, the result is represented in a histogram: The X-axis represents the
possible answers (e.g.: 100 means that qubity = 1, qubit; = 0, qubity = 0) and the Y-axis
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Figure 3: Qiskit histogram representation
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represents the probability of being this answer. Moreover, in Qiskit the circuit in Figure 4 is the
equivalent to the circuit of the code in Figure 2. The circuit simply teleports the value of qubit 0
after the first barrier to qubit 2 and stores the response in the classical bit 2.
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Figure 4: Qiskit circuit representation

6. An FSM Procedure for Quantum Computer using Qiskit

The measurement objective, scope, and elements must be specified and clearly defined in order
to adequately measure the functional size of the software implemented with Qiskit. A set
of measurement criteria must be included in the FSM method to be applied to the modelled
functional requirements to determine their functional size. These criteria must be clear and
consistent in order to provide reliable results, simplify the measurement process, and enable
automation of the method.

6.1. The measurement strategy phase

Purpose: The purpose of this FSM procedure is to apply the COSMIC approach to the Qiskit
software, i.e., to determine the size of any system based on the functional requirements of the
Qiskit software.
Scope of Measurement: The scope of this FSM is at the subsystem level of the Qiskit software.
Functional Users: The functional users are all systems that interact (send or receive data)
with the specified software.



6.2. The mapping phase

Functional Process: a functional process is a Quantum Gate and receives, manipulates, and
transfers data groups when triggered.

Boundaries: Between any external system (functional user) and the program to be monitored
there is a boundary. A boundary exists between any two systems (peer components in the same
layer).

Data groups: Accurate identification of data group movements in any functional process
begins with correct identification of data groups. A single data group is sent over a single line,
which is assumed a priori.

Table 1 shows the principles for distinguishing functional users, software boundaries, and
functional processes. The principles for identifying data group movement are shown in Tables
2.

Using the principles in Tables 2 and 3, the data group movements of each functional process
are identified in this step. After all data movements in a functional process have been identified,
each data movement is assigned a standard value of 1 CFP. The final step is to combine the data
in order to determine the functional size of each functional process (Rule 9). The functional
sizes of the functional processes are then summed to obtain the functional size of the program
under consideration (Rule 10).

The Read (R) and Write (W) data movements are bound to the memory Reads and the memory
writes respectively (rules 7 and 8).

7. Applying the FSM to Qiskit Example

3 Inport blocks, 3 Outport blocks, 7 Elementary blocks (1 X gate, 2 H gates, 3 CX gates, and 1
CZ gate), 3 Data Store Write blocks, and 3 Data Read blocks are used to represent the simple
Qiskit example. All data transfers discovered in this functional process are listed in Table 4. The
implemented code in Figure 2 has a total size of 20 CFP.

Table 1
Qiskit/COSMIC Mapping Rules
COSMIC element Rule number Rule number
Identify 1 functional
Functional process (FP) 1 process

for each quantum gate
Identify 1 boundary
between two functional
processes interacting
with each other
Identify 1 boundary
between any external
Boundary 3 system interacting
with the system to
be measured

Boundary 2




Table 2

Rules to Identify Data Movements of a Functional Process

COSMIC Rule Rule description
element Number P
Identify 1E for each
Data group 4 QUBIT connected
movements via a line to a
quantum gate
Identify 1E for each
Data group 5 gate connected via
movements alinetoa
Functional process
Identify 1X for each
Data group 6 li);e toa
movements .
Functional process
Data group Identify TW for each
movements 7 Quantum Measure
identified in this FP
Data group 8 Identify 1R for each
movements read from a classical bit

8. Design of the Automation Tool

8.1. Introduction

An automation tool should assist in the application and use of the chosen FSM approach. With
Qiskit software, a prototype was created to automate the measurement of the functional size of

the requirements.

8.2. Algorithm

The automation tool’s algorithm must step by step follow the recommended FSM method.
In other words, each functional process (FPdata )’s movements are recognised and given a
numerical value of 1 CFP each. Finally, the sizes of all the FP’s recognised data motions are
combined into a single functional size number.

At first the prototype takes Python file or text file as input.

NN

Read

~

Assign one CFP for each Data Entry

8. Assign one CFP for each Data Exit

Search for any circuit in the input and identify each as a system

Search in each circuit for quantum gates and identify each as a functional process
For each functional process identify one Entry data movement
For each functional process identify one Exit data movement
Search in each circuit for Quantum measure commands and identify each as Data Write
Search in each circuit if there is any read from a classical bit and identify each as Data




Table 3
Rules for Obtaining the Functional Size of the Functional Processes and the Whole Software.

COSMIC
element

Rule number Rule description

Aggregate the CFP
related to the
data movements

Functional identified in a
Process (FP) specific FP to
obtain the
functional size
of that process
Aggregate the CFP
related to the
data movements
of (identified in) the
functional processes
of (identified in) the
whole system to
obtain the
functional size of
that system.

Whole Software 10

9. Assign one CFP for each Data Read
10. Assign one CFP for each Data Write
11. In order to calculate the CFP for single Functional process Aggregate the CFP related to
the data movements identified in a specific FP to obtain the functional size of that process.
12. In order to calculate the CFP for Whole Software Aggregate the CFP related to the data
movements of the functional processes of the whole system to obtain the functional size
of that system.

8.3. Measuring the simple Qiskit example using the prototype

The measurement result of the Qiskit example achieved using the prototype is shown in Figure
5. It identified seven functional processes in the circuit; in addition to 7 Entries, 7 Exits, 3 Writes,
and 3 Reads. The total size of the circuit is 20 CFP.

9. Conclusion

In the near future, quantum software should be widely used in research and the industry.
Quantum Computers are of great importance for cybersecurity, notably cryptography, in the
context of the internet of things (IoT).

Many measurement procedures based on measurement methods and international standards
have been proposed in the literature to obtain the functional size of software for "classical
computers".



Table 4

Functional Size of Qjskit Example

Type(s Name(s
No. of yf,f( ) ofthfz) Data CFP
the rule movement
applied block(s) block(s) tvpe value
PP identified | identified yP
4 Gate X E 1
6 Gate X X 1
5 Gate H E 1
6 Gate H X 1
4 Gate H E 1
6 Gate H X 1
5 Gate CX E 1
6 Gate CX X 1
4 Gate CX E 1
6 Gate CX X 1
5 Gate CX E 1
6 Gate CX X 1
5 Gate CZ E 1
6 Gate Cz X 1
7 Measure qubit 0 w 1
7 Measure qubit 1 w 1
7 Measure qubit 2 w 1
8 i‘:‘ft qubit 0 R 1
8 rlzzz‘[jt qubit 1 R 1
8 :izz([jt qubit 2 R 1
Total:
20
CFP

In this paper, a functional size measurement (FSM) method procedure for Quantum Com-
puters is presented. This procedure is based on the latest version of the COSMIC ISO 19761
measurement method and on the Qiskit tool. The rules of this procedure cover the measurement
of quantum computing software projects and can be considered as a set of rules that allow
mapping the conceptual elements of Qiskit to the concepts of COSMIC. The procedure proposed
attempts to fill in the research gap identified in the FSM procedures scientific literature for
Quantum Computers Software.

Finally, measurement with automated tools eliminates measurement variances caused by the
interpretation of different measures, which can lead to different measurement results for the
same set of requirements. For this reason, a tool that automates the measurement procedure
while ensuring the accuracy of measurement results is useful and can benefit organizations in
terms of reducing the workload of measurement specialists as well as eliminating measurement
delays. This work also provides a basis for developing other types of automated measurement
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Figure 5: The measurement results by the automation tool

tools for quantum computing software.
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