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Abstract  
Food and feed production must be increased or maintained in order to meet the demands of the 

earth's population. However, it is obvious that climate change will have a serious negative 

impact and threaten the productivity and sustainability of food production systems. Therefore, 

understanding and predicting the final crop production, with a view to adaptation and 

sustainability, is essential. The need for information on decision-making at all levels, from crop 

management to adaptation strategies, is constantly increasing and methods of providing such 

information are urgently needed in a relatively short period of time. Thus arises the need to use 

effective data such as satellite and meteorological, but also operational tools, to assess crop 

yields over local, regional, national, and global scales. In this work, an operational approach 

built on a fusion of satellite-derived vegetation indices, agro-meteorological indicators, and 

crop phenology is put to test and evaluated in terms of data-intensity, in predicting the yield of 

durum wheat, at a large-scale application.   
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1. Introduction 

Understanding and predicting crop production outcomes and identifying changing patterns in major 

cereals such as wheat, under various climate scenarios and farm management practices geared towards 

adaptation and sustainability, is of the essence. Hence, the need for the development and efficient use 

of tools such as models to project food crop cultivation under various scenarios and time scales. 

Adaptation strategies are probably the only means by which food availability and stability can be 

maintained or increased to meet future food security needs [1, 2]. In this context, crop monitoring, in-

season and post-season yield forecasting play a major role in anticipating supply anomalies, allow well-

informed adaptive policy action and market adjustment, prevent food crises, market disruptions, and 

contribute to overall increased food security [3]. Model-based global estimates show that even 

incremental adaptation strategies could result in mean yield increases of ~7% at any level of warming 

[4-6]. This suggests that substantial opportunities may exist if more significant changes in cropping 
systems are implemented through yield modelling [2]. Process-oriented crop growth models have been 

extensively applied to simulate and predict production around the world. Among the existing crop 

models, AquaCrop is used for the estimation of crop yield, under multiple environments. It is a crop 

water productivity model developed by the Land and Water Division of FAO in 2009 [7, 8]. It simulates 

yield response to water of crops, crop growth stages, biomass accumulation and yield, among other 
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parameters. Models require a substantial number of input data, which creates a limitation in their 

usefulness for decision-making. Studies support that they are not suitable for predicting crop yields at 

a large scale because of the massive requirements of inputs and calibration data [9, 10]. However, with 

the introduction of freely available datasets, the advancement of computational ability and the 

development of massive data processing technology, the integration of data with different spatial and 

temporal resolutions into crop growth models has enabled operational and large-scale applications [11, 

12]. Such freely available products are the satellite and agro-meteorological data provided by the 

Copernicus program, as well as Soilgrids [13] which produces maps of soil properties. 

The objective of this study is to put into test AquaCrop and evaluate the model in forecasting the 

yield of 184 durum wheat parcels, in two distinct regions, for two growing seasons. A second objective 

is to assess the model in terms of data intensity, while a third objective is to examine the accuracy of 

the model for operational large-scale applications by making full exploitation of freely available 

Copernicus data sets and soil databases. 

2. Materials and Methods 
2.1. Study Sites and Parcels’ Data 

Data from a total of 184 durum wheat parcels (Triticum turgidum subsp. durum) were used to 

evaluate the accuracy of AquaCrop. The parcels were located in the prefectures of Kozani (n=22), 

northern Greece, and Larissa (n=162), central Greece. The crops were established during the 2019/20 

(n=70 Larissa) and 2020/21 (n=114 Larissa and Kozani) growing seasons, under contractual farming 

(Fig. 1). In these regions, wheat and barley are the main winter (i.e. sowing from October to December 

and harvest from mid-June to early July) crops grown in rotation with summer crops (e.g. cotton, maize, 

sunflower). Winter wheat is cultivated under rainfed conditions, but when water is available for 

irrigation, it is applied during flowering. 

 

 
Figure 1: Study sites and parcels 
 

The size of the parcels ranged from 0.1 to 10.5 ha. The geospatial data such as the location and 

perimeter of the fields, the final production which ranged from 500 to 6740 kgha-1, the sowing dates (3 

Nov to 9 Dec 2019 and 25 Oct to 8 Dec 2020), the harvest dates (June 8 to 31) and the irrigation dates 

were provided by Melissa Kikizas SA. Rainfall during the 2019/2020 growing season amounted to 509 
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mm in Larissa, while in 2020/21 amounted to 450 mm in Kozani and Larissa, with significant variations 

in rain distribution between the two years and the two areas, especially during the flowering period 

(April-May). 

2.2. Agro-Meteorological, Soil and Satellite Data 

Gridded agro-meteorological data for the 2019/20 and 2020/21 growing season at a deg resolution 

of 0.1 × 0.1 (approx. 12.5 km) and of 0.25 × 0.25 (approx. 25 km) were derived from the ERA5-Land 

and ERA5 reanalysis, respectively, generated by the European Centre for Medium-Range Weather 

Forecasts and freely distributed through the Copernicus Climate Data Store. They included hourly data 

consisting of 2-m air temperature, total precipitation, as well as all the necessary variables to obtain the 

reference evapotranspiration values with the Penman-Monteith equation (FAO56-PM). 

The soil physical properties for the 184 durum wheat parcels were obtained from the SoilGrids 

database. SoilGrids is a gridded multiple depth dataset at a 250 m spatial resolution, and it is available 

worldwide. These soil properties were used to calculate soil water constants (field capacity, permanent 

wilting point and saturated hydraulic conductivity) with the application of pedotransfer functions [14]. 

An average number of 25 and 22 cloud free multispectral high-resolution images from Sentinel-2A 

and 2B were acquired during 2019/20 and 2020/21 wheat growing seasons, respectively. The vegetation 

indices (NDVI, GreenWDRVI) were calculated based on atmospherically corrected Level-2A-Bottom-

of-Atmosphere (BoA) reflectance data. The images were cropped to the polygons’ (parcels’) geometry. 

NDVI and GreenWDRVI average was assessed at pixels falling within each parcel. The equation to 

obtain the GreenWDRVI (Wide Dynamic Range Vegetation Index) is as follows [15, 16]:  

GreenWDRVI=(α∙NIR-Green)/(α∙NIR+Green)+(1-α)/(1+α)                                                                 (1) 
where Green is the B3 band of Sentinel-2 MSI, NIR is the near-infrared B8 band of Sentinel-2 MSI and 

α is a Chl absorption coefficient, equal to 0.1. A 2nd order polynomial relating GreenWDRVI and Leaf 

Area Index [17] of wheat was used prior to determining the canopy cover: 

LAI=5.7⋅GreenWDRVI2+1.7⋅GreenWDRVI-0.08                                                                                            (2) 
Lastly, the canopy cover of wheat was estimated throughout the growing season on each parcel, with 

the exponential equation [18]:  

CCRS (%)=94⋅[1-exp(-0.43∙LAI) ]0.52                                                                                                      (3) 
where CCRS is the canopy cover derived from remote sensing variables.  

According to the NDVI and reflected phenology, the wheat parcels were classified under 4 different 

growth dynamics patterns: 1. a high initial growth rate (n=53); 2. a moderate initial growth rate (n=68); 

3. a low initial growth rate (n=41); and a very low initial growth rate (n=22). The average per parcel, 

NDVI time series graphs are displayed in Figure 2. 
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Figure 2: Reflected phenology of the four wheat growth rate patterns, expressed as the NDVI for the 
2020/21 cropping season, versus time. The black line is the representative line of the growth rate. 

2.3. AquaCrop Calibration 

AquaCrop simulates crop yield in four steps: Crop development, crop transpiration, biomass 

production and yield formation. It calculates the daily soil water balance and divides evapotranspiration 

into soil evaporation and crop transpiration. AquaCrop describes the foliage development of the crop 

by the canopy cover (CCAC) which is the fraction of soil surface covered by the green canopy. 

Transpiration is a function of canopy cover, while evaporation is proportional to the area of soil not 

covered by vegetation. The canopy cover is multiplied by the reference evapotranspiration (ETr) and 

the crop coefficient (Kc) to calculate potential crop transpiration. Actual transpiration (Ta) is calculated 

starting from the potential by accounting for water stress. Then, Ta is used for the calculation of crop 

biomass though its multiplication with water productivity normalized for climate. By using a harvest 

index (HI), crop yield is obtained by the biomass [19]. Model parameters are grouped into two classes: 

Conservative and non-conservative. The canopy growth (CGC) and canopy decline (CDC) coefficients 

are considered two of the most important conservative parameters to calibrate the CCAC [20]. In this 

study, a number of non-conservative parameters were calibrated, in regards to local management 

information, such as sowing dates and plant densities, flowering date and duration, starting of 

senescence and maturity. These parameters are provided in Table 1. Three runs were performed per 

parcel containing different levels of information: 

1. CGC and CDC retrieved from AquaCrop default values on wheat without considering any 

irrigation event (minimum data input); 

2. CGC and CDC calibrated to the canopy cover derived from remote sensing data (CCRS) without 

considering any irrigation event (medium data input);  

3. CGC and CDC calibrated to CCRS, including the irrigation events (one event: n = 45 parcels, 

two events: n = 12 parcels) applied in their vast majority during the 2020/21 growing season and 

only in Larissa region (full data input).  
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Table 1 
User-specific parameters used in simulation 

Parameter Units Default 
Minimum, Medium 

& Full data input 

Soil surface covered by an individual seedling at (90%) 

recover 
cm2/plant 1.50 1.50 

Number of plants per hectare  hm-2 4500000 2500000 

Maximum canopy cover (CCx) % 96 90 - 93 

Calendar Days: from sowing to emergence d 13 13 

Calendar Days: from sowing to maximum rooting depth d 93 93 

Calendar Days: from sowing to start senescence d 158 178 

Calendar Days: from sowing to maturity (length of crop 

cycle) 

d 
197 221 

Calendar Days: from sowing to flowering d 127 150 

Length of the flowering stage (days) d 15 20 

Maximum effective rooting depth m 1.5 0.3 

Reference Harvest Index (HIo) % 48 42 

Water productivity (WP) gm-2 15 17 

 

The purpose of the selected simulations was to investigate the potential of AquaCrop to predict biomass 

and yield under a minimum, medium and a full input data scheme. In order for AquaCrop to simulate 

accurately canopy cover (CCAC) development, representative CCRS curves of the different wheat growth 

rates (Fig 2) were selected to calibrate the CGC and CDC. The calibrated values are provided in Table 

2. 

 

Table 2 
Calibrated conservative parameters of AquaCrop used in the simulation 

Conservative Parameters Units Default 
Medium & Full data  

input scheme 

Canopy growth coefficient (CGC) fractiond-1 0.049 

High Initial Growth class  0.085 
Moderate Initial Growth class 0.069 
Low Initial Growth class 0.054 
Very low Initial Growth class 0.035 

Canopy decline coefficient (CDC) fractiond-1 0.0718 

High Initial Growth class 

0.0605 
Moderate Initial Growth class 
Low Initial Growth class 
Very low Initial Growth class 

2.3.1. Performance Evaluation Metrics 

The ability of AquaCrop to predict the yield of the 184 parcels was assessed by adopting a number 

of statistical metrics. The Model Efficiency (ME), the coefficient of determination (R2), the root-mean-

square error (RMSE), the normalized RMSE (nRMSE), the bias and the Willmott’s index of agreement 

(d) were selected as performance evaluation metrics. 

3. Results and Discussion 

AquaCrop was evaluated for yield prediction under a minimum, medium and a full data input 
scheme. The calculated statistical metrics that were employed to evaluate the goodness of fit in these 

approaches, are summarized in Table 5. The reason to follow a minimum data requirements framework 

was to investigate whether the model has the potential to provide safe results on a simplified approach, 
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with regards to data intensiveness. A successful minimum or at least medium input simulation could 

encourage the regional or even national implementation of the model that could drive in-season or post-

season adaptation strategies for food security. However, in the case of minimum data requirements 

scheme, the statistical metrics between measured and simulated values revealed that AquaCrop could 

not simulate wheat yield successfully. This is indicated by the low values of ME, bias, d and R2 of -0.4, 

-70.6, 0.485 and 0.05, respectively, as well as high absolute and relative magnitude of difference 

between simulated and measured final yield (RMSE = 1500 kgha-1 and nRMSE = 39.6%). The under-

calibrated model significantly underestimated yield which can be attributed to limited rainfall and heat 

stress during flowering and grain filling stages in 2020/21, that resulted in predicting very low yields. 

High yield levels obtained by irrigation (>4500 kgha-1), during 2020/21, could not be achieved by the 

model running under rainfed mode, leading to large prediction inaccuracies.  

On the other hand, a medium data requirements scheme was applied, based on a calibrated 

simulation of canopy cover. The calibration of CCAC led to a significant improvement of the statistical 

metrics. Specifically, the tendency to underestimate was reduced from -70.6 to -38.6, R2 increased from 

0.05 to 0.50, thus indicating that the calibrated CCAC model better explained the variance of observed 

yield values. Smaller estimation errors were received with nRMSE decreasing from 39.6% to 26.5%, 
RMSE decreasing from 1500 kgha-1 to 996 kgha-1 and a ME increasing significantly from -0.4 to 0.4.  

In spite of the improved accuracy obtained with the calibration of the CCAC, the results still 

discourage the large scale and limited data availability application of the model. However, by excluding 

the irrigated parcels from the statistical analysis (Table 4), the results obtained with CCAC calibration 

improved significantly and became comparable with those reported in previous studies. The RMSE 

values of 616 kgha-1 and ME of 0.80 are consistent with ranges reported by [21] (330 to 580 kgha-1) 

and model efficiencies of 0.78, when the researchers applied AquaCrop for wheat yield simulation. 

RMSE values of 580 kgha-1 (nRMSE = 11.9%) were also calculated by [22] applying AquaCrop for 

three years of wheat cultivation. A study conducted to assess the performance of AquaCrop to simulate 

spring wheat grain yield in Western Canada [23] produced R2 and RMSE values of 0.66 and 743 kgha-

1, respectively. RMSE, nRMSE and R2 of 550 kgha-1, 8.77% and 0.82, respectively, were found by 

assimilation of winter wheat biomass retrieved from remote sensing data in AquaCrop, at Beijing, China 

[24]. AquaCrop was calibrated and evaluated for yield prediction in a field experiment of spring wheat 

for two growing seasons in Egypt, producing RMSE, d and R2 of 555 kgha-1, 0.93 and 0.84 respectively 

[25].  

Although there was a rather extensive simplification to make the model less data intensive, the 

metrics of Table 4 clearly indicate the need for a careful calibration of the CCAC to reduce errors and 

bias when simulating grain yield. In fact, in this case, it is remarkable that the CCAC calibration simulates 

with great success a wide range of yields, from the very low (750 kgha-1) to high (6220 kgha-1) levels, 

obtained on rainfed parcels. The adjustment of the CGC and CDC shows a great potential for simulating 

yields of different wheat varieties with varying growth patterns, under multiyear and multi-environment 

conditions. AquaCrop can offer a balance between accuracy obtained with mechanistic models and 

robustness, and can be a valuable tool for yield prediction, particularly considering the fact that it 

requires a relatively small number of explicit data that can be readily available or easily interpreted to 

valuable information.  
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Table 3 
Statistical evaluation of yield estimates with AquaCrop (n = 184) 

Statistical metric Units 
Minimum 

data requirements 

Medium 

data requirements 

Full 

data requirements 

Average estimates  kgha-1 3080 3110 3731 

Average measured kgha-1 3774 3774 3774 

std estimates kgha-1 757 1067 1150 

std measured kgha-1 1252 1252 1252 

Value range estimates kgha-1 850 – 4670 750 – 4810 750 – 6370 

Value range measured kgha-1 500 – 6740 500 – 6740 500 – 6740 

ME - -0.4 0.4 0.8 

RMSE kgha-1 1500 996 569 

nRMSE % 39.6 26.5 15.1 

bias kgha-1 -70.6 -38.6 -4.31 

d - 0.485 0.827 0.942 

R2 - 0.05 0.50 0.80 

 

Table 4 
Statistical evaluation of yield estimates with AquaCrop only for rainfed parcels (n = 127) 

Statistical metric Units 
Minimum  

data requirements 

Medium  

data requirements 

Average estimates  kgha-1 320 343 

Average measured kgha-1 345 345 

std estimates kgha-1 600 1128 

std measured kgha-1 1233 1233 

Value range estimates kgha-1 1500 – 3200 750 – 6220 

Value range measured kgha-1 1250 – 6700 1250 – 6700 

ME - 0.2 0.8 

RMSE kgha-1 1086 616 

nRMSE % 31.5 17.9 

bias kgha-1 -24.4 -1.3 

d - 0.623 0.930 

R2 - 0.27 0.75 

4. Conclusions 

This study presents the large-scale simulation and assessment of winter wheat yield with AquaCrop, 

presenting different levels of input data intensity, based on predictors originating from open-access 

satellite data, SoilGrids, ERA5-Land and ERA5 climate reanalysis. The model was validated with 184 

durum wheat yields in two distinct regions in Greece, for two growing seasons. Remote sensing has 

offered an unparalleled opportunity to collect data on crop phenology, vegetation development and 

canopy cover. Coupling this information with freely available datasets to feed crop growth models can 

significantly minimize time labor intensiveness, cost and delays in the period of data acquisition, 

making also large-scale applications viable for food security reasons. The results suggest that AquaCrop 

could support operational platforms for dynamic yield forecasting, operating at the administrative or 

regional unit scale. 
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