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Abstract  
The presented study investigates a human-centric approach to implementing human-in-

the-loop models for healthcare diagnostics. The following tasks were considered and 

addressed in this work: a) identify the features necessary for future healthcare diagnosis 

based on electrocardiogram signals in the human-in-the-loop model: P, T-peaks, QRS-

complex, PQ and ST segments, and b) detect inflammatory processes in the heart muscle 

(myocardium) based on cardiac magnetic resonance imaging. As a result of our 

investigation, a novel approach was proposed for embedding (integrating) clinical 

knowledge about the nature of these phenomena into the electrocardiogram signal and 

magnetic resonance imaging. Domain knowledge about the sample’s nature is encoded 

similarly to the input information. Moreover, the convolution operation within our 

approach serves as an embedding mechanism. The results presented in the article are a 

starting point for using the models obtained by the proposed approach (human-in-the-loop 

models) for classification problems using deep learning and convolutional neural 

networks. Also, visual analysis shows the proposed approaches’ ability to solve practical 

clinical problems. It also ensures transparent interpretation of the obtained results as the 

human-in-the-loop model, which, in turn, is built according to the human-centric approach. 

Overall, our contribution allows the implementation of a scheme for obtaining artificial 

intelligence solutions based on the principles of trust in them. 
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1. Introduction 

The acceleration of the development of information systems is accompanied by expanding the 

spheres of practical use. Information systems are taking on a new form in connection with integrating 

intelligent systems, which have the appearance of relatively simple algorithmic decision-making 

systems and artificial intelligence (AI) systems. Such systems are used in various subject domains, such 

as industry, education, transport, health care, and so forth [1]. Intelligent systems have considerably 

changed the life of society, processing a vast amount of data that is constantly growing. Intelligent 

systems demonstrate their effectiveness in applied tasks but, at the same time, become more 

complicated. The complexity of intelligent systems leads to their opacity in decision-making, which is 

an essential parameter of their introduction, especially in areas of critical use. Decisions made by AI 
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systems depend on many parameters and are difficult to interpret. AI systems take the form of a black 

box in which the decision-making mechanisms are opaque, incomprehensible, possibly incorrect, and 

potentially dangerous. Today, there are known cases of incorrect and dangerous decisions made by 

artificial intelligence [2]. For example, accidents caused by autopilot cars hitting pedestrians are biased 

towards a particular category of people in hiring and others. Such examples indicate the need to develop 

AI systems that meet specific requirements for building socially responsible intelligent systems. This 

suggests that the simple application of artificial intelligence based only on technical performance 

characteristics in classification or clustering tasks is currently insufficient. It is necessary to expand the 

range of AI systems and specify them according to the specifics of practical applications. 

Such manifestations of intelligent systems in tasks of practical importance necessitated the 

development of normative documents on the regulation of requirements and limitations of using AI to 

ensure safety, security, prevention of harm, etc. Guidelines for the development and use of AI are 

proposed. The Alliance for Artificial Intelligence of the European Union proposed ethical principles 

and frameworks for the management, development, and use of AI [3]. The General Data Protection 

Regulation (GDPR) [4] was adopted, within which the user’s right to receive an explanation regarding 

decisions obtained thanks to AI systems or generated by such systems autonomously is recognised. 

Several requirements have been formed that AI must meet, including fairness, compliance with 

legislation, transparency in decision-making, interpretability, confidentiality, accountability, and 

several others. The combination of these requirements allows the application of AI systems that are 

more secure and dependable. Today, significant attention is paid to AI, whose decisions are transparent, 

explanatory, and interpretable. The practical application of such systems must be controlled; people 

must clearly understand what solutions the system can generate, what impact they have, what possible 

consequences are generated from the generated solutions and their limitations. 

AI healthcare systems belong to the field of practical use, concerning which all the necessary safety, 

reliability, and criticality requirements are applied. AI in the healthcare field is undoubtedly necessary and 

vital [5] and can significantly affect human health, improve work processes, and improve the quality and 

efficiency of medical care. However, the application of AI is not limited to improving efficiency within 

specific tasks. The healthcare domain is an area of critical decision-making responsibility. In addition, AI 

must be able to work with data that has inaccuracy, is incomplete, has data gaps, is incorrect, erroneous, 

limited, and insufficient. It is not always possible to use AI systems, which by their characteristics, 

correspond to the black box, although they give the best results in terms of quality indicators. AI systems 

provide reliable solutions and can be practically applied [6]. Although AI systems are optimistic about 

changes in the healthcare field, there are significant caveats regarding their use in the healthcare field in 

responsible decisions. These issues follow from the following circumstances: 

• AI systems at today’s level of development generate a certain number of incorrect decisions, 

with a general, high-quality level of the received decisions. 

• The developed systems do not provide an opportunity to determine which decision was wrong 

in each case but give a general assessment of the quality of a set of decisions. 

• AI systems that meet the characteristics of a black box do not make it possible to determine 

based on which features they reached such a specific decision. 

The presented study proposes the use of AI in diagnosing clinical diseases, considering the human-

centric approach and the human-in-the-loop model. This application of AI intelligence allows the 

transformation of the information field of its practical use. Integrated transformation bridges the gap 

between theoretical AI research and its practical application in the healthcare field with the development 

of medical AI. The objective circumstances of practical application necessitate the creation of AI 

systems that consider ethical aspects, comply with legal regulations, and build trust. 

Consequently, the contribution of this work is presented in the following aspects. 

• Implementation of human-centric approach and human-in-the-loop models for healthcare 

diagnostics for analysis tasks: a) electrocardiogram (ECG) signals to intend to identify features 

necessary for further diagnosis: P, T-peaks, QRS-complex, PQ segments and ST; and b) MRI images 

of the heart for detected inflammatory processes in the heart muscle (myocardium). 

• An approach for embedding (integration) human knowledge about the nature of these 

phenomena into the ECG signal and MRI image; as an embedding mechanism, it is proposed to use 

the convolution operation. 



• Visual analysis of the ability of the proposed approaches to solve the tasks. 

The structure of the article is as follows: in section 2, an overview of sources that consider the set of 

requirements for trust in AI systems is given; in section 3, the approaches proposed by the authors to 

the use of AI in the tasks of healthcare diagnostics are given, considering the human-in-the-loop model 

and human-centric approach; Chapter 4 presents the results of research on the integration of doctors’ 

knowledge into the process of obtaining AI solutions. 

2. Related work 

The problem of trust in AI systems became relevant due to the acceleration of practical implementation 

and revealed new aspects that need to be paid attention to, which in some places become the main reasons 

for the impossibility of using AI. New aspects of the use of AI not only go beyond the technical difficulties 

of building AI but also create new directions and varieties of AI. In healthcare, trust has two important 

directions [7]: social and technical. Socially, trust is an essential aspect of patient-doctor interaction. The 

patient comes to the doctor in a state different from ordinary life functionality and is vulnerable. In this 

state, the patient cannot help himself and is forced to seek external help. 

On the other hand, patients will use the services and follow the instructions according to the doctor’s 

recommendation if there is a trusting relationship with the doctor based on the level of maintenance. 

Trust in the doctor is not the last factor in the success of the treatment that has a therapeutic effect. 

However, the specified aspect of trust relates to the medical side of the patient-doctor interaction. The 

use of AI systems introduces a new aspect of patient-doctor interaction that can undermine general trust. 

AI systems can yield decent results, but their level of trust is low, so they cannot be considered 

dependable. In those circumstances, patients will be forced to rely on AI systems to obtain final 

decisions of medical importance, which may lead to a decrease in trust in the clinical practice of patient-

doctor interaction [8]. 

Several studies have been devoted to creating AI systems that meet the requirements of trust [9]-

[11]. Studies [12] and [13] are dedicated to studying the concept of trust based on the definition of a set 

of ethical principles that AI can be considered trustworthy. Proposed metrics for assessing trust in AI 

using the explainability of the expert-in-the-loop system [14]. The metric defines the difference between 

the explanations provided by the AI system and those obtained thanks to experts based on their 

reasoning and experience. The metric can be applied to diverse groups of experts to determine their 

confidence level in their recommendations. It allows for reducing the concept of confidence to a 

quantitative number by determining the distance between AI explanations and expert explanations. In 

this case, trust is reduced to explanation and equates to these two concepts. According to this approach, 

trust is entirely determined by the explainability of the decision. 

In recent years, there has been growing concern in the scientific community about the potential 

dangers of black-box algorithms used in various fields of human activity, including healthcare 

diagnostics. This observation narrows the practical application in those medical aspects when the trust 

and transparency of the obtained decisions are not essential and critical [15]. Since AI systems still give 

high results, their use is justified, but this is not enough for the normative service of doctors. The 

potential applications of AI become limited due to the low level of trust. As stated in work [16], one 

should accept AI as a black box, but it is necessary to gain experience in the interaction of doctors with 

bioinformatics to acquire the necessary skills and expertise. This will improve the quality of medical 

image analysis. Another way to address the black box issue is transforming the neural network’s 

complex structure into an understandable linear polynomial form [17], which allows reliable 

interpretation of the result of healthcare classification. However, this way of implementing medical AI 

requires highly qualified doctors to acquire specific competencies in bioinformatics. So, such 

approaches may limit and slow the spread of AI and might be considered too costly. 

An essential aspect of implementing medical AI is the availability of quality data for establishing 

decision-making models. In many cases, quality is the determining factor for developing effective and 

explainable AI, like cardiac MRI measurements and interpretation [18]. However, the availability of 

such data can be limited for valid reasons, and significant difficulties can accompany the collection of 

quality data. A significant amount of data in the healthcare field for training neural networks is focused 

on images. Synthesis algorithms are used to expand such data to obtain training data [19]. Examples of 



such data are clinical imaging data [20], electrocardiogram signals [21], electronic medical records [22], 

and so forth. In this aspect, trust in AI is recognised as the data generation necessary for distribution 

with compliance with restrictions and rules. The lack of data and its limitations is another area of 

development of reliable medical AI [15]. In particular, neural networks for their training require a large 

amount of clinical data to obtain high results. 

The prospects for the use of medical AI are promising, and today AI is used to predict caries on 

images and the development of reliable AI, which allows the explanation of the reasons according to 

which the prediction was made [23], [24]. However, in these studies, the capabilities of AI are limited 

by the need to trust AI and explain the reasons for the prediction. To improve the explainability of AI, 

systems for evaluating the results of prediction on images are proposed, involving a person as an expert 

in the prediction process [25]. In order to achieve the required results of trust and reliability of AI, three 

research areas have been identified that must be combined to obtain the required result. According to 

the authors, the combination of neural networks and their predictions, graphical causal models and 

methods of verification and explanation is the path that plays a transformative role in bridging the gap 

between theoretical research and the practical application of AI in clinical medicine [26]. 

Many studies reveal the need to develop medical AI with a set of characteristics that can be 

considered dependable. According to the conducted analysis, it can be considered that the urgent need 

is not so much the result of forecasting, but the feature set according to which the AI generated the 

forecast. The form of obtaining the required features can be presented in different forms. AI can 

independently indicate those features that are decisive in the obtained forecasts. Furthermore, the doctor 

can provide AI with a feature set that, according to clinical recommendations, play a decisive role in 

healthcare diagnosis. In this case, the AI should be able to focus computational algorithms for obtaining 

decisions on the given feature set. At the same time, other available features are also considered by AI 

with the necessary weighting of the influence and the difference in values. 

3. Methods and materials 

To implement the principles of trust in the results of healthcare diagnostics obtained thanks to AI 

and within the framework of the human-in-the-loop model and human-centric approach, we propose to 

integrate the knowledge of doctors about these data into the input data of medical research (ECG signal 

and MRI image). The proposed approach may allow modelling and classifying features that are 

understandable for doctors and enable them to interpret the result obtained by the AI systems. 

As of today, the most prominent results in medical image processing have been obtained using deep 

learning methods and means, in particular, convolutional neural networks (CNNs) [27]. The 

convolution operation, when applied to two functions, f and g, returns a third function that corresponds 

to the cross-correlation functions 𝑓(𝑥) and 𝑔(−𝑥). The operation of convolution can be interpreted as 

the “similarity” of one function to a mirrored and shifted copy of another [28]. The concept of 

convolution is generalised for functions defined on arbitrary measurement spaces and can be considered 

a special integral transformation. In the discrete case, the convolution corresponds to the sum f of values 

with coefficients corresponding to the shifted values g and defines as 

(𝑓 ∗ 𝑔)(𝑥) = 𝑓(1)𝑔(𝑥 − 1) + 𝑓(2)𝑔(𝑥 − 2) + 𝑓(3)𝑔(𝑥 − 3)+. .. (1) 

The critical point in (1) is that a square (rectangular) impulse convolution (rectangular function, 

rectangular impulse, rectangular window) is a triangular (trapezoidal) impulse (function) [29]. That is, 

placed synchronously, the input and rectangular signal, because of convolution, give a signal with more 

pronounced peaks (known as features) with the input signal. We suggest using the given convolution 

property as a mechanism for integrating knowledge about the nature of the signal (image). 

It will look like integrating the knowledge about the ECG signal and the MRI image shown below. 

3.1. Integration of knowledge into the ECG signal 

Let us consider what knowledge of the subject area (domain) can be for the ECG signal (Fig. 1). 

 



 
 

(a) (b) 
Figure 1: An illustrative sample of an ECG signal: (a) of a regular cardiac cycle; (b) of a cardiac cycle 
with individual feature knowledge implemented for an ECG signal [30] 

 

Identifying feature points for ECG signals usually involves identifying the onset and offset of the P 

wave, the QRS complex, and the T wave. The higher amplitude of the QRS complex is frequently easily 

identified. Distinguishing P and T waves is tricky because their amplitudes are lower and sometimes 

accompanied by noise. Delineation of feature points (reference points) allows for more information, 

such as intervals and amplitudes, and provides essential information for further ECG analysis. 

Domain knowledge is encoded in the form of the input signal. Since ECG signals (𝑠1, 𝑠2, … , 𝑠𝑛) are 

one-dimensional time series data, domain knowledge concerning possible pathologies in a medical 

image is encoded similarly. 

Alternatively, knowledge of the ECG domain can be presented in Fig. 1b). For example, knowledge 

about the P wave is encoded as follows 

(… ,0, ℎ𝑖 , … , ℎ𝑖⏟    
𝑤𝑖

, 0, …). (2) 

The knowledge encoded as (2) can be represented as a rectangular pulse. Similarly, knowledge about 

the QRS complex and the T wave is encoded. 

3.2. Integrating knowledge into MRI imaging 

This subsection presents a trust AI model applicable to interpretive cardiovascular segmentation 

using multimodal MRI data. Healthcare professionals rarely use a multimodal approach in practice 

because labelling these many images is highly laborious and time-consuming. Meanwhile, annotations 

for images with larger slice thicknesses are more common and readily available, while images with 

thinner slice thicknesses are not. Thus, in this work, we propose a thickness-free multimodal image 

segmentation model that can be applied to both thick-slice and thin-slice images but only needs to 

annotate the thick-slice images during the training procedure. 

Let us denote a set of images with thick slices as 𝐼𝐶 = {(𝑥𝑐 , 𝑦𝑐)|𝑥𝑐 ∈ ℝ
𝐻×𝑊×3, 𝑦𝑐 ∈ ℝ

𝐻×𝑊} and 

with thin slices as 𝐼𝑃 = {𝑥𝑝|𝑥𝑝 ∈ ℝ
𝐻×𝑊×3}. The proposed model uses unlabeled thin-slice images 𝐼𝑃 

to minimise the gap in model performance between thick and thin-slice images. In other words, this 

approach applies domain knowledge from one modality to image segmentation from another modality, 

resulting in trustful AI. 

Here, a CNN architecture of the encoder-decoder type was used to segment medical images. We 

used the vanilla U-Net architecture and replaced the original coder with a pre-trained ResNet-50 [29]. 

ResNet-50 was utilised as it better represents the features of the input images. The proposed decoder 

uses subpixel convolution to construct segmentation results. Subpixel convolution is defined as 

𝐶𝑜𝑛𝑣𝑆𝑢𝑏𝐿 = 𝑆𝑃(𝑊𝐿 ∗ 𝐹
𝐿−1 + 𝑏𝐿), (3) 



where operator 𝑆𝑃(∙) transforms a matrix of 𝐻 ×𝑊 × 𝐷 × 𝑟2 into a matrix of 𝑟𝐻 ×𝑊 × 𝐷, 𝑟 is a scale 

factor for H, 𝐹𝐿−1 and 𝐹𝐿 stand for the input and output feature maps, 𝑊𝐿 and 𝑏𝐿 represent parameters 

of the sub-pixel convolution operators for layer 𝐿. 

A multimodal procedure was used to train the CNN with (3), which provides joint optimisation for 

both types of images. The objective function of the proposed multimodal training is defined as 

ℒ(𝑥𝑐 , 𝑥𝑝) = ℒ𝑐(𝑞𝑐, 𝑦𝑐) + ℓℒ𝑝(𝑞𝑝), (4) 

where ℓ represents a hyperparameter for weighting the impact of ℒ𝑐  and ℒ𝑝, 𝑞𝑐 and 𝑞𝑝 stand for 

predictions of the segmentation probability maps of 𝑟𝐻 ×𝑊 × 𝐷 for images with thick and thin slices, 

respectively. For (4), the cross-entropy loss is determined as 

ℒ𝑐(𝑞𝑐, 𝑦𝑐) = −
1

𝐻𝑊𝐷
∑∑𝑦𝑐

𝑛,𝑑 ln 𝑞𝑐
𝑛,𝑑

𝐷

𝑑=1

𝐻𝑊

𝑛=1

.  

In the case of images with thin slices, ℒ𝑝 pushes the features away from the decision boundary of 

the feature distribution of thick-slice images, obtaining a flattening of the distribution. 

3.3. Evaluation of the quality of the obtained results 

Applying only a qualitative assessment of the obtained results at this research stage is possible. The 

purpose of these evaluations is to prove the capability of the proposed approaches for use in the given 

tasks. It is also proposed to visually evaluate changes in the signal with integrated knowledge 

concerning the input signal. Analyse how these changes affected the feature points. 

For the task of MRI analysis, the segmentation quality of a network trained with multimodal datasets 

is evaluated through the Dice coefficient. 

𝐷𝑖𝑐𝑒 =
2TP

2TP + FP + FN
, (5) 

where, for the segmentation task, TP stands for true positive, TN – true negative, FP – false positive, 

and FN – false negative cases. 

Considering the relationship between CNN performance and input samples remains unclear, a multi-

layer perceptron was used to pick decomposed samples and their corresponding Dice scores for whole-

space estimation. Such an approach can provide insight into Dice scores for individual regions of 

interest in latent space where no data are available. Consequently, it becomes possible to obtain 

information about the relationships between samples and their predictive ability by analysing the 

characteristics of samples in the hidden space. As a result, we can achieve an elevated level of 

trustfulness in the CNN model. 

4. Results and discussion 
4.1. Analysis of the ECG signal with integrated knowledge 

Several experiments were conducted to evaluate the proposed mechanisms for integrating 

knowledge about a signal into a signal. The results of the experiments showed the ability of the proposed 

approach to solve the following tasks: 

1. Clearer selection of signal features (R, P, T-peaks, PR-segment, ST-segment, P, T-waves). 

2. Cleaning of «noise» in the signal for a more straightforward interpretation of the behaviour of 

P, T-waves. 

The results of the conducted research can be visually evaluated in Fig. 2. 

 



 
Figure 2: Input ECG signal (P wave fragment), signal knowledge, systolic signal 

 

The picture shows a P-wave fragment. Applying the convolution operation to the given fragment 

resulted in a more apparent expression of the P-peak and wave behaviour. 

The following steps were taken to incorporate signal knowledge into the input signal. 

To incorporate knowledge, we need to match that knowledge with the corresponding ECG signals; 

for each cardiac cycle of the ECG, we use the position of the peak of the R wave as a reference point 

for matching knowledge; to find the peaks, we used the approach based on Shannon’s entropy [31], as 

the one that gave the best results. The results of such incorporation are shown in Fig. 3. 

 

 
Figure 3: Detection of R-peaks in the ECG signal using Shannon entropy 

 

Since ECG signals (𝑠1, 𝑠2, … , 𝑠𝑛) are one-dimensional time series data, we encode knowledge in the 

same form; additional three data channels (knowledge of P, R and T waves) are added to the primary 

input ECG signal (Fig. 4). 

 

Input ECG signal

Knowledge

Convolutions signal



 
Figure 4: Channels of ECG signal and knowledge about ECG signal 

 

The process of levelling knowledge includes three stages: 

1. Alignment of the central point of the rectangular wave R with the identified reference point of 

the R peak. 

2. Displacement of the control point of the R peak to the left by a fixed length (from the central 

point of the rectangular P-wave). 

3. A shift of the control point of the R peak to the right by a fixed length (from the central point 

of the rectangular T-wave). 

For domain knowledge, these three types of knowledge are encoded in the ECG signal data 

(channel0) as follows: 

 
𝑐ℎ𝑎𝑛𝑛𝑒𝑙0 ⋯ 𝑠𝑘 𝑠𝑘+1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑠𝑘+𝑚−1 𝑠𝑘+𝑚
𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 ⋯ 0 ℎ𝑖

𝑃 ⋯ ℎ𝑖
𝑃 0 0 0 0 0 0 0 0 0 ⋯

𝑐ℎ𝑎𝑛𝑛𝑒𝑙2 ⋯ 0 0 0 0 0 ℎ𝑖
𝑅 ⋯ ℎ𝑖

𝑅 0 0 0 0 0 ⋯

𝑐ℎ𝑎𝑛𝑛𝑒𝑙3 ⋯ 0 0 0 0 0 0 0 0 0 ℎ𝑖
𝑇 ⋯ ℎ𝑖

𝑇 0 ⋯

 

 

After the encoding and knowledge matching is complete, we include this data as input to a neural 

network model of a hidden convolutional layer encoder-decoder [30]. The results obtained by an 

encoder are presented in Fig. 5. 

 

 
Figure 5: The output layer of the encoder-decoder neural network with a hidden convolutional layer; 
red lines are forecasting 

 

According to Fig. 6, as a result of the operation of the encoder-decoder neural network, the PQ and 

ST segments and the width of the QRS complex are quite successfully selected. 

The selection of P, R, and T peaks requires certain postprocessing, illustrated in Fig. 6. 



 
Figure 6: Postprocessing of the output layer of the encoder-decoder with the implemented knowledge 

 

The P, R, and T peaks selected from the input image are shown in Fig. 7. 

 

 
Figure 7: The result of the determination of P, R, and T peaks with the implemented knowledge 

 

As can be seen from Fig. 5-7, the signal convoluted by the encoder-decoder neural network allows 

extracting the necessary information from the input ECG signal reliably: P and T peaks, QRS-complex, 

PQ and ST segments. The approach will not work only on signal sections where the R-peak is not 

detected. It is not critical because the specified areas are areas with artefacts, and they are removed from 

the analysis as they do not contain the necessary information. 

4.2. Cardiac MRI studies with integrated knowledge 

The dataset used for the experiments contained 1890 cardiac MRI samples excluded from 136 

patients. The result of short-axis stack segmentation during the cardiac cycle with implemented domain 

knowledge is presented in Fig. 8. 

As a result of computational experiments, it was found that the total percentage of unsuccessful 

segmentations obtained by the AI system reached 1.5% (that is, 28 unsuccessfully segmented images 

out of 1890). According to the domain knowledge, almost all failures were caused either by congenital 

heart diseases, such as a ventricular septal defect (Fig. 8a) or by visual artefacts and technical problems 

that affected image quality. At once, in 43 samples out of 1,890 (2.3%), segmentation errors were 

caused by a poor image of the apex of the heart (Fig. 8b). 

The analysis of Dice score (5) demonstrated a decent correspondence between the CNN and 

manual LV and RV contours in both the internal and external test cohorts. The final values of the 

Dice coefficient for the internal cohort were obtained at 83,4-85,1% in the LV, while in the RV – 

82,7-84,9%. Meanwhile, for the external cohort, the CNN model achieved 82,8-83% in the LV and 

80,4-83,1% in the RV. 



  
(a) (b) 

Figure 8: Instances of successful and unsuccessful segmentation by the AI system: (a) significant 
insufficiency due to congenital heart defect causing widening of the left ventricular (LV) contours in 
the right ventricular (RV) (red segment); (b) slight insufficiency at the apex, where the RV was 
incorrectly labelled as LV (red segment); red, green, blue and yellow ovals indicate the selection by 
the healthcare professionals of endocardial LV, epicardial LV, endocardial RV and epicardial RV 
lineaments 

 

The analysis of the Dice coefficient demonstrated promising results for automatic segmentation 

conducted using AI with our human-in-the-loop approach. It is worth noting the constant differences in 

the automatic segmentation of the scan-re-scan cohort, for example, the exclusion of parts of the outflow 

tract of the RV (Fig. 8b). While this sequence maintained excellent repeatability, the Dice coefficient 

took smaller values (82,7-84,9% for the internal cohort and 80,4-83,1% for the external cohort). 

Despite the promising results of the proposed human-in-the-loop approach, it has a limitation 

concerning the need for up-to-date databases for ECG signals and MRI, which contain more significant 

variability for a broader range of cardiac pathologies. Specifically for ECG, our approach based on the 

individual feature knowledge highly depends on R-wave peak detection when matching with ECG 

signals. As a result, automated delimitation may produce systematic errors in T-waves because the 

autoencoder predicts ups and downs as independent waves for very long T waves. For MRI, our 

approach fails to predict the junction region between the third and fourth ventricles because it is too 

small to be distinguished. In sum, the proposed human-in-the-loop approach is subjective to the domain 

knowledge and currently remains a proof of concept. The approach’s performance might be improved 

by applying intelligent data techniques, such as further partial observation in large databases without 

annotations or through realistic simulations of ECG and MRI samples. 

5. Conclusions and Future work 

This study proposes a novel human-centric approach to healthcare diagnostics. Our contribution is 

based on resolving the following tasks: a) ECG signals to identify the features necessary for future 

diagnosis in the human-in-the-loop model: P and T peaks, QRS-complex, PQ and ST segments, and b) 

cardiac MRI for detected inflammatory processes in the heart muscle (myocardium). An approach is 

proposed for embedding human knowledge about the nature of these phenomena into a signal or an 

image. It is proposed to use the convolution operation as an embedding mechanism. For the problems 

under consideration, knowledge about the nature of the signal and image is encoded in the same form 

as the input information. The visual analysis revealed the ability of the proposed approaches to solve 

the problems under investigation. Moreover, experimental results on MRI demonstrated a decent 

correspondence between the CNN and manual LV and RV contours in both the internal and external 

test cohorts. Despite the promising results of the proposed human-in-the-loop approach, it has a 

limitation concerning the need for up-to-date databases for ECG signals and MRI, which contain more 

significant variability for a broader range of cardiac pathologies. In addition, our approach is subjective 

to the domain knowledge and remains proof of concept for now. 



Further research will be directed to using models from the approach given in the article (human-in-the-

loop models) for classification problems using convolutional neural networks and deep learning. A unique 

feature will be that such technology allows transparent interpretation of the obtained results in terms of the 

human-in-the-loop model, which, in turn, is built according to the human-centric approach. It might allow 

the implementation of a scheme for obtaining an AI solution based on the principles of trust. 
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